MSVC 2013 supports std::forward_as_tuple, while MSVC 2012 did not; so we can move...
[oota-llvm.git] / lib / CodeGen / LexicalScopes.cpp
1 //===- LexicalScopes.cpp - Collecting lexical scope info ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements LexicalScopes analysis.
11 //
12 // This pass collects lexical scope information and maps machine instructions
13 // to respective lexical scopes.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/LexicalScopes.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/FormattedStream.h"
25 using namespace llvm;
26
27 #define DEBUG_TYPE "lexicalscopes"
28
29 /// reset - Reset the instance so that it's prepared for another function.
30 void LexicalScopes::reset() {
31   MF = nullptr;
32   CurrentFnLexicalScope = nullptr;
33   LexicalScopeMap.clear();
34   AbstractScopeMap.clear();
35   InlinedLexicalScopeMap.clear();
36   AbstractScopesList.clear();
37 }
38
39 /// initialize - Scan machine function and constuct lexical scope nest.
40 void LexicalScopes::initialize(const MachineFunction &Fn) {
41   reset();
42   MF = &Fn;
43   SmallVector<InsnRange, 4> MIRanges;
44   DenseMap<const MachineInstr *, LexicalScope *> MI2ScopeMap;
45   extractLexicalScopes(MIRanges, MI2ScopeMap);
46   if (CurrentFnLexicalScope) {
47     constructScopeNest(CurrentFnLexicalScope);
48     assignInstructionRanges(MIRanges, MI2ScopeMap);
49   }
50 }
51
52 /// extractLexicalScopes - Extract instruction ranges for each lexical scopes
53 /// for the given machine function.
54 void LexicalScopes::extractLexicalScopes(
55     SmallVectorImpl<InsnRange> &MIRanges,
56     DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
57
58   // Scan each instruction and create scopes. First build working set of scopes.
59   for (const auto &MBB : *MF) {
60     const MachineInstr *RangeBeginMI = nullptr;
61     const MachineInstr *PrevMI = nullptr;
62     DebugLoc PrevDL;
63     for (const auto &MInsn : MBB) {
64       // Check if instruction has valid location information.
65       const DebugLoc MIDL = MInsn.getDebugLoc();
66       if (MIDL.isUnknown()) {
67         PrevMI = &MInsn;
68         continue;
69       }
70
71       // If scope has not changed then skip this instruction.
72       if (MIDL == PrevDL) {
73         PrevMI = &MInsn;
74         continue;
75       }
76
77       // Ignore DBG_VALUE. It does not contribute to any instruction in output.
78       if (MInsn.isDebugValue())
79         continue;
80
81       if (RangeBeginMI) {
82         // If we have already seen a beginning of an instruction range and
83         // current instruction scope does not match scope of first instruction
84         // in this range then create a new instruction range.
85         InsnRange R(RangeBeginMI, PrevMI);
86         MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
87         MIRanges.push_back(R);
88       }
89
90       // This is a beginning of a new instruction range.
91       RangeBeginMI = &MInsn;
92
93       // Reset previous markers.
94       PrevMI = &MInsn;
95       PrevDL = MIDL;
96     }
97
98     // Create last instruction range.
99     if (RangeBeginMI && PrevMI && !PrevDL.isUnknown()) {
100       InsnRange R(RangeBeginMI, PrevMI);
101       MIRanges.push_back(R);
102       MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
103     }
104   }
105 }
106
107 LexicalScope *LexicalScopes::findInlinedScope(DebugLoc DL) {
108   MDNode *Scope = nullptr;
109   MDNode *IA = nullptr;
110   DL.getScopeAndInlinedAt(Scope, IA, MF->getFunction()->getContext());
111   auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA));
112   return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
113 }
114
115 /// findLexicalScope - Find lexical scope, either regular or inlined, for the
116 /// given DebugLoc. Return NULL if not found.
117 LexicalScope *LexicalScopes::findLexicalScope(DebugLoc DL) {
118   MDNode *Scope = nullptr;
119   MDNode *IA = nullptr;
120   DL.getScopeAndInlinedAt(Scope, IA, MF->getFunction()->getContext());
121   if (!Scope)
122     return nullptr;
123
124   // The scope that we were created with could have an extra file - which
125   // isn't what we care about in this case.
126   DIDescriptor D = DIDescriptor(Scope);
127   if (D.isLexicalBlockFile())
128     Scope = DILexicalBlockFile(Scope).getScope();
129
130   if (IA) {
131     auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA));
132     return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
133   }
134   return findLexicalScope(Scope);
135 }
136
137 /// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If
138 /// not available then create new lexical scope.
139 LexicalScope *LexicalScopes::getOrCreateLexicalScope(DebugLoc DL) {
140   if (DL.isUnknown())
141     return nullptr;
142   MDNode *Scope = nullptr;
143   MDNode *InlinedAt = nullptr;
144   DL.getScopeAndInlinedAt(Scope, InlinedAt, MF->getFunction()->getContext());
145
146   if (InlinedAt) {
147     // Create an abstract scope for inlined function.
148     getOrCreateAbstractScope(Scope);
149     // Create an inlined scope for inlined function.
150     return getOrCreateInlinedScope(Scope, InlinedAt);
151   }
152
153   return getOrCreateRegularScope(Scope);
154 }
155
156 /// getOrCreateRegularScope - Find or create a regular lexical scope.
157 LexicalScope *LexicalScopes::getOrCreateRegularScope(MDNode *Scope) {
158   DIDescriptor D = DIDescriptor(Scope);
159   if (D.isLexicalBlockFile()) {
160     Scope = DILexicalBlockFile(Scope).getScope();
161     D = DIDescriptor(Scope);
162   }
163
164   auto I = LexicalScopeMap.find(Scope);
165   if (I != LexicalScopeMap.end())
166     return &I->second;
167
168   LexicalScope *Parent = nullptr;
169   if (D.isLexicalBlock())
170     Parent = getOrCreateLexicalScope(DebugLoc::getFromDILexicalBlock(Scope));
171   I = LexicalScopeMap.emplace(std::piecewise_construct,
172                               std::forward_as_tuple(Scope),
173                               std::forward_as_tuple(Parent, DIDescriptor(Scope),
174                                                     nullptr, false)).first;
175
176   if (!Parent) {
177     assert(DIDescriptor(Scope).isSubprogram());
178     assert(DISubprogram(Scope).describes(MF->getFunction()));
179     assert(!CurrentFnLexicalScope);
180     CurrentFnLexicalScope = &I->second;
181   }
182
183   return &I->second;
184 }
185
186 /// getOrCreateInlinedScope - Find or create an inlined lexical scope.
187 LexicalScope *LexicalScopes::getOrCreateInlinedScope(MDNode *ScopeNode,
188                                                      MDNode *InlinedAt) {
189   std::pair<const MDNode*, const MDNode*> P(ScopeNode, InlinedAt);
190   auto I = InlinedLexicalScopeMap.find(P);
191   if (I != InlinedLexicalScopeMap.end())
192     return &I->second;
193
194   LexicalScope *Parent;
195   DILexicalBlock Scope(ScopeNode);
196   if (Scope.isSubprogram())
197     Parent = getOrCreateLexicalScope(DebugLoc::getFromDILocation(InlinedAt));
198   else
199     Parent = getOrCreateInlinedScope(Scope.getContext(), InlinedAt);
200
201   I = InlinedLexicalScopeMap.emplace(std::piecewise_construct,
202                                      std::forward_as_tuple(P),
203                                      std::forward_as_tuple(Parent, Scope,
204                                                            InlinedAt, false))
205           .first;
206   return &I->second;
207 }
208
209 /// getOrCreateAbstractScope - Find or create an abstract lexical scope.
210 LexicalScope *LexicalScopes::getOrCreateAbstractScope(const MDNode *N) {
211   assert(N && "Invalid Scope encoding!");
212
213   DIDescriptor Scope(N);
214   if (Scope.isLexicalBlockFile())
215     Scope = DILexicalBlockFile(Scope).getScope();
216   auto I = AbstractScopeMap.find(Scope);
217   if (I != AbstractScopeMap.end())
218     return &I->second;
219
220   LexicalScope *Parent = nullptr;
221   if (Scope.isLexicalBlock()) {
222     DILexicalBlock DB(Scope);
223     DIDescriptor ParentDesc = DB.getContext();
224     Parent = getOrCreateAbstractScope(ParentDesc);
225   }
226   I = AbstractScopeMap.emplace(std::piecewise_construct,
227                                std::forward_as_tuple(Scope),
228                                std::forward_as_tuple(Parent, Scope,
229                                                      nullptr, true)).first;
230   if (Scope.isSubprogram())
231     AbstractScopesList.push_back(&I->second);
232   return &I->second;
233 }
234
235 /// constructScopeNest
236 void LexicalScopes::constructScopeNest(LexicalScope *Scope) {
237   assert(Scope && "Unable to calculate scope dominance graph!");
238   SmallVector<LexicalScope *, 4> WorkStack;
239   WorkStack.push_back(Scope);
240   unsigned Counter = 0;
241   while (!WorkStack.empty()) {
242     LexicalScope *WS = WorkStack.back();
243     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
244     bool visitedChildren = false;
245     for (SmallVectorImpl<LexicalScope *>::const_iterator SI = Children.begin(),
246                                                          SE = Children.end();
247          SI != SE; ++SI) {
248       LexicalScope *ChildScope = *SI;
249       if (!ChildScope->getDFSOut()) {
250         WorkStack.push_back(ChildScope);
251         visitedChildren = true;
252         ChildScope->setDFSIn(++Counter);
253         break;
254       }
255     }
256     if (!visitedChildren) {
257       WorkStack.pop_back();
258       WS->setDFSOut(++Counter);
259     }
260   }
261 }
262
263 /// assignInstructionRanges - Find ranges of instructions covered by each
264 /// lexical scope.
265 void LexicalScopes::assignInstructionRanges(
266     SmallVectorImpl<InsnRange> &MIRanges,
267     DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
268
269   LexicalScope *PrevLexicalScope = nullptr;
270   for (SmallVectorImpl<InsnRange>::const_iterator RI = MIRanges.begin(),
271                                                   RE = MIRanges.end();
272        RI != RE; ++RI) {
273     const InsnRange &R = *RI;
274     LexicalScope *S = MI2ScopeMap.lookup(R.first);
275     assert(S && "Lost LexicalScope for a machine instruction!");
276     if (PrevLexicalScope && !PrevLexicalScope->dominates(S))
277       PrevLexicalScope->closeInsnRange(S);
278     S->openInsnRange(R.first);
279     S->extendInsnRange(R.second);
280     PrevLexicalScope = S;
281   }
282
283   if (PrevLexicalScope)
284     PrevLexicalScope->closeInsnRange();
285 }
286
287 /// getMachineBasicBlocks - Populate given set using machine basic blocks which
288 /// have machine instructions that belong to lexical scope identified by
289 /// DebugLoc.
290 void LexicalScopes::getMachineBasicBlocks(
291     DebugLoc DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) {
292   MBBs.clear();
293   LexicalScope *Scope = getOrCreateLexicalScope(DL);
294   if (!Scope)
295     return;
296
297   if (Scope == CurrentFnLexicalScope) {
298     for (const auto &MBB : *MF)
299       MBBs.insert(&MBB);
300     return;
301   }
302
303   SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges();
304   for (SmallVectorImpl<InsnRange>::iterator I = InsnRanges.begin(),
305                                             E = InsnRanges.end();
306        I != E; ++I) {
307     InsnRange &R = *I;
308     MBBs.insert(R.first->getParent());
309   }
310 }
311
312 /// dominates - Return true if DebugLoc's lexical scope dominates at least one
313 /// machine instruction's lexical scope in a given machine basic block.
314 bool LexicalScopes::dominates(DebugLoc DL, MachineBasicBlock *MBB) {
315   LexicalScope *Scope = getOrCreateLexicalScope(DL);
316   if (!Scope)
317     return false;
318
319   // Current function scope covers all basic blocks in the function.
320   if (Scope == CurrentFnLexicalScope && MBB->getParent() == MF)
321     return true;
322
323   bool Result = false;
324   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
325        ++I) {
326     DebugLoc IDL = I->getDebugLoc();
327     if (IDL.isUnknown())
328       continue;
329     if (LexicalScope *IScope = getOrCreateLexicalScope(IDL))
330       if (Scope->dominates(IScope))
331         return true;
332   }
333   return Result;
334 }
335
336 /// dump - Print data structures.
337 void LexicalScope::dump(unsigned Indent) const {
338 #ifndef NDEBUG
339   raw_ostream &err = dbgs();
340   err.indent(Indent);
341   err << "DFSIn: " << DFSIn << " DFSOut: " << DFSOut << "\n";
342   const MDNode *N = Desc;
343   err.indent(Indent);
344   N->dump();
345   if (AbstractScope)
346     err << std::string(Indent, ' ') << "Abstract Scope\n";
347
348   if (!Children.empty())
349     err << std::string(Indent + 2, ' ') << "Children ...\n";
350   for (unsigned i = 0, e = Children.size(); i != e; ++i)
351     if (Children[i] != this)
352       Children[i]->dump(Indent + 2);
353 #endif
354 }