Fix typo
[oota-llvm.git] / lib / CodeGen / LiveInterval.cpp
1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Format.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include <algorithm>
33 using namespace llvm;
34
35 namespace {
36 //===----------------------------------------------------------------------===//
37 // Implementation of various methods necessary for calculation of live ranges.
38 // The implementation of the methods abstracts from the concrete type of the
39 // segment collection.
40 //
41 // Implementation of the class follows the Template design pattern. The base
42 // class contains generic algorithms that call collection-specific methods,
43 // which are provided in concrete subclasses. In order to avoid virtual calls
44 // these methods are provided by means of C++ template instantiation.
45 // The base class calls the methods of the subclass through method impl(),
46 // which casts 'this' pointer to the type of the subclass.
47 //
48 //===----------------------------------------------------------------------===//
49
50 template <typename ImplT, typename IteratorT, typename CollectionT>
51 class CalcLiveRangeUtilBase {
52 protected:
53   LiveRange *LR;
54
55 protected:
56   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
57
58 public:
59   typedef LiveRange::Segment Segment;
60   typedef IteratorT iterator;
61
62   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
63     assert(!Def.isDead() && "Cannot define a value at the dead slot");
64
65     iterator I = impl().find(Def);
66     if (I == segments().end()) {
67       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
68       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
69       return VNI;
70     }
71
72     Segment *S = segmentAt(I);
73     if (SlotIndex::isSameInstr(Def, S->start)) {
74       assert(S->valno->def == S->start && "Inconsistent existing value def");
75
76       // It is possible to have both normal and early-clobber defs of the same
77       // register on an instruction. It doesn't make a lot of sense, but it is
78       // possible to specify in inline assembly.
79       //
80       // Just convert everything to early-clobber.
81       Def = std::min(Def, S->start);
82       if (Def != S->start)
83         S->start = S->valno->def = Def;
84       return S->valno;
85     }
86     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
87     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
88     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
89     return VNI;
90   }
91
92   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
93     if (segments().empty())
94       return nullptr;
95     iterator I =
96         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
97     if (I == segments().begin())
98       return nullptr;
99     --I;
100     if (I->end <= StartIdx)
101       return nullptr;
102     if (I->end < Use)
103       extendSegmentEndTo(I, Use);
104     return I->valno;
105   }
106
107   /// This method is used when we want to extend the segment specified
108   /// by I to end at the specified endpoint. To do this, we should
109   /// merge and eliminate all segments that this will overlap
110   /// with. The iterator is not invalidated.
111   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
112     assert(I != segments().end() && "Not a valid segment!");
113     Segment *S = segmentAt(I);
114     VNInfo *ValNo = I->valno;
115
116     // Search for the first segment that we can't merge with.
117     iterator MergeTo = std::next(I);
118     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
119       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
120
121     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
122     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
123
124     // If the newly formed segment now touches the segment after it and if they
125     // have the same value number, merge the two segments into one segment.
126     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
127         MergeTo->valno == ValNo) {
128       S->end = MergeTo->end;
129       ++MergeTo;
130     }
131
132     // Erase any dead segments.
133     segments().erase(std::next(I), MergeTo);
134   }
135
136   /// This method is used when we want to extend the segment specified
137   /// by I to start at the specified endpoint.  To do this, we should
138   /// merge and eliminate all segments that this will overlap with.
139   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
140     assert(I != segments().end() && "Not a valid segment!");
141     Segment *S = segmentAt(I);
142     VNInfo *ValNo = I->valno;
143
144     // Search for the first segment that we can't merge with.
145     iterator MergeTo = I;
146     do {
147       if (MergeTo == segments().begin()) {
148         S->start = NewStart;
149         segments().erase(MergeTo, I);
150         return I;
151       }
152       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
153       --MergeTo;
154     } while (NewStart <= MergeTo->start);
155
156     // If we start in the middle of another segment, just delete a range and
157     // extend that segment.
158     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
159       segmentAt(MergeTo)->end = S->end;
160     } else {
161       // Otherwise, extend the segment right after.
162       ++MergeTo;
163       Segment *MergeToSeg = segmentAt(MergeTo);
164       MergeToSeg->start = NewStart;
165       MergeToSeg->end = S->end;
166     }
167
168     segments().erase(std::next(MergeTo), std::next(I));
169     return MergeTo;
170   }
171
172   iterator addSegment(Segment S) {
173     SlotIndex Start = S.start, End = S.end;
174     iterator I = impl().findInsertPos(S);
175
176     // If the inserted segment starts in the middle or right at the end of
177     // another segment, just extend that segment to contain the segment of S.
178     if (I != segments().begin()) {
179       iterator B = std::prev(I);
180       if (S.valno == B->valno) {
181         if (B->start <= Start && B->end >= Start) {
182           extendSegmentEndTo(B, End);
183           return B;
184         }
185       } else {
186         // Check to make sure that we are not overlapping two live segments with
187         // different valno's.
188         assert(B->end <= Start &&
189                "Cannot overlap two segments with differing ValID's"
190                " (did you def the same reg twice in a MachineInstr?)");
191       }
192     }
193
194     // Otherwise, if this segment ends in the middle of, or right next
195     // to, another segment, merge it into that segment.
196     if (I != segments().end()) {
197       if (S.valno == I->valno) {
198         if (I->start <= End) {
199           I = extendSegmentStartTo(I, Start);
200
201           // If S is a complete superset of a segment, we may need to grow its
202           // endpoint as well.
203           if (End > I->end)
204             extendSegmentEndTo(I, End);
205           return I;
206         }
207       } else {
208         // Check to make sure that we are not overlapping two live segments with
209         // different valno's.
210         assert(I->start >= End &&
211                "Cannot overlap two segments with differing ValID's");
212       }
213     }
214
215     // Otherwise, this is just a new segment that doesn't interact with
216     // anything.
217     // Insert it.
218     return segments().insert(I, S);
219   }
220
221 private:
222   ImplT &impl() { return *static_cast<ImplT *>(this); }
223
224   CollectionT &segments() { return impl().segmentsColl(); }
225
226   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
227 };
228
229 //===----------------------------------------------------------------------===//
230 //   Instantiation of the methods for calculation of live ranges
231 //   based on a segment vector.
232 //===----------------------------------------------------------------------===//
233
234 class CalcLiveRangeUtilVector;
235 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
236                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
237
238 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
239 public:
240   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
241
242 private:
243   friend CalcLiveRangeUtilVectorBase;
244
245   LiveRange::Segments &segmentsColl() { return LR->segments; }
246
247   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
248
249   iterator find(SlotIndex Pos) { return LR->find(Pos); }
250
251   iterator findInsertPos(Segment S) {
252     return std::upper_bound(LR->begin(), LR->end(), S.start);
253   }
254 };
255
256 //===----------------------------------------------------------------------===//
257 //   Instantiation of the methods for calculation of live ranges
258 //   based on a segment set.
259 //===----------------------------------------------------------------------===//
260
261 class CalcLiveRangeUtilSet;
262 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
263                               LiveRange::SegmentSet::iterator,
264                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
265
266 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
267 public:
268   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
269
270 private:
271   friend CalcLiveRangeUtilSetBase;
272
273   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
274
275   void insertAtEnd(const Segment &S) {
276     LR->segmentSet->insert(LR->segmentSet->end(), S);
277   }
278
279   iterator find(SlotIndex Pos) {
280     iterator I =
281         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
282     if (I == LR->segmentSet->begin())
283       return I;
284     iterator PrevI = std::prev(I);
285     if (Pos < (*PrevI).end)
286       return PrevI;
287     return I;
288   }
289
290   iterator findInsertPos(Segment S) {
291     iterator I = LR->segmentSet->upper_bound(S);
292     if (I != LR->segmentSet->end() && !(S.start < *I))
293       ++I;
294     return I;
295   }
296 };
297 } // namespace
298
299 //===----------------------------------------------------------------------===//
300 //   LiveRange methods
301 //===----------------------------------------------------------------------===//
302
303 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
304   // This algorithm is basically std::upper_bound.
305   // Unfortunately, std::upper_bound cannot be used with mixed types until we
306   // adopt C++0x. Many libraries can do it, but not all.
307   if (empty() || Pos >= endIndex())
308     return end();
309   iterator I = begin();
310   size_t Len = size();
311   do {
312     size_t Mid = Len >> 1;
313     if (Pos < I[Mid].end)
314       Len = Mid;
315     else
316       I += Mid + 1, Len -= Mid + 1;
317   } while (Len);
318   return I;
319 }
320
321 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
322                                   VNInfo::Allocator &VNInfoAllocator) {
323   // Use the segment set, if it is available.
324   if (segmentSet != nullptr)
325     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
326   // Otherwise use the segment vector.
327   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
328 }
329
330 // overlaps - Return true if the intersection of the two live ranges is
331 // not empty.
332 //
333 // An example for overlaps():
334 //
335 // 0: A = ...
336 // 4: B = ...
337 // 8: C = A + B ;; last use of A
338 //
339 // The live ranges should look like:
340 //
341 // A = [3, 11)
342 // B = [7, x)
343 // C = [11, y)
344 //
345 // A->overlaps(C) should return false since we want to be able to join
346 // A and C.
347 //
348 bool LiveRange::overlapsFrom(const LiveRange& other,
349                              const_iterator StartPos) const {
350   assert(!empty() && "empty range");
351   const_iterator i = begin();
352   const_iterator ie = end();
353   const_iterator j = StartPos;
354   const_iterator je = other.end();
355
356   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
357          StartPos != other.end() && "Bogus start position hint!");
358
359   if (i->start < j->start) {
360     i = std::upper_bound(i, ie, j->start);
361     if (i != begin()) --i;
362   } else if (j->start < i->start) {
363     ++StartPos;
364     if (StartPos != other.end() && StartPos->start <= i->start) {
365       assert(StartPos < other.end() && i < end());
366       j = std::upper_bound(j, je, i->start);
367       if (j != other.begin()) --j;
368     }
369   } else {
370     return true;
371   }
372
373   if (j == je) return false;
374
375   while (i != ie) {
376     if (i->start > j->start) {
377       std::swap(i, j);
378       std::swap(ie, je);
379     }
380
381     if (i->end > j->start)
382       return true;
383     ++i;
384   }
385
386   return false;
387 }
388
389 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
390                          const SlotIndexes &Indexes) const {
391   assert(!empty() && "empty range");
392   if (Other.empty())
393     return false;
394
395   // Use binary searches to find initial positions.
396   const_iterator I = find(Other.beginIndex());
397   const_iterator IE = end();
398   if (I == IE)
399     return false;
400   const_iterator J = Other.find(I->start);
401   const_iterator JE = Other.end();
402   if (J == JE)
403     return false;
404
405   for (;;) {
406     // J has just been advanced to satisfy:
407     assert(J->end >= I->start);
408     // Check for an overlap.
409     if (J->start < I->end) {
410       // I and J are overlapping. Find the later start.
411       SlotIndex Def = std::max(I->start, J->start);
412       // Allow the overlap if Def is a coalescable copy.
413       if (Def.isBlock() ||
414           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
415         return true;
416     }
417     // Advance the iterator that ends first to check for more overlaps.
418     if (J->end > I->end) {
419       std::swap(I, J);
420       std::swap(IE, JE);
421     }
422     // Advance J until J->end >= I->start.
423     do
424       if (++J == JE)
425         return false;
426     while (J->end < I->start);
427   }
428 }
429
430 /// overlaps - Return true if the live range overlaps an interval specified
431 /// by [Start, End).
432 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
433   assert(Start < End && "Invalid range");
434   const_iterator I = std::lower_bound(begin(), end(), End);
435   return I != begin() && (--I)->end > Start;
436 }
437
438 bool LiveRange::covers(const LiveRange &Other) const {
439   if (empty())
440     return Other.empty();
441
442   const_iterator I = begin();
443   for (const Segment &O : Other.segments) {
444     I = advanceTo(I, O.start);
445     if (I == end() || I->start > O.start)
446       return false;
447
448     // Check adjacent live segments and see if we can get behind O.end.
449     while (I->end < O.end) {
450       const_iterator Last = I;
451       // Get next segment and abort if it was not adjacent.
452       ++I;
453       if (I == end() || Last->end != I->start)
454         return false;
455     }
456   }
457   return true;
458 }
459
460 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
461 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
462 /// it can be nuked later.
463 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
464   if (ValNo->id == getNumValNums()-1) {
465     do {
466       valnos.pop_back();
467     } while (!valnos.empty() && valnos.back()->isUnused());
468   } else {
469     ValNo->markUnused();
470   }
471 }
472
473 /// RenumberValues - Renumber all values in order of appearance and delete the
474 /// remaining unused values.
475 void LiveRange::RenumberValues() {
476   SmallPtrSet<VNInfo*, 8> Seen;
477   valnos.clear();
478   for (const Segment &S : segments) {
479     VNInfo *VNI = S.valno;
480     if (!Seen.insert(VNI).second)
481       continue;
482     assert(!VNI->isUnused() && "Unused valno used by live segment");
483     VNI->id = (unsigned)valnos.size();
484     valnos.push_back(VNI);
485   }
486 }
487
488 void LiveRange::addSegmentToSet(Segment S) {
489   CalcLiveRangeUtilSet(this).addSegment(S);
490 }
491
492 LiveRange::iterator LiveRange::addSegment(Segment S) {
493   // Use the segment set, if it is available.
494   if (segmentSet != nullptr) {
495     addSegmentToSet(S);
496     return end();
497   }
498   // Otherwise use the segment vector.
499   return CalcLiveRangeUtilVector(this).addSegment(S);
500 }
501
502 void LiveRange::append(const Segment S) {
503   // Check that the segment belongs to the back of the list.
504   assert(segments.empty() || segments.back().end <= S.start);
505   segments.push_back(S);
506 }
507
508 /// extendInBlock - If this range is live before Kill in the basic
509 /// block that starts at StartIdx, extend it to be live up to Kill and return
510 /// the value. If there is no live range before Kill, return NULL.
511 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
512   // Use the segment set, if it is available.
513   if (segmentSet != nullptr)
514     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
515   // Otherwise use the segment vector.
516   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
517 }
518
519 /// Remove the specified segment from this range.  Note that the segment must
520 /// be in a single Segment in its entirety.
521 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
522                               bool RemoveDeadValNo) {
523   // Find the Segment containing this span.
524   iterator I = find(Start);
525   assert(I != end() && "Segment is not in range!");
526   assert(I->containsInterval(Start, End)
527          && "Segment is not entirely in range!");
528
529   // If the span we are removing is at the start of the Segment, adjust it.
530   VNInfo *ValNo = I->valno;
531   if (I->start == Start) {
532     if (I->end == End) {
533       if (RemoveDeadValNo) {
534         // Check if val# is dead.
535         bool isDead = true;
536         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
537           if (II != I && II->valno == ValNo) {
538             isDead = false;
539             break;
540           }
541         if (isDead) {
542           // Now that ValNo is dead, remove it.
543           markValNoForDeletion(ValNo);
544         }
545       }
546
547       segments.erase(I);  // Removed the whole Segment.
548     } else
549       I->start = End;
550     return;
551   }
552
553   // Otherwise if the span we are removing is at the end of the Segment,
554   // adjust the other way.
555   if (I->end == End) {
556     I->end = Start;
557     return;
558   }
559
560   // Otherwise, we are splitting the Segment into two pieces.
561   SlotIndex OldEnd = I->end;
562   I->end = Start;   // Trim the old segment.
563
564   // Insert the new one.
565   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
566 }
567
568 /// removeValNo - Remove all the segments defined by the specified value#.
569 /// Also remove the value# from value# list.
570 void LiveRange::removeValNo(VNInfo *ValNo) {
571   if (empty()) return;
572   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
573     return S.valno == ValNo;
574   }), end());
575   // Now that ValNo is dead, remove it.
576   markValNoForDeletion(ValNo);
577 }
578
579 void LiveRange::join(LiveRange &Other,
580                      const int *LHSValNoAssignments,
581                      const int *RHSValNoAssignments,
582                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
583   verify();
584
585   // Determine if any of our values are mapped.  This is uncommon, so we want
586   // to avoid the range scan if not.
587   bool MustMapCurValNos = false;
588   unsigned NumVals = getNumValNums();
589   unsigned NumNewVals = NewVNInfo.size();
590   for (unsigned i = 0; i != NumVals; ++i) {
591     unsigned LHSValID = LHSValNoAssignments[i];
592     if (i != LHSValID ||
593         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
594       MustMapCurValNos = true;
595       break;
596     }
597   }
598
599   // If we have to apply a mapping to our base range assignment, rewrite it now.
600   if (MustMapCurValNos && !empty()) {
601     // Map the first live range.
602
603     iterator OutIt = begin();
604     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
605     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
606       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
607       assert(nextValNo && "Huh?");
608
609       // If this live range has the same value # as its immediate predecessor,
610       // and if they are neighbors, remove one Segment.  This happens when we
611       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
612       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
613         OutIt->end = I->end;
614       } else {
615         // Didn't merge. Move OutIt to the next segment,
616         ++OutIt;
617         OutIt->valno = nextValNo;
618         if (OutIt != I) {
619           OutIt->start = I->start;
620           OutIt->end = I->end;
621         }
622       }
623     }
624     // If we merge some segments, chop off the end.
625     ++OutIt;
626     segments.erase(OutIt, end());
627   }
628
629   // Rewrite Other values before changing the VNInfo ids.
630   // This can leave Other in an invalid state because we're not coalescing
631   // touching segments that now have identical values. That's OK since Other is
632   // not supposed to be valid after calling join();
633   for (Segment &S : Other.segments)
634     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
635
636   // Update val# info. Renumber them and make sure they all belong to this
637   // LiveRange now. Also remove dead val#'s.
638   unsigned NumValNos = 0;
639   for (unsigned i = 0; i < NumNewVals; ++i) {
640     VNInfo *VNI = NewVNInfo[i];
641     if (VNI) {
642       if (NumValNos >= NumVals)
643         valnos.push_back(VNI);
644       else
645         valnos[NumValNos] = VNI;
646       VNI->id = NumValNos++;  // Renumber val#.
647     }
648   }
649   if (NumNewVals < NumVals)
650     valnos.resize(NumNewVals);  // shrinkify
651
652   // Okay, now insert the RHS live segments into the LHS.
653   LiveRangeUpdater Updater(this);
654   for (Segment &S : Other.segments)
655     Updater.add(S);
656 }
657
658 /// Merge all of the segments in RHS into this live range as the specified
659 /// value number.  The segments in RHS are allowed to overlap with segments in
660 /// the current range, but only if the overlapping segments have the
661 /// specified value number.
662 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
663                                        VNInfo *LHSValNo) {
664   LiveRangeUpdater Updater(this);
665   for (const Segment &S : RHS.segments)
666     Updater.add(S.start, S.end, LHSValNo);
667 }
668
669 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
670 /// in RHS into this live range as the specified value number.
671 /// The segments in RHS are allowed to overlap with segments in the
672 /// current range, it will replace the value numbers of the overlaped
673 /// segments with the specified value number.
674 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
675                                     const VNInfo *RHSValNo,
676                                     VNInfo *LHSValNo) {
677   LiveRangeUpdater Updater(this);
678   for (const Segment &S : RHS.segments)
679     if (S.valno == RHSValNo)
680       Updater.add(S.start, S.end, LHSValNo);
681 }
682
683 /// MergeValueNumberInto - This method is called when two value nubmers
684 /// are found to be equivalent.  This eliminates V1, replacing all
685 /// segments with the V1 value number with the V2 value number.  This can
686 /// cause merging of V1/V2 values numbers and compaction of the value space.
687 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
688   assert(V1 != V2 && "Identical value#'s are always equivalent!");
689
690   // This code actually merges the (numerically) larger value number into the
691   // smaller value number, which is likely to allow us to compactify the value
692   // space.  The only thing we have to be careful of is to preserve the
693   // instruction that defines the result value.
694
695   // Make sure V2 is smaller than V1.
696   if (V1->id < V2->id) {
697     V1->copyFrom(*V2);
698     std::swap(V1, V2);
699   }
700
701   // Merge V1 segments into V2.
702   for (iterator I = begin(); I != end(); ) {
703     iterator S = I++;
704     if (S->valno != V1) continue;  // Not a V1 Segment.
705
706     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
707     // range, extend it.
708     if (S != begin()) {
709       iterator Prev = S-1;
710       if (Prev->valno == V2 && Prev->end == S->start) {
711         Prev->end = S->end;
712
713         // Erase this live-range.
714         segments.erase(S);
715         I = Prev+1;
716         S = Prev;
717       }
718     }
719
720     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
721     // Ensure that it is a V2 live-range.
722     S->valno = V2;
723
724     // If we can merge it into later V2 segments, do so now.  We ignore any
725     // following V1 segments, as they will be merged in subsequent iterations
726     // of the loop.
727     if (I != end()) {
728       if (I->start == S->end && I->valno == V2) {
729         S->end = I->end;
730         segments.erase(I);
731         I = S+1;
732       }
733     }
734   }
735
736   // Now that V1 is dead, remove it.
737   markValNoForDeletion(V1);
738
739   return V2;
740 }
741
742 void LiveRange::flushSegmentSet() {
743   assert(segmentSet != nullptr && "segment set must have been created");
744   assert(
745       segments.empty() &&
746       "segment set can be used only initially before switching to the array");
747   segments.append(segmentSet->begin(), segmentSet->end());
748   segmentSet = nullptr;
749   verify();
750 }
751
752 void LiveInterval::freeSubRange(SubRange *S) {
753   S->~SubRange();
754   // Memory was allocated with BumpPtr allocator and is not freed here.
755 }
756
757 void LiveInterval::removeEmptySubRanges() {
758   SubRange **NextPtr = &SubRanges;
759   SubRange *I = *NextPtr;
760   while (I != nullptr) {
761     if (!I->empty()) {
762       NextPtr = &I->Next;
763       I = *NextPtr;
764       continue;
765     }
766     // Skip empty subranges until we find the first nonempty one.
767     do {
768       SubRange *Next = I->Next;
769       freeSubRange(I);
770       I = Next;
771     } while (I != nullptr && I->empty());
772     *NextPtr = I;
773   }
774 }
775
776 void LiveInterval::clearSubRanges() {
777   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
778     Next = I->Next;
779     freeSubRange(I);
780   }
781   SubRanges = nullptr;
782 }
783
784 /// Helper function for constructMainRangeFromSubranges(): Search the CFG
785 /// backwards until we find a place covered by a LiveRange segment that actually
786 /// has a valno set.
787 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
788     const MachineBasicBlock *MBB,
789     SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
790   // We start the search at the end of MBB.
791   SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
792   // In our use case we can't live the area covered by the live segments without
793   // finding an actual VNI def.
794   LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
795   assert(I != LR.end());
796   LiveRange::Segment &S = *I;
797   if (S.valno != nullptr)
798     return S.valno;
799
800   VNInfo *VNI = nullptr;
801   // Continue at predecessors (we could even go to idom with domtree available).
802   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
803     // Avoid going in circles.
804     if (!Visited.insert(Pred).second)
805       continue;
806
807     VNI = searchForVNI(Indexes, LR, Pred, Visited);
808     if (VNI != nullptr) {
809       S.valno = VNI;
810       break;
811     }
812   }
813
814   return VNI;
815 }
816
817 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
818   SmallPtrSet<const MachineBasicBlock*, 5> Visited;
819
820   LiveRange::iterator OutIt;
821   VNInfo *PrevValNo = nullptr;
822   for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
823     LiveRange::Segment &S = *I;
824     // Determine final VNI if necessary.
825     if (S.valno == nullptr) {
826       // This can only happen at the begin of a basic block.
827       assert(S.start.isBlock() && "valno should only be missing at block begin");
828
829       Visited.clear();
830       const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
831       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
832         VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
833         if (VNI != nullptr) {
834           S.valno = VNI;
835           break;
836         }
837       }
838       assert(S.valno != nullptr && "could not determine valno");
839     }
840     // Merge with previous segment if it has the same VNI.
841     if (PrevValNo == S.valno && OutIt->end == S.start) {
842       OutIt->end = S.end;
843     } else {
844       // Didn't merge. Move OutIt to next segment.
845       if (PrevValNo == nullptr)
846         OutIt = LI.begin();
847       else
848         ++OutIt;
849
850       if (OutIt != I)
851         *OutIt = *I;
852       PrevValNo = S.valno;
853     }
854   }
855   // If we merged some segments chop off the end.
856   ++OutIt;
857   LI.segments.erase(OutIt, LI.end());
858 }
859
860 void LiveInterval::constructMainRangeFromSubranges(
861     const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
862   // The basic observations on which this algorithm is based:
863   // - Each Def/ValNo in a subrange must have a corresponding def on the main
864   //   range, but not further defs/valnos are necessary.
865   // - If any of the subranges is live at a point the main liverange has to be
866   //   live too, conversily if no subrange is live the main range mustn't be
867   //   live either.
868   // We do this by scanning through all the subranges simultaneously creating new
869   // segments in the main range as segments start/ends come up in the subranges.
870   assert(hasSubRanges() && "expected subranges to be present");
871   assert(segments.empty() && valnos.empty() && "expected empty main range");
872
873   // Collect subrange, iterator pairs for the walk and determine first and last
874   // SlotIndex involved.
875   SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
876   SlotIndex First;
877   SlotIndex Last;
878   for (const SubRange &SR : subranges()) {
879     if (SR.empty())
880       continue;
881     SRs.push_back(std::make_pair(&SR, SR.begin()));
882     if (!First.isValid() || SR.segments.front().start < First)
883       First = SR.segments.front().start;
884     if (!Last.isValid() || SR.segments.back().end > Last)
885       Last = SR.segments.back().end;
886   }
887
888   // Walk over all subranges simultaneously.
889   Segment CurrentSegment;
890   bool ConstructingSegment = false;
891   bool NeedVNIFixup = false;
892   unsigned ActiveMask = 0;
893   SlotIndex Pos = First;
894   while (true) {
895     SlotIndex NextPos = Last;
896     enum {
897       NOTHING,
898       BEGIN_SEGMENT,
899       END_SEGMENT,
900     } Event = NOTHING;
901     // Which subregister lanes are affected by the current event.
902     unsigned EventMask = 0;
903     // Whether a BEGIN_SEGMENT is also a valno definition point.
904     bool IsDef = false;
905     // Find the next begin or end of a subrange segment. Combine masks if we
906     // have multiple begins/ends at the same position. Ends take precedence over
907     // Begins.
908     for (auto &SRP : SRs) {
909       const SubRange &SR = *SRP.first;
910       const_iterator &I = SRP.second;
911       // Advance iterator of subrange to a segment involving Pos; the earlier
912       // segments are already merged at this point.
913       while (I != SR.end() &&
914              (I->end < Pos ||
915               (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
916         ++I;
917       if (I == SR.end())
918         continue;
919       if ((ActiveMask & SR.LaneMask) == 0 &&
920           Pos <= I->start && I->start <= NextPos) {
921         // Merge multiple begins at the same position.
922         if (I->start == NextPos && Event == BEGIN_SEGMENT) {
923           EventMask |= SR.LaneMask;
924           IsDef |= I->valno->def == I->start;
925         } else if (I->start < NextPos || Event != END_SEGMENT) {
926           Event = BEGIN_SEGMENT;
927           NextPos = I->start;
928           EventMask = SR.LaneMask;
929           IsDef = I->valno->def == I->start;
930         }
931       }
932       if ((ActiveMask & SR.LaneMask) != 0 &&
933           Pos <= I->end && I->end <= NextPos) {
934         // Merge multiple ends at the same position.
935         if (I->end == NextPos && Event == END_SEGMENT)
936           EventMask |= SR.LaneMask;
937         else {
938           Event = END_SEGMENT;
939           NextPos = I->end;
940           EventMask = SR.LaneMask;
941         }
942       }
943     }
944
945     // Advance scan position.
946     Pos = NextPos;
947     if (Event == BEGIN_SEGMENT) {
948       if (ConstructingSegment && IsDef) {
949         // Finish previous segment because we have to start a new one.
950         CurrentSegment.end = Pos;
951         append(CurrentSegment);
952         ConstructingSegment = false;
953       }
954
955       // Start a new segment if necessary.
956       if (!ConstructingSegment) {
957         // Determine value number for the segment.
958         VNInfo *VNI;
959         if (IsDef) {
960           VNI = getNextValue(Pos, VNIAllocator);
961         } else {
962           // We have to reuse an existing value number, if we are lucky
963           // then we already passed one of the predecessor blocks and determined
964           // its value number (with blocks in reverse postorder this would be
965           // always true but we have no such guarantee).
966           assert(Pos.isBlock());
967           const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
968           // See if any of the predecessor blocks has a lower number and a VNI
969           for (const MachineBasicBlock *Pred : MBB->predecessors()) {
970             SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
971             VNI = getVNInfoBefore(PredEnd);
972             if (VNI != nullptr)
973               break;
974           }
975           // Def will come later: We have to do an extra fixup pass.
976           if (VNI == nullptr)
977             NeedVNIFixup = true;
978         }
979
980         // In rare cases we can produce adjacent segments with the same value
981         // number (if they come from different subranges, but happen to have
982         // the same defining instruction). VNIFixup will fix those cases.
983         if (!empty() && segments.back().end == Pos &&
984             segments.back().valno == VNI)
985           NeedVNIFixup = true;
986         CurrentSegment.start = Pos;
987         CurrentSegment.valno = VNI;
988         ConstructingSegment = true;
989       }
990       ActiveMask |= EventMask;
991     } else if (Event == END_SEGMENT) {
992       assert(ConstructingSegment);
993       // Finish segment if no lane is active anymore.
994       ActiveMask &= ~EventMask;
995       if (ActiveMask == 0) {
996         CurrentSegment.end = Pos;
997         append(CurrentSegment);
998         ConstructingSegment = false;
999       }
1000     } else {
1001       // We reached the end of the last subranges and can stop.
1002       assert(Event == NOTHING);
1003       break;
1004     }
1005   }
1006
1007   // We might not be able to assign new valnos for all segments if the basic
1008   // block containing the definition comes after a segment using the valno.
1009   // Do a fixup pass for this uncommon case.
1010   if (NeedVNIFixup)
1011     determineMissingVNIs(Indexes, *this);
1012
1013   assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
1014   verify();
1015 }
1016
1017 unsigned LiveInterval::getSize() const {
1018   unsigned Sum = 0;
1019   for (const Segment &S : segments)
1020     Sum += S.start.distance(S.end);
1021   return Sum;
1022 }
1023
1024 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
1025   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
1026 }
1027
1028 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1029 void LiveRange::Segment::dump() const {
1030   dbgs() << *this << "\n";
1031 }
1032 #endif
1033
1034 void LiveRange::print(raw_ostream &OS) const {
1035   if (empty())
1036     OS << "EMPTY";
1037   else {
1038     for (const Segment &S : segments) {
1039       OS << S;
1040       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1041     }
1042   }
1043
1044   // Print value number info.
1045   if (getNumValNums()) {
1046     OS << "  ";
1047     unsigned vnum = 0;
1048     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1049          ++i, ++vnum) {
1050       const VNInfo *vni = *i;
1051       if (vnum) OS << " ";
1052       OS << vnum << "@";
1053       if (vni->isUnused()) {
1054         OS << "x";
1055       } else {
1056         OS << vni->def;
1057         if (vni->isPHIDef())
1058           OS << "-phi";
1059       }
1060     }
1061   }
1062 }
1063
1064 void LiveInterval::print(raw_ostream &OS) const {
1065   OS << PrintReg(reg) << ' ';
1066   super::print(OS);
1067   // Print subranges
1068   for (const SubRange &SR : subranges()) {
1069     OS << format(" L%04X ", SR.LaneMask) << SR;
1070   }
1071 }
1072
1073 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1074 void LiveRange::dump() const {
1075   dbgs() << *this << "\n";
1076 }
1077
1078 void LiveInterval::dump() const {
1079   dbgs() << *this << "\n";
1080 }
1081 #endif
1082
1083 #ifndef NDEBUG
1084 void LiveRange::verify() const {
1085   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1086     assert(I->start.isValid());
1087     assert(I->end.isValid());
1088     assert(I->start < I->end);
1089     assert(I->valno != nullptr);
1090     assert(I->valno->id < valnos.size());
1091     assert(I->valno == valnos[I->valno->id]);
1092     if (std::next(I) != E) {
1093       assert(I->end <= std::next(I)->start);
1094       if (I->end == std::next(I)->start)
1095         assert(I->valno != std::next(I)->valno);
1096     }
1097   }
1098 }
1099
1100 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1101   super::verify();
1102
1103   // Make sure SubRanges are fine and LaneMasks are disjunct.
1104   unsigned Mask = 0;
1105   unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
1106   for (const SubRange &SR : subranges()) {
1107     // Subrange lanemask should be disjunct to any previous subrange masks.
1108     assert((Mask & SR.LaneMask) == 0);
1109     Mask |= SR.LaneMask;
1110
1111     // subrange mask should not contained in maximum lane mask for the vreg.
1112     assert((Mask & ~MaxMask) == 0);
1113     // empty subranges must be removed.
1114     assert(!SR.empty());
1115
1116     SR.verify();
1117     // Main liverange should cover subrange.
1118     assert(covers(SR));
1119   }
1120 }
1121 #endif
1122
1123
1124 //===----------------------------------------------------------------------===//
1125 //                           LiveRangeUpdater class
1126 //===----------------------------------------------------------------------===//
1127 //
1128 // The LiveRangeUpdater class always maintains these invariants:
1129 //
1130 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1131 //   This is the initial state, and the state created by flush().
1132 //   In this state, isDirty() returns false.
1133 //
1134 // Otherwise, segments are kept in three separate areas:
1135 //
1136 // 1. [begin; WriteI) at the front of LR.
1137 // 2. [ReadI; end) at the back of LR.
1138 // 3. Spills.
1139 //
1140 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1141 // - Segments in all three areas are fully ordered and coalesced.
1142 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1143 // - Segments in Spills precede and can't coalesce with segments in area 2.
1144 // - No coalescing is possible between segments in Spills and segments in area
1145 //   1, and there are no overlapping segments.
1146 //
1147 // The segments in Spills are not ordered with respect to the segments in area
1148 // 1. They need to be merged.
1149 //
1150 // When they exist, Spills.back().start <= LastStart,
1151 //                 and WriteI[-1].start <= LastStart.
1152
1153 void LiveRangeUpdater::print(raw_ostream &OS) const {
1154   if (!isDirty()) {
1155     if (LR)
1156       OS << "Clean updater: " << *LR << '\n';
1157     else
1158       OS << "Null updater.\n";
1159     return;
1160   }
1161   assert(LR && "Can't have null LR in dirty updater.");
1162   OS << " updater with gap = " << (ReadI - WriteI)
1163      << ", last start = " << LastStart
1164      << ":\n  Area 1:";
1165   for (const auto &S : make_range(LR->begin(), WriteI))
1166     OS << ' ' << S;
1167   OS << "\n  Spills:";
1168   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1169     OS << ' ' << Spills[I];
1170   OS << "\n  Area 2:";
1171   for (const auto &S : make_range(ReadI, LR->end()))
1172     OS << ' ' << S;
1173   OS << '\n';
1174 }
1175
1176 void LiveRangeUpdater::dump() const
1177 {
1178   print(errs());
1179 }
1180
1181 // Determine if A and B should be coalesced.
1182 static inline bool coalescable(const LiveRange::Segment &A,
1183                                const LiveRange::Segment &B) {
1184   assert(A.start <= B.start && "Unordered live segments.");
1185   if (A.end == B.start)
1186     return A.valno == B.valno;
1187   if (A.end < B.start)
1188     return false;
1189   assert(A.valno == B.valno && "Cannot overlap different values");
1190   return true;
1191 }
1192
1193 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1194   assert(LR && "Cannot add to a null destination");
1195
1196   // Fall back to the regular add method if the live range
1197   // is using the segment set instead of the segment vector.
1198   if (LR->segmentSet != nullptr) {
1199     LR->addSegmentToSet(Seg);
1200     return;
1201   }
1202
1203   // Flush the state if Start moves backwards.
1204   if (!LastStart.isValid() || LastStart > Seg.start) {
1205     if (isDirty())
1206       flush();
1207     // This brings us to an uninitialized state. Reinitialize.
1208     assert(Spills.empty() && "Leftover spilled segments");
1209     WriteI = ReadI = LR->begin();
1210   }
1211
1212   // Remember start for next time.
1213   LastStart = Seg.start;
1214
1215   // Advance ReadI until it ends after Seg.start.
1216   LiveRange::iterator E = LR->end();
1217   if (ReadI != E && ReadI->end <= Seg.start) {
1218     // First try to close the gap between WriteI and ReadI with spills.
1219     if (ReadI != WriteI)
1220       mergeSpills();
1221     // Then advance ReadI.
1222     if (ReadI == WriteI)
1223       ReadI = WriteI = LR->find(Seg.start);
1224     else
1225       while (ReadI != E && ReadI->end <= Seg.start)
1226         *WriteI++ = *ReadI++;
1227   }
1228
1229   assert(ReadI == E || ReadI->end > Seg.start);
1230
1231   // Check if the ReadI segment begins early.
1232   if (ReadI != E && ReadI->start <= Seg.start) {
1233     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1234     // Bail if Seg is completely contained in ReadI.
1235     if (ReadI->end >= Seg.end)
1236       return;
1237     // Coalesce into Seg.
1238     Seg.start = ReadI->start;
1239     ++ReadI;
1240   }
1241
1242   // Coalesce as much as possible from ReadI into Seg.
1243   while (ReadI != E && coalescable(Seg, *ReadI)) {
1244     Seg.end = std::max(Seg.end, ReadI->end);
1245     ++ReadI;
1246   }
1247
1248   // Try coalescing Spills.back() into Seg.
1249   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1250     Seg.start = Spills.back().start;
1251     Seg.end = std::max(Spills.back().end, Seg.end);
1252     Spills.pop_back();
1253   }
1254
1255   // Try coalescing Seg into WriteI[-1].
1256   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1257     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1258     return;
1259   }
1260
1261   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1262   if (WriteI != ReadI) {
1263     *WriteI++ = Seg;
1264     return;
1265   }
1266
1267   // Finally, append to LR or Spills.
1268   if (WriteI == E) {
1269     LR->segments.push_back(Seg);
1270     WriteI = ReadI = LR->end();
1271   } else
1272     Spills.push_back(Seg);
1273 }
1274
1275 // Merge as many spilled segments as possible into the gap between WriteI
1276 // and ReadI. Advance WriteI to reflect the inserted instructions.
1277 void LiveRangeUpdater::mergeSpills() {
1278   // Perform a backwards merge of Spills and [SpillI;WriteI).
1279   size_t GapSize = ReadI - WriteI;
1280   size_t NumMoved = std::min(Spills.size(), GapSize);
1281   LiveRange::iterator Src = WriteI;
1282   LiveRange::iterator Dst = Src + NumMoved;
1283   LiveRange::iterator SpillSrc = Spills.end();
1284   LiveRange::iterator B = LR->begin();
1285
1286   // This is the new WriteI position after merging spills.
1287   WriteI = Dst;
1288
1289   // Now merge Src and Spills backwards.
1290   while (Src != Dst) {
1291     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1292       *--Dst = *--Src;
1293     else
1294       *--Dst = *--SpillSrc;
1295   }
1296   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1297   Spills.erase(SpillSrc, Spills.end());
1298 }
1299
1300 void LiveRangeUpdater::flush() {
1301   if (!isDirty())
1302     return;
1303   // Clear the dirty state.
1304   LastStart = SlotIndex();
1305
1306   assert(LR && "Cannot add to a null destination");
1307
1308   // Nothing to merge?
1309   if (Spills.empty()) {
1310     LR->segments.erase(WriteI, ReadI);
1311     LR->verify();
1312     return;
1313   }
1314
1315   // Resize the WriteI - ReadI gap to match Spills.
1316   size_t GapSize = ReadI - WriteI;
1317   if (GapSize < Spills.size()) {
1318     // The gap is too small. Make some room.
1319     size_t WritePos = WriteI - LR->begin();
1320     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1321     // This also invalidated ReadI, but it is recomputed below.
1322     WriteI = LR->begin() + WritePos;
1323   } else {
1324     // Shrink the gap if necessary.
1325     LR->segments.erase(WriteI + Spills.size(), ReadI);
1326   }
1327   ReadI = WriteI + Spills.size();
1328   mergeSpills();
1329   LR->verify();
1330 }
1331
1332 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
1333   // Create initial equivalence classes.
1334   EqClass.clear();
1335   EqClass.grow(LI->getNumValNums());
1336
1337   const VNInfo *used = nullptr, *unused = nullptr;
1338
1339   // Determine connections.
1340   for (const VNInfo *VNI : LI->valnos) {
1341     // Group all unused values into one class.
1342     if (VNI->isUnused()) {
1343       if (unused)
1344         EqClass.join(unused->id, VNI->id);
1345       unused = VNI;
1346       continue;
1347     }
1348     used = VNI;
1349     if (VNI->isPHIDef()) {
1350       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1351       assert(MBB && "Phi-def has no defining MBB");
1352       // Connect to values live out of predecessors.
1353       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1354            PE = MBB->pred_end(); PI != PE; ++PI)
1355         if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1356           EqClass.join(VNI->id, PVNI->id);
1357     } else {
1358       // Normal value defined by an instruction. Check for two-addr redef.
1359       // FIXME: This could be coincidental. Should we really check for a tied
1360       // operand constraint?
1361       // Note that VNI->def may be a use slot for an early clobber def.
1362       if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
1363         EqClass.join(VNI->id, UVNI->id);
1364     }
1365   }
1366
1367   // Lump all the unused values in with the last used value.
1368   if (used && unused)
1369     EqClass.join(used->id, unused->id);
1370
1371   EqClass.compress();
1372   return EqClass.getNumClasses();
1373 }
1374
1375 template<typename LiveRangeT, typename EqClassesT>
1376 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[],
1377                             EqClassesT VNIClasses) {
1378   // Move segments to new intervals.
1379   LiveRange::iterator J = LR.begin(), E = LR.end();
1380   while (J != E && VNIClasses[J->valno->id] == 0)
1381     ++J;
1382   for (LiveRange::iterator I = J; I != E; ++I) {
1383     if (unsigned eq = VNIClasses[I->valno->id]) {
1384       assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) &&
1385              "New intervals should be empty");
1386       SplitLRs[eq-1]->segments.push_back(*I);
1387     } else
1388       *J++ = *I;
1389   }
1390   LR.segments.erase(J, E);
1391
1392   // Transfer VNInfos to their new owners and renumber them.
1393   unsigned j = 0, e = LR.getNumValNums();
1394   while (j != e && VNIClasses[j] == 0)
1395     ++j;
1396   for (unsigned i = j; i != e; ++i) {
1397     VNInfo *VNI = LR.getValNumInfo(i);
1398     if (unsigned eq = VNIClasses[i]) {
1399       VNI->id = SplitLRs[eq-1]->getNumValNums();
1400       SplitLRs[eq-1]->valnos.push_back(VNI);
1401     } else {
1402       VNI->id = j;
1403       LR.valnos[j++] = VNI;
1404     }
1405   }
1406   LR.valnos.resize(j);
1407 }
1408
1409 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1410                                           MachineRegisterInfo &MRI) {
1411   // Rewrite instructions.
1412   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1413        RE = MRI.reg_end(); RI != RE;) {
1414     MachineOperand &MO = *RI;
1415     MachineInstr *MI = RI->getParent();
1416     ++RI;
1417     // DBG_VALUE instructions don't have slot indexes, so get the index of the
1418     // instruction before them.
1419     // Normally, DBG_VALUE instructions are removed before this function is
1420     // called, but it is not a requirement.
1421     SlotIndex Idx;
1422     if (MI->isDebugValue())
1423       Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
1424     else
1425       Idx = LIS.getInstructionIndex(MI);
1426     LiveQueryResult LRQ = LI.Query(Idx);
1427     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1428     // In the case of an <undef> use that isn't tied to any def, VNI will be
1429     // NULL. If the use is tied to a def, VNI will be the defined value.
1430     if (!VNI)
1431       continue;
1432     if (unsigned EqClass = getEqClass(VNI))
1433       MO.setReg(LIV[EqClass-1]->reg);
1434   }
1435
1436   // Distribute subregister liveranges.
1437   if (LI.hasSubRanges()) {
1438     unsigned NumComponents = EqClass.getNumClasses();
1439     SmallVector<unsigned, 8> VNIMapping;
1440     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1441     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1442     for (LiveInterval::SubRange &SR : LI.subranges()) {
1443       // Create new subranges in the split intervals and construct a mapping
1444       // for the VNInfos in the subrange.
1445       unsigned NumValNos = SR.valnos.size();
1446       VNIMapping.clear();
1447       VNIMapping.reserve(NumValNos);
1448       SubRanges.clear();
1449       SubRanges.resize(NumComponents-1, nullptr);
1450       for (unsigned I = 0; I < NumValNos; ++I) {
1451         const VNInfo &VNI = *SR.valnos[I];
1452         const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1453         assert(MainRangeVNI != nullptr
1454                && "SubRange def must have corresponding main range def");
1455         unsigned ComponentNum = getEqClass(MainRangeVNI);
1456         VNIMapping.push_back(ComponentNum);
1457         if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1458           SubRanges[ComponentNum-1]
1459             = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1460         }
1461       }
1462       DistributeRange(SR, SubRanges.data(), VNIMapping);
1463     }
1464     LI.removeEmptySubRanges();
1465   }
1466
1467   // Distribute main liverange.
1468   DistributeRange(LI, LIV, EqClass);
1469 }