[BranchFolding] Set correct mem refs
[oota-llvm.git] / lib / CodeGen / LiveIntervalAnalysis.cpp
1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "LiveRangeCalc.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/BlockFrequency.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <algorithm>
40 #include <cmath>
41 #include <limits>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "regalloc"
45
46 char LiveIntervals::ID = 0;
47 char &llvm::LiveIntervalsID = LiveIntervals::ID;
48 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
49                 "Live Interval Analysis", false, false)
50 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
51 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
52 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
53 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
54 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
55                 "Live Interval Analysis", false, false)
56
57 #ifndef NDEBUG
58 static cl::opt<bool> EnablePrecomputePhysRegs(
59   "precompute-phys-liveness", cl::Hidden,
60   cl::desc("Eagerly compute live intervals for all physreg units."));
61 #else
62 static bool EnablePrecomputePhysRegs = false;
63 #endif // NDEBUG
64
65 static cl::opt<bool> EnableSubRegLiveness(
66   "enable-subreg-liveness", cl::Hidden, cl::init(true),
67   cl::desc("Enable subregister liveness tracking."));
68
69 namespace llvm {
70 cl::opt<bool> UseSegmentSetForPhysRegs(
71     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
72     cl::desc(
73         "Use segment set for the computation of the live ranges of physregs."));
74 }
75
76 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
77   AU.setPreservesCFG();
78   AU.addRequired<AAResultsWrapperPass>();
79   AU.addPreserved<AAResultsWrapperPass>();
80   // LiveVariables isn't really required by this analysis, it is only required
81   // here to make sure it is live during TwoAddressInstructionPass and
82   // PHIElimination. This is temporary.
83   AU.addRequired<LiveVariables>();
84   AU.addPreserved<LiveVariables>();
85   AU.addPreservedID(MachineLoopInfoID);
86   AU.addRequiredTransitiveID(MachineDominatorsID);
87   AU.addPreservedID(MachineDominatorsID);
88   AU.addPreserved<SlotIndexes>();
89   AU.addRequiredTransitive<SlotIndexes>();
90   MachineFunctionPass::getAnalysisUsage(AU);
91 }
92
93 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
94   DomTree(nullptr), LRCalc(nullptr) {
95   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
96 }
97
98 LiveIntervals::~LiveIntervals() {
99   delete LRCalc;
100 }
101
102 void LiveIntervals::releaseMemory() {
103   // Free the live intervals themselves.
104   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
105     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
106   VirtRegIntervals.clear();
107   RegMaskSlots.clear();
108   RegMaskBits.clear();
109   RegMaskBlocks.clear();
110
111   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
112     delete RegUnitRanges[i];
113   RegUnitRanges.clear();
114
115   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
116   VNInfoAllocator.Reset();
117 }
118
119 /// runOnMachineFunction - calculates LiveIntervals
120 ///
121 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
122   MF = &fn;
123   MRI = &MF->getRegInfo();
124   TRI = MF->getSubtarget().getRegisterInfo();
125   TII = MF->getSubtarget().getInstrInfo();
126   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
127   Indexes = &getAnalysis<SlotIndexes>();
128   DomTree = &getAnalysis<MachineDominatorTree>();
129
130   if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
131     MRI->enableSubRegLiveness(true);
132
133   if (!LRCalc)
134     LRCalc = new LiveRangeCalc();
135
136   // Allocate space for all virtual registers.
137   VirtRegIntervals.resize(MRI->getNumVirtRegs());
138
139   computeVirtRegs();
140   computeRegMasks();
141   computeLiveInRegUnits();
142
143   if (EnablePrecomputePhysRegs) {
144     // For stress testing, precompute live ranges of all physical register
145     // units, including reserved registers.
146     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
147       getRegUnit(i);
148   }
149   DEBUG(dump());
150   return true;
151 }
152
153 /// print - Implement the dump method.
154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155   OS << "********** INTERVALS **********\n";
156
157   // Dump the regunits.
158   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
159     if (LiveRange *LR = RegUnitRanges[i])
160       OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
161
162   // Dump the virtregs.
163   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
165     if (hasInterval(Reg))
166       OS << getInterval(Reg) << '\n';
167   }
168
169   OS << "RegMasks:";
170   for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
171     OS << ' ' << RegMaskSlots[i];
172   OS << '\n';
173
174   printInstrs(OS);
175 }
176
177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178   OS << "********** MACHINEINSTRS **********\n";
179   MF->print(OS, Indexes);
180 }
181
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183 void LiveIntervals::dumpInstrs() const {
184   printInstrs(dbgs());
185 }
186 #endif
187
188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
190                   llvm::huge_valf : 0.0F;
191   return new LiveInterval(reg, Weight);
192 }
193
194
195 /// computeVirtRegInterval - Compute the live interval of a virtual register,
196 /// based on defs and uses.
197 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
198   assert(LRCalc && "LRCalc not initialized.");
199   assert(LI.empty() && "Should only compute empty intervals.");
200   bool ShouldTrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(LI.reg);
201   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
202   LRCalc->calculate(LI, ShouldTrackSubRegLiveness);
203   bool SeparatedComponents = computeDeadValues(LI, nullptr);
204   if (SeparatedComponents) {
205     assert(ShouldTrackSubRegLiveness
206            && "Separated components should only occur for unused subreg defs");
207     SmallVector<LiveInterval*, 8> SplitLIs;
208     splitSeparateComponents(LI, SplitLIs);
209   }
210 }
211
212 void LiveIntervals::computeVirtRegs() {
213   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
214     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
215     if (MRI->reg_nodbg_empty(Reg))
216       continue;
217     createAndComputeVirtRegInterval(Reg);
218   }
219 }
220
221 void LiveIntervals::computeRegMasks() {
222   RegMaskBlocks.resize(MF->getNumBlockIDs());
223
224   // Find all instructions with regmask operands.
225   for (MachineBasicBlock &MBB : *MF) {
226     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
227     RMB.first = RegMaskSlots.size();
228
229     // Some block starts, such as EH funclets, create masks.
230     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
231       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
232       RegMaskBits.push_back(Mask);
233     }
234
235     for (MachineInstr &MI : MBB) {
236       for (const MachineOperand &MO : MI.operands()) {
237         if (!MO.isRegMask())
238           continue;
239         RegMaskSlots.push_back(Indexes->getInstructionIndex(&MI).getRegSlot());
240         RegMaskBits.push_back(MO.getRegMask());
241       }
242     }
243
244     // Some block ends, such as funclet returns, create masks.
245     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246       RegMaskSlots.push_back(Indexes->getMBBEndIdx(&MBB));
247       RegMaskBits.push_back(Mask);
248     }
249
250     // Compute the number of register mask instructions in this block.
251     RMB.second = RegMaskSlots.size() - RMB.first;
252   }
253 }
254
255 //===----------------------------------------------------------------------===//
256 //                           Register Unit Liveness
257 //===----------------------------------------------------------------------===//
258 //
259 // Fixed interference typically comes from ABI boundaries: Function arguments
260 // and return values are passed in fixed registers, and so are exception
261 // pointers entering landing pads. Certain instructions require values to be
262 // present in specific registers. That is also represented through fixed
263 // interference.
264 //
265
266 /// computeRegUnitInterval - Compute the live range of a register unit, based
267 /// on the uses and defs of aliasing registers.  The range should be empty,
268 /// or contain only dead phi-defs from ABI blocks.
269 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
270   assert(LRCalc && "LRCalc not initialized.");
271   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
272
273   // The physregs aliasing Unit are the roots and their super-registers.
274   // Create all values as dead defs before extending to uses. Note that roots
275   // may share super-registers. That's OK because createDeadDefs() is
276   // idempotent. It is very rare for a register unit to have multiple roots, so
277   // uniquing super-registers is probably not worthwhile.
278   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
279     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
280          Supers.isValid(); ++Supers) {
281       if (!MRI->reg_empty(*Supers))
282         LRCalc->createDeadDefs(LR, *Supers);
283     }
284   }
285
286   // Now extend LR to reach all uses.
287   // Ignore uses of reserved registers. We only track defs of those.
288   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
289     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
290          Supers.isValid(); ++Supers) {
291       unsigned Reg = *Supers;
292       if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
293         LRCalc->extendToUses(LR, Reg);
294     }
295   }
296
297   // Flush the segment set to the segment vector.
298   if (UseSegmentSetForPhysRegs)
299     LR.flushSegmentSet();
300 }
301
302
303 /// computeLiveInRegUnits - Precompute the live ranges of any register units
304 /// that are live-in to an ABI block somewhere. Register values can appear
305 /// without a corresponding def when entering the entry block or a landing pad.
306 ///
307 void LiveIntervals::computeLiveInRegUnits() {
308   RegUnitRanges.resize(TRI->getNumRegUnits());
309   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
310
311   // Keep track of the live range sets allocated.
312   SmallVector<unsigned, 8> NewRanges;
313
314   // Check all basic blocks for live-ins.
315   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
316        MFI != MFE; ++MFI) {
317     const MachineBasicBlock *MBB = &*MFI;
318
319     // We only care about ABI blocks: Entry + landing pads.
320     if ((MFI != MF->begin() && !MBB->isEHPad()) || MBB->livein_empty())
321       continue;
322
323     // Create phi-defs at Begin for all live-in registers.
324     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
325     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
326     for (const auto &LI : MBB->liveins()) {
327       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
328         unsigned Unit = *Units;
329         LiveRange *LR = RegUnitRanges[Unit];
330         if (!LR) {
331           // Use segment set to speed-up initial computation of the live range.
332           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
333           NewRanges.push_back(Unit);
334         }
335         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
336         (void)VNI;
337         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
338       }
339     }
340     DEBUG(dbgs() << '\n');
341   }
342   DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
343
344   // Compute the 'normal' part of the ranges.
345   for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
346     unsigned Unit = NewRanges[i];
347     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
348   }
349 }
350
351
352 static void createSegmentsForValues(LiveRange &LR,
353       iterator_range<LiveInterval::vni_iterator> VNIs) {
354   for (auto VNI : VNIs) {
355     if (VNI->isUnused())
356       continue;
357     SlotIndex Def = VNI->def;
358     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
359   }
360 }
361
362 typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
363
364 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
365                                  ShrinkToUsesWorkList &WorkList,
366                                  const LiveRange &OldRange) {
367   // Keep track of the PHIs that are in use.
368   SmallPtrSet<VNInfo*, 8> UsedPHIs;
369   // Blocks that have already been added to WorkList as live-out.
370   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
371
372   // Extend intervals to reach all uses in WorkList.
373   while (!WorkList.empty()) {
374     SlotIndex Idx = WorkList.back().first;
375     VNInfo *VNI = WorkList.back().second;
376     WorkList.pop_back();
377     const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
378     SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
379
380     // Extend the live range for VNI to be live at Idx.
381     if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
382       assert(ExtVNI == VNI && "Unexpected existing value number");
383       (void)ExtVNI;
384       // Is this a PHIDef we haven't seen before?
385       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
386           !UsedPHIs.insert(VNI).second)
387         continue;
388       // The PHI is live, make sure the predecessors are live-out.
389       for (auto &Pred : MBB->predecessors()) {
390         if (!LiveOut.insert(Pred).second)
391           continue;
392         SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
393         // A predecessor is not required to have a live-out value for a PHI.
394         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
395           WorkList.push_back(std::make_pair(Stop, PVNI));
396       }
397       continue;
398     }
399
400     // VNI is live-in to MBB.
401     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
402     LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
403
404     // Make sure VNI is live-out from the predecessors.
405     for (auto &Pred : MBB->predecessors()) {
406       if (!LiveOut.insert(Pred).second)
407         continue;
408       SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
409       assert(OldRange.getVNInfoBefore(Stop) == VNI &&
410              "Wrong value out of predecessor");
411       WorkList.push_back(std::make_pair(Stop, VNI));
412     }
413   }
414 }
415
416 bool LiveIntervals::shrinkToUses(LiveInterval *li,
417                                  SmallVectorImpl<MachineInstr*> *dead) {
418   DEBUG(dbgs() << "Shrink: " << *li << '\n');
419   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
420          && "Can only shrink virtual registers");
421
422   // Shrink subregister live ranges.
423   bool NeedsCleanup = false;
424   for (LiveInterval::SubRange &S : li->subranges()) {
425     shrinkToUses(S, li->reg);
426     if (S.empty())
427       NeedsCleanup = true;
428   }
429   if (NeedsCleanup)
430     li->removeEmptySubRanges();
431
432   // Find all the values used, including PHI kills.
433   ShrinkToUsesWorkList WorkList;
434
435   // Visit all instructions reading li->reg.
436   for (MachineRegisterInfo::reg_instr_iterator
437        I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
438        I != E; ) {
439     MachineInstr *UseMI = &*(I++);
440     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
441       continue;
442     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
443     LiveQueryResult LRQ = li->Query(Idx);
444     VNInfo *VNI = LRQ.valueIn();
445     if (!VNI) {
446       // This shouldn't happen: readsVirtualRegister returns true, but there is
447       // no live value. It is likely caused by a target getting <undef> flags
448       // wrong.
449       DEBUG(dbgs() << Idx << '\t' << *UseMI
450                    << "Warning: Instr claims to read non-existent value in "
451                     << *li << '\n');
452       continue;
453     }
454     // Special case: An early-clobber tied operand reads and writes the
455     // register one slot early.
456     if (VNInfo *DefVNI = LRQ.valueDefined())
457       Idx = DefVNI->def;
458
459     WorkList.push_back(std::make_pair(Idx, VNI));
460   }
461
462   // Create new live ranges with only minimal live segments per def.
463   LiveRange NewLR;
464   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
465   extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
466
467   // Move the trimmed segments back.
468   li->segments.swap(NewLR.segments);
469
470   // Handle dead values.
471   bool CanSeparate = computeDeadValues(*li, dead);
472   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
473   return CanSeparate;
474 }
475
476 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
477                                       SmallVectorImpl<MachineInstr*> *dead) {
478   bool MayHaveSplitComponents = false;
479   for (auto VNI : LI.valnos) {
480     if (VNI->isUnused())
481       continue;
482     SlotIndex Def = VNI->def;
483     LiveRange::iterator I = LI.FindSegmentContaining(Def);
484     assert(I != LI.end() && "Missing segment for VNI");
485
486     // Is the register live before? Otherwise we may have to add a read-undef
487     // flag for subregister defs.
488     bool DeadBeforeDef = false;
489     unsigned VReg = LI.reg;
490     if (MRI->shouldTrackSubRegLiveness(VReg)) {
491       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
492         MachineInstr *MI = getInstructionFromIndex(Def);
493         MI->setRegisterDefReadUndef(VReg);
494         DeadBeforeDef = true;
495       }
496     }
497
498     if (I->end != Def.getDeadSlot())
499       continue;
500     if (VNI->isPHIDef()) {
501       // This is a dead PHI. Remove it.
502       VNI->markUnused();
503       LI.removeSegment(I);
504       DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
505       MayHaveSplitComponents = true;
506     } else {
507       // This is a dead def. Make sure the instruction knows.
508       MachineInstr *MI = getInstructionFromIndex(Def);
509       assert(MI && "No instruction defining live value");
510       MI->addRegisterDead(VReg, TRI);
511
512       // If we have a dead def that is completely separate from the rest of
513       // the liverange then we rewrite it to use a different VReg to not violate
514       // the rule that the liveness of a virtual register forms a connected
515       // component. This should only happen if subregister liveness is tracked.
516       if (DeadBeforeDef)
517         MayHaveSplitComponents = true;
518
519       if (dead && MI->allDefsAreDead()) {
520         DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
521         dead->push_back(MI);
522       }
523     }
524   }
525   return MayHaveSplitComponents;
526 }
527
528 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
529 {
530   DEBUG(dbgs() << "Shrink: " << SR << '\n');
531   assert(TargetRegisterInfo::isVirtualRegister(Reg)
532          && "Can only shrink virtual registers");
533   // Find all the values used, including PHI kills.
534   ShrinkToUsesWorkList WorkList;
535
536   // Visit all instructions reading Reg.
537   SlotIndex LastIdx;
538   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
539     MachineInstr *UseMI = MO.getParent();
540     if (UseMI->isDebugValue())
541       continue;
542     // Maybe the operand is for a subregister we don't care about.
543     unsigned SubReg = MO.getSubReg();
544     if (SubReg != 0) {
545       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
546       if ((LaneMask & SR.LaneMask) == 0)
547         continue;
548     }
549     // We only need to visit each instruction once.
550     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
551     if (Idx == LastIdx)
552       continue;
553     LastIdx = Idx;
554
555     LiveQueryResult LRQ = SR.Query(Idx);
556     VNInfo *VNI = LRQ.valueIn();
557     // For Subranges it is possible that only undef values are left in that
558     // part of the subregister, so there is no real liverange at the use
559     if (!VNI)
560       continue;
561
562     // Special case: An early-clobber tied operand reads and writes the
563     // register one slot early.
564     if (VNInfo *DefVNI = LRQ.valueDefined())
565       Idx = DefVNI->def;
566
567     WorkList.push_back(std::make_pair(Idx, VNI));
568   }
569
570   // Create a new live ranges with only minimal live segments per def.
571   LiveRange NewLR;
572   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
573   extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
574
575   // Move the trimmed ranges back.
576   SR.segments.swap(NewLR.segments);
577
578   // Remove dead PHI value numbers
579   for (auto VNI : SR.valnos) {
580     if (VNI->isUnused())
581       continue;
582     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
583     assert(Segment != nullptr && "Missing segment for VNI");
584     if (Segment->end != VNI->def.getDeadSlot())
585       continue;
586     if (VNI->isPHIDef()) {
587       // This is a dead PHI. Remove it.
588       VNI->markUnused();
589       SR.removeSegment(*Segment);
590       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
591     }
592   }
593
594   DEBUG(dbgs() << "Shrunk: " << SR << '\n');
595 }
596
597 void LiveIntervals::extendToIndices(LiveRange &LR,
598                                     ArrayRef<SlotIndex> Indices) {
599   assert(LRCalc && "LRCalc not initialized.");
600   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
601   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
602     LRCalc->extend(LR, Indices[i]);
603 }
604
605 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
606                                SmallVectorImpl<SlotIndex> *EndPoints) {
607   LiveQueryResult LRQ = LR.Query(Kill);
608   VNInfo *VNI = LRQ.valueOutOrDead();
609   if (!VNI)
610     return;
611
612   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
613   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
614
615   // If VNI isn't live out from KillMBB, the value is trivially pruned.
616   if (LRQ.endPoint() < MBBEnd) {
617     LR.removeSegment(Kill, LRQ.endPoint());
618     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
619     return;
620   }
621
622   // VNI is live out of KillMBB.
623   LR.removeSegment(Kill, MBBEnd);
624   if (EndPoints) EndPoints->push_back(MBBEnd);
625
626   // Find all blocks that are reachable from KillMBB without leaving VNI's live
627   // range. It is possible that KillMBB itself is reachable, so start a DFS
628   // from each successor.
629   typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
630   VisitedTy Visited;
631   for (MachineBasicBlock::succ_iterator
632        SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
633        SuccI != SuccE; ++SuccI) {
634     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
635          I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
636          I != E;) {
637       MachineBasicBlock *MBB = *I;
638
639       // Check if VNI is live in to MBB.
640       SlotIndex MBBStart, MBBEnd;
641       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
642       LiveQueryResult LRQ = LR.Query(MBBStart);
643       if (LRQ.valueIn() != VNI) {
644         // This block isn't part of the VNI segment. Prune the search.
645         I.skipChildren();
646         continue;
647       }
648
649       // Prune the search if VNI is killed in MBB.
650       if (LRQ.endPoint() < MBBEnd) {
651         LR.removeSegment(MBBStart, LRQ.endPoint());
652         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
653         I.skipChildren();
654         continue;
655       }
656
657       // VNI is live through MBB.
658       LR.removeSegment(MBBStart, MBBEnd);
659       if (EndPoints) EndPoints->push_back(MBBEnd);
660       ++I;
661     }
662   }
663 }
664
665 //===----------------------------------------------------------------------===//
666 // Register allocator hooks.
667 //
668
669 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
670   // Keep track of regunit ranges.
671   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
672   // Keep track of subregister ranges.
673   SmallVector<std::pair<const LiveInterval::SubRange*,
674                         LiveRange::const_iterator>, 4> SRs;
675
676   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
677     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
678     if (MRI->reg_nodbg_empty(Reg))
679       continue;
680     const LiveInterval &LI = getInterval(Reg);
681     if (LI.empty())
682       continue;
683
684     // Find the regunit intervals for the assigned register. They may overlap
685     // the virtual register live range, cancelling any kills.
686     RU.clear();
687     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
688          ++Units) {
689       const LiveRange &RURange = getRegUnit(*Units);
690       if (RURange.empty())
691         continue;
692       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
693     }
694
695     if (MRI->subRegLivenessEnabled()) {
696       SRs.clear();
697       for (const LiveInterval::SubRange &SR : LI.subranges()) {
698         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
699       }
700     }
701
702     // Every instruction that kills Reg corresponds to a segment range end
703     // point.
704     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
705          ++RI) {
706       // A block index indicates an MBB edge.
707       if (RI->end.isBlock())
708         continue;
709       MachineInstr *MI = getInstructionFromIndex(RI->end);
710       if (!MI)
711         continue;
712
713       // Check if any of the regunits are live beyond the end of RI. That could
714       // happen when a physreg is defined as a copy of a virtreg:
715       //
716       //   %EAX = COPY %vreg5
717       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
718       //   BAR %EAX<kill>
719       //
720       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
721       for (auto &RUP : RU) {
722         const LiveRange &RURange = *RUP.first;
723         LiveRange::const_iterator &I = RUP.second;
724         if (I == RURange.end())
725           continue;
726         I = RURange.advanceTo(I, RI->end);
727         if (I == RURange.end() || I->start >= RI->end)
728           continue;
729         // I is overlapping RI.
730         goto CancelKill;
731       }
732
733       if (MRI->subRegLivenessEnabled()) {
734         // When reading a partial undefined value we must not add a kill flag.
735         // The regalloc might have used the undef lane for something else.
736         // Example:
737         //     %vreg1 = ...              ; R32: %vreg1
738         //     %vreg2:high16 = ...       ; R64: %vreg2
739         //        = read %vreg2<kill>    ; R64: %vreg2
740         //        = read %vreg1          ; R32: %vreg1
741         // The <kill> flag is correct for %vreg2, but the register allocator may
742         // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
743         // are actually never written by %vreg2. After assignment the <kill>
744         // flag at the read instruction is invalid.
745         LaneBitmask DefinedLanesMask;
746         if (!SRs.empty()) {
747           // Compute a mask of lanes that are defined.
748           DefinedLanesMask = 0;
749           for (auto &SRP : SRs) {
750             const LiveInterval::SubRange &SR = *SRP.first;
751             LiveRange::const_iterator &I = SRP.second;
752             if (I == SR.end())
753               continue;
754             I = SR.advanceTo(I, RI->end);
755             if (I == SR.end() || I->start >= RI->end)
756               continue;
757             // I is overlapping RI
758             DefinedLanesMask |= SR.LaneMask;
759           }
760         } else
761           DefinedLanesMask = ~0u;
762
763         bool IsFullWrite = false;
764         for (const MachineOperand &MO : MI->operands()) {
765           if (!MO.isReg() || MO.getReg() != Reg)
766             continue;
767           if (MO.isUse()) {
768             // Reading any undefined lanes?
769             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
770             if ((UseMask & ~DefinedLanesMask) != 0)
771               goto CancelKill;
772           } else if (MO.getSubReg() == 0) {
773             // Writing to the full register?
774             assert(MO.isDef());
775             IsFullWrite = true;
776           }
777         }
778
779         // If an instruction writes to a subregister, a new segment starts in
780         // the LiveInterval. But as this is only overriding part of the register
781         // adding kill-flags is not correct here after registers have been
782         // assigned.
783         if (!IsFullWrite) {
784           // Next segment has to be adjacent in the subregister write case.
785           LiveRange::const_iterator N = std::next(RI);
786           if (N != LI.end() && N->start == RI->end)
787             goto CancelKill;
788         }
789       }
790
791       MI->addRegisterKilled(Reg, nullptr);
792       continue;
793 CancelKill:
794       MI->clearRegisterKills(Reg, nullptr);
795     }
796   }
797 }
798
799 MachineBasicBlock*
800 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
801   // A local live range must be fully contained inside the block, meaning it is
802   // defined and killed at instructions, not at block boundaries. It is not
803   // live in or or out of any block.
804   //
805   // It is technically possible to have a PHI-defined live range identical to a
806   // single block, but we are going to return false in that case.
807
808   SlotIndex Start = LI.beginIndex();
809   if (Start.isBlock())
810     return nullptr;
811
812   SlotIndex Stop = LI.endIndex();
813   if (Stop.isBlock())
814     return nullptr;
815
816   // getMBBFromIndex doesn't need to search the MBB table when both indexes
817   // belong to proper instructions.
818   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
819   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
820   return MBB1 == MBB2 ? MBB1 : nullptr;
821 }
822
823 bool
824 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
825   for (const VNInfo *PHI : LI.valnos) {
826     if (PHI->isUnused() || !PHI->isPHIDef())
827       continue;
828     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
829     // Conservatively return true instead of scanning huge predecessor lists.
830     if (PHIMBB->pred_size() > 100)
831       return true;
832     for (MachineBasicBlock::const_pred_iterator
833          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
834       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
835         return true;
836   }
837   return false;
838 }
839
840 float
841 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
842                               const MachineBlockFrequencyInfo *MBFI,
843                               const MachineInstr *MI) {
844   BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
845   const float Scale = 1.0f / MBFI->getEntryFreq();
846   return (isDef + isUse) * (Freq.getFrequency() * Scale);
847 }
848
849 LiveRange::Segment
850 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
851   LiveInterval& Interval = createEmptyInterval(reg);
852   VNInfo* VN = Interval.getNextValue(
853     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
854     getVNInfoAllocator());
855   LiveRange::Segment S(
856      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
857      getMBBEndIdx(startInst->getParent()), VN);
858   Interval.addSegment(S);
859
860   return S;
861 }
862
863
864 //===----------------------------------------------------------------------===//
865 //                          Register mask functions
866 //===----------------------------------------------------------------------===//
867
868 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
869                                              BitVector &UsableRegs) {
870   if (LI.empty())
871     return false;
872   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
873
874   // Use a smaller arrays for local live ranges.
875   ArrayRef<SlotIndex> Slots;
876   ArrayRef<const uint32_t*> Bits;
877   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
878     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
879     Bits = getRegMaskBitsInBlock(MBB->getNumber());
880   } else {
881     Slots = getRegMaskSlots();
882     Bits = getRegMaskBits();
883   }
884
885   // We are going to enumerate all the register mask slots contained in LI.
886   // Start with a binary search of RegMaskSlots to find a starting point.
887   ArrayRef<SlotIndex>::iterator SlotI =
888     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
889   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
890
891   // No slots in range, LI begins after the last call.
892   if (SlotI == SlotE)
893     return false;
894
895   bool Found = false;
896   for (;;) {
897     assert(*SlotI >= LiveI->start);
898     // Loop over all slots overlapping this segment.
899     while (*SlotI < LiveI->end) {
900       // *SlotI overlaps LI. Collect mask bits.
901       if (!Found) {
902         // This is the first overlap. Initialize UsableRegs to all ones.
903         UsableRegs.clear();
904         UsableRegs.resize(TRI->getNumRegs(), true);
905         Found = true;
906       }
907       // Remove usable registers clobbered by this mask.
908       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
909       if (++SlotI == SlotE)
910         return Found;
911     }
912     // *SlotI is beyond the current LI segment.
913     LiveI = LI.advanceTo(LiveI, *SlotI);
914     if (LiveI == LiveE)
915       return Found;
916     // Advance SlotI until it overlaps.
917     while (*SlotI < LiveI->start)
918       if (++SlotI == SlotE)
919         return Found;
920   }
921 }
922
923 //===----------------------------------------------------------------------===//
924 //                         IntervalUpdate class.
925 //===----------------------------------------------------------------------===//
926
927 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
928 class LiveIntervals::HMEditor {
929 private:
930   LiveIntervals& LIS;
931   const MachineRegisterInfo& MRI;
932   const TargetRegisterInfo& TRI;
933   SlotIndex OldIdx;
934   SlotIndex NewIdx;
935   SmallPtrSet<LiveRange*, 8> Updated;
936   bool UpdateFlags;
937
938 public:
939   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
940            const TargetRegisterInfo& TRI,
941            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
942     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
943       UpdateFlags(UpdateFlags) {}
944
945   // FIXME: UpdateFlags is a workaround that creates live intervals for all
946   // physregs, even those that aren't needed for regalloc, in order to update
947   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
948   // flags, and postRA passes will use a live register utility instead.
949   LiveRange *getRegUnitLI(unsigned Unit) {
950     if (UpdateFlags)
951       return &LIS.getRegUnit(Unit);
952     return LIS.getCachedRegUnit(Unit);
953   }
954
955   /// Update all live ranges touched by MI, assuming a move from OldIdx to
956   /// NewIdx.
957   void updateAllRanges(MachineInstr *MI) {
958     DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
959     bool hasRegMask = false;
960     for (MachineOperand &MO : MI->operands()) {
961       if (MO.isRegMask())
962         hasRegMask = true;
963       if (!MO.isReg())
964         continue;
965       // Aggressively clear all kill flags.
966       // They are reinserted by VirtRegRewriter.
967       if (MO.isUse())
968         MO.setIsKill(false);
969
970       unsigned Reg = MO.getReg();
971       if (!Reg)
972         continue;
973       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
974         LiveInterval &LI = LIS.getInterval(Reg);
975         if (LI.hasSubRanges()) {
976           unsigned SubReg = MO.getSubReg();
977           LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
978           for (LiveInterval::SubRange &S : LI.subranges()) {
979             if ((S.LaneMask & LaneMask) == 0)
980               continue;
981             updateRange(S, Reg, S.LaneMask);
982           }
983         }
984         updateRange(LI, Reg, 0);
985         continue;
986       }
987
988       // For physregs, only update the regunits that actually have a
989       // precomputed live range.
990       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
991         if (LiveRange *LR = getRegUnitLI(*Units))
992           updateRange(*LR, *Units, 0);
993     }
994     if (hasRegMask)
995       updateRegMaskSlots();
996   }
997
998 private:
999   /// Update a single live range, assuming an instruction has been moved from
1000   /// OldIdx to NewIdx.
1001   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1002     if (!Updated.insert(&LR).second)
1003       return;
1004     DEBUG({
1005       dbgs() << "     ";
1006       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1007         dbgs() << PrintReg(Reg);
1008         if (LaneMask != 0)
1009           dbgs() << " L" << PrintLaneMask(LaneMask);
1010       } else {
1011         dbgs() << PrintRegUnit(Reg, &TRI);
1012       }
1013       dbgs() << ":\t" << LR << '\n';
1014     });
1015     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1016       handleMoveDown(LR);
1017     else
1018       handleMoveUp(LR, Reg, LaneMask);
1019     DEBUG(dbgs() << "        -->\t" << LR << '\n');
1020     LR.verify();
1021   }
1022
1023   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1024   /// to NewIdx.
1025   ///
1026   /// 1. Live def at OldIdx:
1027   ///    Move def to NewIdx, assert endpoint after NewIdx.
1028   ///
1029   /// 2. Live def at OldIdx, killed at NewIdx:
1030   ///    Change to dead def at NewIdx.
1031   ///    (Happens when bundling def+kill together).
1032   ///
1033   /// 3. Dead def at OldIdx:
1034   ///    Move def to NewIdx, possibly across another live value.
1035   ///
1036   /// 4. Def at OldIdx AND at NewIdx:
1037   ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
1038   ///    (Happens when bundling multiple defs together).
1039   ///
1040   /// 5. Value read at OldIdx, killed before NewIdx:
1041   ///    Extend kill to NewIdx.
1042   ///
1043   void handleMoveDown(LiveRange &LR) {
1044     // First look for a kill at OldIdx.
1045     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1046     LiveRange::iterator E = LR.end();
1047     // Is LR even live at OldIdx?
1048     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1049       return;
1050
1051     // Handle a live-in value.
1052     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1053       bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
1054       // If the live-in value already extends to NewIdx, there is nothing to do.
1055       if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
1056         return;
1057       // Aggressively remove all kill flags from the old kill point.
1058       // Kill flags shouldn't be used while live intervals exist, they will be
1059       // reinserted by VirtRegRewriter.
1060       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
1061         for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
1062           if (MO->isReg() && MO->isUse())
1063             MO->setIsKill(false);
1064       // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
1065       // overlapping ranges. Case 5 above.
1066       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1067       // If this was a kill, there may also be a def. Otherwise we're done.
1068       if (!isKill)
1069         return;
1070       ++I;
1071     }
1072
1073     // Check for a def at OldIdx.
1074     if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
1075       return;
1076     // We have a def at OldIdx.
1077     VNInfo *DefVNI = I->valno;
1078     assert(DefVNI->def == I->start && "Inconsistent def");
1079     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1080     // If the defined value extends beyond NewIdx, just move the def down.
1081     // This is case 1 above.
1082     if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
1083       I->start = DefVNI->def;
1084       return;
1085     }
1086     // The remaining possibilities are now:
1087     // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
1088     // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
1089     // In either case, it is possible that there is an existing def at NewIdx.
1090     assert((I->end == OldIdx.getDeadSlot() ||
1091             SlotIndex::isSameInstr(I->end, NewIdx)) &&
1092             "Cannot move def below kill");
1093     LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
1094     if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1095       // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
1096       // coalesced into that value.
1097       assert(NewI->valno != DefVNI && "Multiple defs of value?");
1098       LR.removeValNo(DefVNI);
1099       return;
1100     }
1101     // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
1102     // If the def at OldIdx was dead, we allow it to be moved across other LR
1103     // values. The new range should be placed immediately before NewI, move any
1104     // intermediate ranges up.
1105     assert(NewI != I && "Inconsistent iterators");
1106     std::copy(std::next(I), NewI, I);
1107     *std::prev(NewI)
1108       = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1109   }
1110
1111   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1112   /// to NewIdx.
1113   ///
1114   /// 1. Live def at OldIdx:
1115   ///    Hoist def to NewIdx.
1116   ///
1117   /// 2. Dead def at OldIdx:
1118   ///    Hoist def+end to NewIdx, possibly move across other values.
1119   ///
1120   /// 3. Dead def at OldIdx AND existing def at NewIdx:
1121   ///    Remove value defined at OldIdx, coalescing it with existing value.
1122   ///
1123   /// 4. Live def at OldIdx AND existing def at NewIdx:
1124   ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
1125   ///    (Happens when bundling multiple defs together).
1126   ///
1127   /// 5. Value killed at OldIdx:
1128   ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
1129   ///    OldIdx.
1130   ///
1131   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1132     // First look for a kill at OldIdx.
1133     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1134     LiveRange::iterator E = LR.end();
1135     // Is LR even live at OldIdx?
1136     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1137       return;
1138
1139     // Handle a live-in value.
1140     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1141       // If the live-in value isn't killed here, there is nothing to do.
1142       if (!SlotIndex::isSameInstr(OldIdx, I->end))
1143         return;
1144       // Adjust I->end to end at NewIdx. If we are hoisting a kill above
1145       // another use, we need to search for that use. Case 5 above.
1146       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1147       ++I;
1148       // If OldIdx also defines a value, there couldn't have been another use.
1149       if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
1150         // No def, search for the new kill.
1151         // This can never be an early clobber kill since there is no def.
1152         std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
1153         return;
1154       }
1155     }
1156
1157     // Now deal with the def at OldIdx.
1158     assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
1159     VNInfo *DefVNI = I->valno;
1160     assert(DefVNI->def == I->start && "Inconsistent def");
1161     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1162
1163     // Check for an existing def at NewIdx.
1164     LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
1165     if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1166       assert(NewI->valno != DefVNI && "Same value defined more than once?");
1167       // There is an existing def at NewIdx.
1168       if (I->end.isDead()) {
1169         // Case 3: Remove the dead def at OldIdx.
1170         LR.removeValNo(DefVNI);
1171         return;
1172       }
1173       // Case 4: Replace def at NewIdx with live def at OldIdx.
1174       I->start = DefVNI->def;
1175       LR.removeValNo(NewI->valno);
1176       return;
1177     }
1178
1179     // There is no existing def at NewIdx. Hoist DefVNI.
1180     if (!I->end.isDead()) {
1181       // Leave the end point of a live def.
1182       I->start = DefVNI->def;
1183       return;
1184     }
1185
1186     // DefVNI is a dead def. It may have been moved across other values in LR,
1187     // so move I up to NewI. Slide [NewI;I) down one position.
1188     std::copy_backward(NewI, I, std::next(I));
1189     *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1190   }
1191
1192   void updateRegMaskSlots() {
1193     SmallVectorImpl<SlotIndex>::iterator RI =
1194       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1195                        OldIdx);
1196     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1197            "No RegMask at OldIdx.");
1198     *RI = NewIdx.getRegSlot();
1199     assert((RI == LIS.RegMaskSlots.begin() ||
1200             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1201            "Cannot move regmask instruction above another call");
1202     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1203             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1204            "Cannot move regmask instruction below another call");
1205   }
1206
1207   // Return the last use of reg between NewIdx and OldIdx.
1208   SlotIndex findLastUseBefore(unsigned Reg, LaneBitmask LaneMask) {
1209
1210     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1211       SlotIndex LastUse = NewIdx;
1212       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1213         unsigned SubReg = MO.getSubReg();
1214         if (SubReg != 0 && LaneMask != 0
1215             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
1216           continue;
1217
1218         const MachineInstr *MI = MO.getParent();
1219         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1220         if (InstSlot > LastUse && InstSlot < OldIdx)
1221           LastUse = InstSlot;
1222       }
1223       return LastUse;
1224     }
1225
1226     // This is a regunit interval, so scanning the use list could be very
1227     // expensive. Scan upwards from OldIdx instead.
1228     assert(NewIdx < OldIdx && "Expected upwards move");
1229     SlotIndexes *Indexes = LIS.getSlotIndexes();
1230     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1231
1232     // OldIdx may not correspond to an instruction any longer, so set MII to
1233     // point to the next instruction after OldIdx, or MBB->end().
1234     MachineBasicBlock::iterator MII = MBB->end();
1235     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1236                            Indexes->getNextNonNullIndex(OldIdx)))
1237       if (MI->getParent() == MBB)
1238         MII = MI;
1239
1240     MachineBasicBlock::iterator Begin = MBB->begin();
1241     while (MII != Begin) {
1242       if ((--MII)->isDebugValue())
1243         continue;
1244       SlotIndex Idx = Indexes->getInstructionIndex(MII);
1245
1246       // Stop searching when NewIdx is reached.
1247       if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1248         return NewIdx;
1249
1250       // Check if MII uses Reg.
1251       for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1252         if (MO->isReg() &&
1253             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1254             TRI.hasRegUnit(MO->getReg(), Reg))
1255           return Idx;
1256     }
1257     // Didn't reach NewIdx. It must be the first instruction in the block.
1258     return NewIdx;
1259   }
1260 };
1261
1262 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1263   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1264   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1265   Indexes->removeMachineInstrFromMaps(MI);
1266   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1267   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1268          OldIndex < getMBBEndIdx(MI->getParent()) &&
1269          "Cannot handle moves across basic block boundaries.");
1270
1271   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1272   HME.updateAllRanges(MI);
1273 }
1274
1275 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1276                                          MachineInstr* BundleStart,
1277                                          bool UpdateFlags) {
1278   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1279   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1280   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1281   HME.updateAllRanges(MI);
1282 }
1283
1284 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1285                                         const MachineBasicBlock::iterator End,
1286                                         const SlotIndex endIdx,
1287                                         LiveRange &LR, const unsigned Reg,
1288                                         LaneBitmask LaneMask) {
1289   LiveInterval::iterator LII = LR.find(endIdx);
1290   SlotIndex lastUseIdx;
1291   if (LII != LR.end() && LII->start < endIdx)
1292     lastUseIdx = LII->end;
1293   else
1294     --LII;
1295
1296   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1297     --I;
1298     MachineInstr *MI = I;
1299     if (MI->isDebugValue())
1300       continue;
1301
1302     SlotIndex instrIdx = getInstructionIndex(MI);
1303     bool isStartValid = getInstructionFromIndex(LII->start);
1304     bool isEndValid = getInstructionFromIndex(LII->end);
1305
1306     // FIXME: This doesn't currently handle early-clobber or multiple removed
1307     // defs inside of the region to repair.
1308     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1309          OE = MI->operands_end(); OI != OE; ++OI) {
1310       const MachineOperand &MO = *OI;
1311       if (!MO.isReg() || MO.getReg() != Reg)
1312         continue;
1313
1314       unsigned SubReg = MO.getSubReg();
1315       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1316       if ((Mask & LaneMask) == 0)
1317         continue;
1318
1319       if (MO.isDef()) {
1320         if (!isStartValid) {
1321           if (LII->end.isDead()) {
1322             SlotIndex prevStart;
1323             if (LII != LR.begin())
1324               prevStart = std::prev(LII)->start;
1325
1326             // FIXME: This could be more efficient if there was a
1327             // removeSegment method that returned an iterator.
1328             LR.removeSegment(*LII, true);
1329             if (prevStart.isValid())
1330               LII = LR.find(prevStart);
1331             else
1332               LII = LR.begin();
1333           } else {
1334             LII->start = instrIdx.getRegSlot();
1335             LII->valno->def = instrIdx.getRegSlot();
1336             if (MO.getSubReg() && !MO.isUndef())
1337               lastUseIdx = instrIdx.getRegSlot();
1338             else
1339               lastUseIdx = SlotIndex();
1340             continue;
1341           }
1342         }
1343
1344         if (!lastUseIdx.isValid()) {
1345           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1346           LiveRange::Segment S(instrIdx.getRegSlot(),
1347                                instrIdx.getDeadSlot(), VNI);
1348           LII = LR.addSegment(S);
1349         } else if (LII->start != instrIdx.getRegSlot()) {
1350           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1351           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1352           LII = LR.addSegment(S);
1353         }
1354
1355         if (MO.getSubReg() && !MO.isUndef())
1356           lastUseIdx = instrIdx.getRegSlot();
1357         else
1358           lastUseIdx = SlotIndex();
1359       } else if (MO.isUse()) {
1360         // FIXME: This should probably be handled outside of this branch,
1361         // either as part of the def case (for defs inside of the region) or
1362         // after the loop over the region.
1363         if (!isEndValid && !LII->end.isBlock())
1364           LII->end = instrIdx.getRegSlot();
1365         if (!lastUseIdx.isValid())
1366           lastUseIdx = instrIdx.getRegSlot();
1367       }
1368     }
1369   }
1370 }
1371
1372 void
1373 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1374                                       MachineBasicBlock::iterator Begin,
1375                                       MachineBasicBlock::iterator End,
1376                                       ArrayRef<unsigned> OrigRegs) {
1377   // Find anchor points, which are at the beginning/end of blocks or at
1378   // instructions that already have indexes.
1379   while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1380     --Begin;
1381   while (End != MBB->end() && !Indexes->hasIndex(End))
1382     ++End;
1383
1384   SlotIndex endIdx;
1385   if (End == MBB->end())
1386     endIdx = getMBBEndIdx(MBB).getPrevSlot();
1387   else
1388     endIdx = getInstructionIndex(End);
1389
1390   Indexes->repairIndexesInRange(MBB, Begin, End);
1391
1392   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1393     --I;
1394     MachineInstr *MI = I;
1395     if (MI->isDebugValue())
1396       continue;
1397     for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1398          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1399       if (MOI->isReg() &&
1400           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1401           !hasInterval(MOI->getReg())) {
1402         createAndComputeVirtRegInterval(MOI->getReg());
1403       }
1404     }
1405   }
1406
1407   for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1408     unsigned Reg = OrigRegs[i];
1409     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1410       continue;
1411
1412     LiveInterval &LI = getInterval(Reg);
1413     // FIXME: Should we support undefs that gain defs?
1414     if (!LI.hasAtLeastOneValue())
1415       continue;
1416
1417     for (LiveInterval::SubRange &S : LI.subranges()) {
1418       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1419     }
1420     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1421   }
1422 }
1423
1424 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1425   for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1426     if (LiveRange *LR = getCachedRegUnit(*Units))
1427       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1428         LR->removeValNo(VNI);
1429   }
1430 }
1431
1432 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1433   VNInfo *VNI = LI.getVNInfoAt(Pos);
1434   if (VNI == nullptr)
1435     return;
1436   LI.removeValNo(VNI);
1437
1438   // Also remove the value in subranges.
1439   for (LiveInterval::SubRange &S : LI.subranges()) {
1440     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1441       S.removeValNo(SVNI);
1442   }
1443   LI.removeEmptySubRanges();
1444 }
1445
1446 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1447     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1448   ConnectedVNInfoEqClasses ConEQ(*this);
1449   unsigned NumComp = ConEQ.Classify(LI);
1450   if (NumComp <= 1)
1451     return;
1452   DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1453   unsigned Reg = LI.reg;
1454   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1455   for (unsigned I = 1; I < NumComp; ++I) {
1456     unsigned NewVReg = MRI->createVirtualRegister(RegClass);
1457     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1458     SplitLIs.push_back(&NewLI);
1459   }
1460   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1461 }