Revert r138794, "Do not try to rematerialize a value from a partial definition."
[oota-llvm.git] / lib / CodeGen / InlineSpiller.cpp
1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "Spiller.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveStackAnalysis.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32
33 using namespace llvm;
34
35 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
36 STATISTIC(NumSnippets,        "Number of snippets included in spills");
37 STATISTIC(NumSpills,          "Number of spills inserted");
38 STATISTIC(NumReloads,         "Number of reloads inserted");
39 STATISTIC(NumFolded,          "Number of folded stack accesses");
40 STATISTIC(NumFoldedLoads,     "Number of folded loads");
41 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
42 STATISTIC(NumOmitReloadSpill, "Number of omitted spills after reloads");
43 STATISTIC(NumHoistLocal,      "Number of locally hoisted spills");
44 STATISTIC(NumHoistGlobal,     "Number of globally hoisted spills");
45 STATISTIC(NumRedundantSpills, "Number of redundant spills identified");
46
47 namespace {
48 class InlineSpiller : public Spiller {
49   MachineFunctionPass &Pass;
50   MachineFunction &MF;
51   LiveIntervals &LIS;
52   LiveStacks &LSS;
53   AliasAnalysis *AA;
54   MachineDominatorTree &MDT;
55   MachineLoopInfo &Loops;
56   VirtRegMap &VRM;
57   MachineFrameInfo &MFI;
58   MachineRegisterInfo &MRI;
59   const TargetInstrInfo &TII;
60   const TargetRegisterInfo &TRI;
61
62   // Variables that are valid during spill(), but used by multiple methods.
63   LiveRangeEdit *Edit;
64   LiveInterval *StackInt;
65   int StackSlot;
66   unsigned Original;
67
68   // All registers to spill to StackSlot, including the main register.
69   SmallVector<unsigned, 8> RegsToSpill;
70
71   // All COPY instructions to/from snippets.
72   // They are ignored since both operands refer to the same stack slot.
73   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
74
75   // Values that failed to remat at some point.
76   SmallPtrSet<VNInfo*, 8> UsedValues;
77
78   // Information about a value that was defined by a copy from a sibling
79   // register.
80   struct SibValueInfo {
81     // True when all reaching defs were reloads: No spill is necessary.
82     bool AllDefsAreReloads;
83
84     // The preferred register to spill.
85     unsigned SpillReg;
86
87     // The value of SpillReg that should be spilled.
88     VNInfo *SpillVNI;
89
90     // A defining instruction that is not a sibling copy or a reload, or NULL.
91     // This can be used as a template for rematerialization.
92     MachineInstr *DefMI;
93
94     SibValueInfo(unsigned Reg, VNInfo *VNI)
95       : AllDefsAreReloads(false), SpillReg(Reg), SpillVNI(VNI), DefMI(0) {}
96   };
97
98   // Values in RegsToSpill defined by sibling copies.
99   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
100   SibValueMap SibValues;
101
102   // Dead defs generated during spilling.
103   SmallVector<MachineInstr*, 8> DeadDefs;
104
105   ~InlineSpiller() {}
106
107 public:
108   InlineSpiller(MachineFunctionPass &pass,
109                 MachineFunction &mf,
110                 VirtRegMap &vrm)
111     : Pass(pass),
112       MF(mf),
113       LIS(pass.getAnalysis<LiveIntervals>()),
114       LSS(pass.getAnalysis<LiveStacks>()),
115       AA(&pass.getAnalysis<AliasAnalysis>()),
116       MDT(pass.getAnalysis<MachineDominatorTree>()),
117       Loops(pass.getAnalysis<MachineLoopInfo>()),
118       VRM(vrm),
119       MFI(*mf.getFrameInfo()),
120       MRI(mf.getRegInfo()),
121       TII(*mf.getTarget().getInstrInfo()),
122       TRI(*mf.getTarget().getRegisterInfo()) {}
123
124   void spill(LiveRangeEdit &);
125
126 private:
127   bool isSnippet(const LiveInterval &SnipLI);
128   void collectRegsToSpill();
129
130   bool isRegToSpill(unsigned Reg) {
131     return std::find(RegsToSpill.begin(),
132                      RegsToSpill.end(), Reg) != RegsToSpill.end();
133   }
134
135   bool isSibling(unsigned Reg);
136   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
137   void analyzeSiblingValues();
138
139   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
140   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
141
142   void markValueUsed(LiveInterval*, VNInfo*);
143   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
144   void reMaterializeAll();
145
146   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
147   bool foldMemoryOperand(MachineBasicBlock::iterator MI,
148                          const SmallVectorImpl<unsigned> &Ops,
149                          MachineInstr *LoadMI = 0);
150   void insertReload(LiveInterval &NewLI, SlotIndex,
151                     MachineBasicBlock::iterator MI);
152   void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
153                    SlotIndex, MachineBasicBlock::iterator MI);
154
155   void spillAroundUses(unsigned Reg);
156   void spillAll();
157 };
158 }
159
160 namespace llvm {
161 Spiller *createInlineSpiller(MachineFunctionPass &pass,
162                              MachineFunction &mf,
163                              VirtRegMap &vrm) {
164   return new InlineSpiller(pass, mf, vrm);
165 }
166 }
167
168 //===----------------------------------------------------------------------===//
169 //                                Snippets
170 //===----------------------------------------------------------------------===//
171
172 // When spilling a virtual register, we also spill any snippets it is connected
173 // to. The snippets are small live ranges that only have a single real use,
174 // leftovers from live range splitting. Spilling them enables memory operand
175 // folding or tightens the live range around the single use.
176 //
177 // This minimizes register pressure and maximizes the store-to-load distance for
178 // spill slots which can be important in tight loops.
179
180 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
181 /// otherwise return 0.
182 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
183   if (!MI->isFullCopy())
184     return 0;
185   if (MI->getOperand(0).getReg() == Reg)
186       return MI->getOperand(1).getReg();
187   if (MI->getOperand(1).getReg() == Reg)
188       return MI->getOperand(0).getReg();
189   return 0;
190 }
191
192 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
193 /// It is assumed that SnipLI is a virtual register with the same original as
194 /// Edit->getReg().
195 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
196   unsigned Reg = Edit->getReg();
197
198   // A snippet is a tiny live range with only a single instruction using it
199   // besides copies to/from Reg or spills/fills. We accept:
200   //
201   //   %snip = COPY %Reg / FILL fi#
202   //   %snip = USE %snip
203   //   %Reg = COPY %snip / SPILL %snip, fi#
204   //
205   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
206     return false;
207
208   MachineInstr *UseMI = 0;
209
210   // Check that all uses satisfy our criteria.
211   for (MachineRegisterInfo::reg_nodbg_iterator
212          RI = MRI.reg_nodbg_begin(SnipLI.reg);
213        MachineInstr *MI = RI.skipInstruction();) {
214
215     // Allow copies to/from Reg.
216     if (isFullCopyOf(MI, Reg))
217       continue;
218
219     // Allow stack slot loads.
220     int FI;
221     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
222       continue;
223
224     // Allow stack slot stores.
225     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
226       continue;
227
228     // Allow a single additional instruction.
229     if (UseMI && MI != UseMI)
230       return false;
231     UseMI = MI;
232   }
233   return true;
234 }
235
236 /// collectRegsToSpill - Collect live range snippets that only have a single
237 /// real use.
238 void InlineSpiller::collectRegsToSpill() {
239   unsigned Reg = Edit->getReg();
240
241   // Main register always spills.
242   RegsToSpill.assign(1, Reg);
243   SnippetCopies.clear();
244
245   // Snippets all have the same original, so there can't be any for an original
246   // register.
247   if (Original == Reg)
248     return;
249
250   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
251        MachineInstr *MI = RI.skipInstruction();) {
252     unsigned SnipReg = isFullCopyOf(MI, Reg);
253     if (!isSibling(SnipReg))
254       continue;
255     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
256     if (!isSnippet(SnipLI))
257       continue;
258     SnippetCopies.insert(MI);
259     if (isRegToSpill(SnipReg))
260       continue;
261     RegsToSpill.push_back(SnipReg);
262     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
263     ++NumSnippets;
264   }
265 }
266
267
268 //===----------------------------------------------------------------------===//
269 //                            Sibling Values
270 //===----------------------------------------------------------------------===//
271
272 // After live range splitting, some values to be spilled may be defined by
273 // copies from sibling registers. We trace the sibling copies back to the
274 // original value if it still exists. We need it for rematerialization.
275 //
276 // Even when the value can't be rematerialized, we still want to determine if
277 // the value has already been spilled, or we may want to hoist the spill from a
278 // loop.
279
280 bool InlineSpiller::isSibling(unsigned Reg) {
281   return TargetRegisterInfo::isVirtualRegister(Reg) &&
282            VRM.getOriginal(Reg) == Original;
283 }
284
285 /// traceSiblingValue - Trace a value that is about to be spilled back to the
286 /// real defining instructions by looking through sibling copies. Always stay
287 /// within the range of OrigVNI so the registers are known to carry the same
288 /// value.
289 ///
290 /// Determine if the value is defined by all reloads, so spilling isn't
291 /// necessary - the value is already in the stack slot.
292 ///
293 /// Return a defining instruction that may be a candidate for rematerialization.
294 ///
295 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
296                                                VNInfo *OrigVNI) {
297   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
298                << UseVNI->id << '@' << UseVNI->def << '\n');
299   SmallPtrSet<VNInfo*, 8> Visited;
300   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
301   WorkList.push_back(std::make_pair(UseReg, UseVNI));
302
303   // Best spill candidate seen so far. This must dominate UseVNI.
304   SibValueInfo SVI(UseReg, UseVNI);
305   MachineBasicBlock *UseMBB = LIS.getMBBFromIndex(UseVNI->def);
306   MachineBasicBlock *SpillMBB = UseMBB;
307   unsigned SpillDepth = Loops.getLoopDepth(SpillMBB);
308   bool SeenOrigPHI = false; // Original PHI met.
309
310   do {
311     unsigned Reg;
312     VNInfo *VNI;
313     tie(Reg, VNI) = WorkList.pop_back_val();
314     if (!Visited.insert(VNI))
315       continue;
316
317     // Is this value a better spill candidate?
318     if (!isRegToSpill(Reg)) {
319       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
320       if (MBB == SpillMBB) {
321         // This is an alternative def earlier in the same MBB.
322         // Hoist the spill as far as possible in SpillMBB. This can ease
323         // register pressure:
324         //
325         //   x = def
326         //   y = use x
327         //   s = copy x
328         //
329         // Hoisting the spill of s to immediately after the def removes the
330         // interference between x and y:
331         //
332         //   x = def
333         //   spill x
334         //   y = use x<kill>
335         //
336         if (VNI->def < SVI.SpillVNI->def) {
337           DEBUG(dbgs() << "  hoist in BB#" << MBB->getNumber() << ": "
338                        << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
339                        << '\n');
340           SVI.SpillReg = Reg;
341           SVI.SpillVNI = VNI;
342         }
343       } else if (MBB != UseMBB && MDT.dominates(MBB, UseMBB)) {
344         // This is a valid spill location dominating UseVNI.
345         // Prefer to spill at a smaller loop depth.
346         unsigned Depth = Loops.getLoopDepth(MBB);
347         if (Depth < SpillDepth) {
348           DEBUG(dbgs() << "  spill depth " << Depth << ": " << PrintReg(Reg)
349                        << ':' << VNI->id << '@' << VNI->def << '\n');
350           SVI.SpillReg = Reg;
351           SVI.SpillVNI = VNI;
352           SpillMBB = MBB;
353           SpillDepth = Depth;
354         }
355       }
356     }
357
358     // Trace through PHI-defs created by live range splitting.
359     if (VNI->isPHIDef()) {
360       if (VNI->def == OrigVNI->def) {
361         DEBUG(dbgs() << "  orig phi value " << PrintReg(Reg) << ':'
362                      << VNI->id << '@' << VNI->def << '\n');
363         SeenOrigPHI = true;
364         continue;
365       }
366       // Get values live-out of predecessors.
367       LiveInterval &LI = LIS.getInterval(Reg);
368       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
369       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
370              PE = MBB->pred_end(); PI != PE; ++PI) {
371         VNInfo *PVNI = LI.getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot());
372         if (PVNI)
373           WorkList.push_back(std::make_pair(Reg, PVNI));
374       }
375       continue;
376     }
377
378     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
379     assert(MI && "Missing def");
380
381     // Trace through sibling copies.
382     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
383       if (isSibling(SrcReg)) {
384         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
385         VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex());
386         assert(SrcVNI && "Copy from non-existing value");
387         DEBUG(dbgs() << "  copy of " << PrintReg(SrcReg) << ':'
388                      << SrcVNI->id << '@' << SrcVNI->def << '\n');
389         WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
390         continue;
391       }
392     }
393
394     // Track reachable reloads.
395     int FI;
396     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
397       DEBUG(dbgs() << "  reload " << PrintReg(Reg) << ':'
398                    << VNI->id << "@" << VNI->def << '\n');
399       SVI.AllDefsAreReloads = true;
400       continue;
401     }
402
403     // We have an 'original' def. Don't record trivial cases.
404     if (VNI == UseVNI) {
405       DEBUG(dbgs() << "Not a sibling copy.\n");
406       return MI;
407     }
408
409     // Potential remat candidate.
410     DEBUG(dbgs() << "  def " << PrintReg(Reg) << ':'
411                  << VNI->id << '@' << VNI->def << '\t' << *MI);
412     SVI.DefMI = MI;
413   } while (!WorkList.empty());
414
415   if (SeenOrigPHI || SVI.DefMI)
416     SVI.AllDefsAreReloads = false;
417
418   DEBUG({
419     if (SVI.AllDefsAreReloads)
420       dbgs() << "All defs are reloads.\n";
421     else
422       dbgs() << "Prefer to spill " << PrintReg(SVI.SpillReg) << ':'
423              << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def << '\n';
424   });
425   SibValues.insert(std::make_pair(UseVNI, SVI));
426   return SVI.DefMI;
427 }
428
429 /// analyzeSiblingValues - Trace values defined by sibling copies back to
430 /// something that isn't a sibling copy.
431 ///
432 /// Keep track of values that may be rematerializable.
433 void InlineSpiller::analyzeSiblingValues() {
434   SibValues.clear();
435
436   // No siblings at all?
437   if (Edit->getReg() == Original)
438     return;
439
440   LiveInterval &OrigLI = LIS.getInterval(Original);
441   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
442     unsigned Reg = RegsToSpill[i];
443     LiveInterval &LI = LIS.getInterval(Reg);
444     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
445          VE = LI.vni_end(); VI != VE; ++VI) {
446       VNInfo *VNI = *VI;
447       if (VNI->isUnused())
448         continue;
449       MachineInstr *DefMI = 0;
450       // Check possible sibling copies.
451       if (VNI->isPHIDef() || VNI->getCopy()) {
452         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
453         assert(OrigVNI && "Def outside original live range");
454         if (OrigVNI->def != VNI->def)
455           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
456       }
457       if (!DefMI && !VNI->isPHIDef())
458         DefMI = LIS.getInstructionFromIndex(VNI->def);
459       if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) {
460         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
461                      << VNI->def << " may remat from " << *DefMI);
462       }
463     }
464   }
465 }
466
467 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
468 /// a spill at a better location.
469 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
470   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
471   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex());
472   assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy");
473   SibValueMap::iterator I = SibValues.find(VNI);
474   if (I == SibValues.end())
475     return false;
476
477   const SibValueInfo &SVI = I->second;
478
479   // Let the normal folding code deal with the boring case.
480   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
481     return false;
482
483   // SpillReg may have been deleted by remat and DCE.
484   if (!LIS.hasInterval(SVI.SpillReg)) {
485     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
486     SibValues.erase(I);
487     return false;
488   }
489
490   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
491   if (!SibLI.containsValue(SVI.SpillVNI)) {
492     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
493     SibValues.erase(I);
494     return false;
495   }
496
497   // Conservatively extend the stack slot range to the range of the original
498   // value. We may be able to do better with stack slot coloring by being more
499   // careful here.
500   assert(StackInt && "No stack slot assigned yet.");
501   LiveInterval &OrigLI = LIS.getInterval(Original);
502   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
503   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
504   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
505                << *StackInt << '\n');
506
507   // Already spilled everywhere.
508   if (SVI.AllDefsAreReloads) {
509     ++NumOmitReloadSpill;
510     return true;
511   }
512   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
513   // any later spills of the same value.
514   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
515
516   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
517   MachineBasicBlock::iterator MII;
518   if (SVI.SpillVNI->isPHIDef())
519     MII = MBB->SkipPHIsAndLabels(MBB->begin());
520   else {
521     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
522     assert(DefMI && "Defining instruction disappeared");
523     MII = DefMI;
524     ++MII;
525   }
526   // Insert spill without kill flag immediately after def.
527   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
528                           MRI.getRegClass(SVI.SpillReg), &TRI);
529   --MII; // Point to store instruction.
530   LIS.InsertMachineInstrInMaps(MII);
531   VRM.addSpillSlotUse(StackSlot, MII);
532   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
533
534   if (MBB == CopyMI->getParent())
535     ++NumHoistLocal;
536   else
537     ++NumHoistGlobal;
538   return true;
539 }
540
541 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
542 /// redundant spills of this value in SLI.reg and sibling copies.
543 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
544   assert(VNI && "Missing value");
545   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
546   WorkList.push_back(std::make_pair(&SLI, VNI));
547   assert(StackInt && "No stack slot assigned yet.");
548
549   do {
550     LiveInterval *LI;
551     tie(LI, VNI) = WorkList.pop_back_val();
552     unsigned Reg = LI->reg;
553     DEBUG(dbgs() << "Checking redundant spills for "
554                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
555
556     // Regs to spill are taken care of.
557     if (isRegToSpill(Reg))
558       continue;
559
560     // Add all of VNI's live range to StackInt.
561     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
562     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
563
564     // Find all spills and copies of VNI.
565     for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
566          MachineInstr *MI = UI.skipInstruction();) {
567       if (!MI->isCopy() && !MI->getDesc().mayStore())
568         continue;
569       SlotIndex Idx = LIS.getInstructionIndex(MI);
570       if (LI->getVNInfoAt(Idx) != VNI)
571         continue;
572
573       // Follow sibling copies down the dominator tree.
574       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
575         if (isSibling(DstReg)) {
576            LiveInterval &DstLI = LIS.getInterval(DstReg);
577            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex());
578            assert(DstVNI && "Missing defined value");
579            assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot");
580            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
581         }
582         continue;
583       }
584
585       // Erase spills.
586       int FI;
587       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
588         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
589         // eliminateDeadDefs won't normally remove stores, so switch opcode.
590         MI->setDesc(TII.get(TargetOpcode::KILL));
591         DeadDefs.push_back(MI);
592         ++NumRedundantSpills;
593       }
594     }
595   } while (!WorkList.empty());
596 }
597
598
599 //===----------------------------------------------------------------------===//
600 //                            Rematerialization
601 //===----------------------------------------------------------------------===//
602
603 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
604 /// instruction cannot be eliminated. See through snippet copies
605 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
606   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
607   WorkList.push_back(std::make_pair(LI, VNI));
608   do {
609     tie(LI, VNI) = WorkList.pop_back_val();
610     if (!UsedValues.insert(VNI))
611       continue;
612
613     if (VNI->isPHIDef()) {
614       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
615       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
616              PE = MBB->pred_end(); PI != PE; ++PI) {
617         VNInfo *PVNI = LI->getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot());
618         if (PVNI)
619           WorkList.push_back(std::make_pair(LI, PVNI));
620       }
621       continue;
622     }
623
624     // Follow snippet copies.
625     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
626     if (!SnippetCopies.count(MI))
627       continue;
628     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
629     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
630     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getUseIndex());
631     assert(SnipVNI && "Snippet undefined before copy");
632     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
633   } while (!WorkList.empty());
634 }
635
636 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
637 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
638                                      MachineBasicBlock::iterator MI) {
639   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex();
640   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
641
642   if (!ParentVNI) {
643     DEBUG(dbgs() << "\tadding <undef> flags: ");
644     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
645       MachineOperand &MO = MI->getOperand(i);
646       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
647         MO.setIsUndef();
648     }
649     DEBUG(dbgs() << UseIdx << '\t' << *MI);
650     return true;
651   }
652
653   if (SnippetCopies.count(MI))
654     return false;
655
656   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
657   LiveRangeEdit::Remat RM(ParentVNI);
658   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
659   if (SibI != SibValues.end())
660     RM.OrigMI = SibI->second.DefMI;
661   if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) {
662     markValueUsed(&VirtReg, ParentVNI);
663     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
664     return false;
665   }
666
667   // If the instruction also writes VirtReg.reg, it had better not require the
668   // same register for uses and defs.
669   bool Reads, Writes;
670   SmallVector<unsigned, 8> Ops;
671   tie(Reads, Writes) = MI->readsWritesVirtualRegister(VirtReg.reg, &Ops);
672   if (Writes) {
673     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
674       MachineOperand &MO = MI->getOperand(Ops[i]);
675       if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
676         markValueUsed(&VirtReg, ParentVNI);
677         DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
678         return false;
679       }
680     }
681   }
682
683   // Before rematerializing into a register for a single instruction, try to
684   // fold a load into the instruction. That avoids allocating a new register.
685   if (RM.OrigMI->getDesc().canFoldAsLoad() &&
686       foldMemoryOperand(MI, Ops, RM.OrigMI)) {
687     Edit->markRematerialized(RM.ParentVNI);
688     ++NumFoldedLoads;
689     return true;
690   }
691
692   // Alocate a new register for the remat.
693   LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM);
694   NewLI.markNotSpillable();
695
696   // Finally we can rematerialize OrigMI before MI.
697   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
698                                            LIS, TII, TRI);
699   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
700                << *LIS.getInstructionFromIndex(DefIdx));
701
702   // Replace operands
703   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
704     MachineOperand &MO = MI->getOperand(Ops[i]);
705     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
706       MO.setReg(NewLI.reg);
707       MO.setIsKill();
708     }
709   }
710   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
711
712   VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator());
713   NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
714   DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
715   ++NumRemats;
716   return true;
717 }
718
719 /// reMaterializeAll - Try to rematerialize as many uses as possible,
720 /// and trim the live ranges after.
721 void InlineSpiller::reMaterializeAll() {
722   // analyzeSiblingValues has already tested all relevant defining instructions.
723   if (!Edit->anyRematerializable(LIS, TII, AA))
724     return;
725
726   UsedValues.clear();
727
728   // Try to remat before all uses of snippets.
729   bool anyRemat = false;
730   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
731     unsigned Reg = RegsToSpill[i];
732     LiveInterval &LI = LIS.getInterval(Reg);
733     for (MachineRegisterInfo::use_nodbg_iterator
734          RI = MRI.use_nodbg_begin(Reg);
735          MachineInstr *MI = RI.skipInstruction();)
736       anyRemat |= reMaterializeFor(LI, MI);
737   }
738   if (!anyRemat)
739     return;
740
741   // Remove any values that were completely rematted.
742   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
743     unsigned Reg = RegsToSpill[i];
744     LiveInterval &LI = LIS.getInterval(Reg);
745     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
746          I != E; ++I) {
747       VNInfo *VNI = *I;
748       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
749         continue;
750       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
751       MI->addRegisterDead(Reg, &TRI);
752       if (!MI->allDefsAreDead())
753         continue;
754       DEBUG(dbgs() << "All defs dead: " << *MI);
755       DeadDefs.push_back(MI);
756     }
757   }
758
759   // Eliminate dead code after remat. Note that some snippet copies may be
760   // deleted here.
761   if (DeadDefs.empty())
762     return;
763   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
764   Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
765
766   // Get rid of deleted and empty intervals.
767   for (unsigned i = RegsToSpill.size(); i != 0; --i) {
768     unsigned Reg = RegsToSpill[i-1];
769     if (!LIS.hasInterval(Reg)) {
770       RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
771       continue;
772     }
773     LiveInterval &LI = LIS.getInterval(Reg);
774     if (!LI.empty())
775       continue;
776     Edit->eraseVirtReg(Reg, LIS);
777     RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
778   }
779   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
780 }
781
782
783 //===----------------------------------------------------------------------===//
784 //                                 Spilling
785 //===----------------------------------------------------------------------===//
786
787 /// If MI is a load or store of StackSlot, it can be removed.
788 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
789   int FI = 0;
790   unsigned InstrReg;
791   if (!(InstrReg = TII.isLoadFromStackSlot(MI, FI)) &&
792       !(InstrReg = TII.isStoreToStackSlot(MI, FI)))
793     return false;
794
795   // We have a stack access. Is it the right register and slot?
796   if (InstrReg != Reg || FI != StackSlot)
797     return false;
798
799   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
800   LIS.RemoveMachineInstrFromMaps(MI);
801   MI->eraseFromParent();
802   return true;
803 }
804
805 /// foldMemoryOperand - Try folding stack slot references in Ops into MI.
806 /// @param MI     Instruction using or defining the current register.
807 /// @param Ops    Operand indices from readsWritesVirtualRegister().
808 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
809 /// @return       True on success, and MI will be erased.
810 bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
811                                       const SmallVectorImpl<unsigned> &Ops,
812                                       MachineInstr *LoadMI) {
813   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
814   // operands.
815   SmallVector<unsigned, 8> FoldOps;
816   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
817     unsigned Idx = Ops[i];
818     MachineOperand &MO = MI->getOperand(Idx);
819     if (MO.isImplicit())
820       continue;
821     // FIXME: Teach targets to deal with subregs.
822     if (MO.getSubReg())
823       return false;
824     // We cannot fold a load instruction into a def.
825     if (LoadMI && MO.isDef())
826       return false;
827     // Tied use operands should not be passed to foldMemoryOperand.
828     if (!MI->isRegTiedToDefOperand(Idx))
829       FoldOps.push_back(Idx);
830   }
831
832   MachineInstr *FoldMI =
833                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
834                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
835   if (!FoldMI)
836     return false;
837   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
838   if (!LoadMI)
839     VRM.addSpillSlotUse(StackSlot, FoldMI);
840   MI->eraseFromParent();
841   DEBUG(dbgs() << "\tfolded: " << *FoldMI);
842   ++NumFolded;
843   return true;
844 }
845
846 /// insertReload - Insert a reload of NewLI.reg before MI.
847 void InlineSpiller::insertReload(LiveInterval &NewLI,
848                                  SlotIndex Idx,
849                                  MachineBasicBlock::iterator MI) {
850   MachineBasicBlock &MBB = *MI->getParent();
851   TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
852                            MRI.getRegClass(NewLI.reg), &TRI);
853   --MI; // Point to load instruction.
854   SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
855   VRM.addSpillSlotUse(StackSlot, MI);
856   DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
857   VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
858                                        LIS.getVNInfoAllocator());
859   NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
860   ++NumReloads;
861 }
862
863 /// insertSpill - Insert a spill of NewLI.reg after MI.
864 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
865                                 SlotIndex Idx, MachineBasicBlock::iterator MI) {
866   MachineBasicBlock &MBB = *MI->getParent();
867   TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
868                           MRI.getRegClass(NewLI.reg), &TRI);
869   --MI; // Point to store instruction.
870   SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
871   VRM.addSpillSlotUse(StackSlot, MI);
872   DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
873   VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
874   NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
875   ++NumSpills;
876 }
877
878 /// spillAroundUses - insert spill code around each use of Reg.
879 void InlineSpiller::spillAroundUses(unsigned Reg) {
880   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
881   LiveInterval &OldLI = LIS.getInterval(Reg);
882
883   // Iterate over instructions using Reg.
884   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
885        MachineInstr *MI = RI.skipInstruction();) {
886
887     // Debug values are not allowed to affect codegen.
888     if (MI->isDebugValue()) {
889       // Modify DBG_VALUE now that the value is in a spill slot.
890       uint64_t Offset = MI->getOperand(1).getImm();
891       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
892       DebugLoc DL = MI->getDebugLoc();
893       if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
894                                                            Offset, MDPtr, DL)) {
895         DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
896         MachineBasicBlock *MBB = MI->getParent();
897         MBB->insert(MBB->erase(MI), NewDV);
898       } else {
899         DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
900         MI->eraseFromParent();
901       }
902       continue;
903     }
904
905     // Ignore copies to/from snippets. We'll delete them.
906     if (SnippetCopies.count(MI))
907       continue;
908
909     // Stack slot accesses may coalesce away.
910     if (coalesceStackAccess(MI, Reg))
911       continue;
912
913     // Analyze instruction.
914     bool Reads, Writes;
915     SmallVector<unsigned, 8> Ops;
916     tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops);
917
918     // Find the slot index where this instruction reads and writes OldLI.
919     // This is usually the def slot, except for tied early clobbers.
920     SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
921     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getUseIndex()))
922       if (SlotIndex::isSameInstr(Idx, VNI->def))
923         Idx = VNI->def;
924
925     // Check for a sibling copy.
926     unsigned SibReg = isFullCopyOf(MI, Reg);
927     if (SibReg && isSibling(SibReg)) {
928       // This may actually be a copy between snippets.
929       if (isRegToSpill(SibReg)) {
930         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
931         SnippetCopies.insert(MI);
932         continue;
933       }
934       if (Writes) {
935         // Hoist the spill of a sib-reg copy.
936         if (hoistSpill(OldLI, MI)) {
937           // This COPY is now dead, the value is already in the stack slot.
938           MI->getOperand(0).setIsDead();
939           DeadDefs.push_back(MI);
940           continue;
941         }
942       } else {
943         // This is a reload for a sib-reg copy. Drop spills downstream.
944         LiveInterval &SibLI = LIS.getInterval(SibReg);
945         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
946         // The COPY will fold to a reload below.
947       }
948     }
949
950     // Attempt to fold memory ops.
951     if (foldMemoryOperand(MI, Ops))
952       continue;
953
954     // Allocate interval around instruction.
955     // FIXME: Infer regclass from instruction alone.
956     LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM);
957     NewLI.markNotSpillable();
958
959     if (Reads)
960       insertReload(NewLI, Idx, MI);
961
962     // Rewrite instruction operands.
963     bool hasLiveDef = false;
964     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
965       MachineOperand &MO = MI->getOperand(Ops[i]);
966       MO.setReg(NewLI.reg);
967       if (MO.isUse()) {
968         if (!MI->isRegTiedToDefOperand(Ops[i]))
969           MO.setIsKill();
970       } else {
971         if (!MO.isDead())
972           hasLiveDef = true;
973       }
974     }
975     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
976
977     // FIXME: Use a second vreg if instruction has no tied ops.
978     if (Writes && hasLiveDef)
979       insertSpill(NewLI, OldLI, Idx, MI);
980
981     DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
982   }
983 }
984
985 /// spillAll - Spill all registers remaining after rematerialization.
986 void InlineSpiller::spillAll() {
987   // Update LiveStacks now that we are committed to spilling.
988   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
989     StackSlot = VRM.assignVirt2StackSlot(Original);
990     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
991     StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator());
992   } else
993     StackInt = &LSS.getInterval(StackSlot);
994
995   if (Original != Edit->getReg())
996     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
997
998   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
999   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1000     StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
1001                                    StackInt->getValNumInfo(0));
1002   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1003
1004   // Spill around uses of all RegsToSpill.
1005   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1006     spillAroundUses(RegsToSpill[i]);
1007
1008   // Hoisted spills may cause dead code.
1009   if (!DeadDefs.empty()) {
1010     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1011     Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
1012   }
1013
1014   // Finally delete the SnippetCopies.
1015   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1016     for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1017          MachineInstr *MI = RI.skipInstruction();) {
1018       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1019       // FIXME: Do this with a LiveRangeEdit callback.
1020       VRM.RemoveMachineInstrFromMaps(MI);
1021       LIS.RemoveMachineInstrFromMaps(MI);
1022       MI->eraseFromParent();
1023     }
1024   }
1025
1026   // Delete all spilled registers.
1027   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1028     Edit->eraseVirtReg(RegsToSpill[i], LIS);
1029 }
1030
1031 void InlineSpiller::spill(LiveRangeEdit &edit) {
1032   ++NumSpilledRanges;
1033   Edit = &edit;
1034   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1035          && "Trying to spill a stack slot.");
1036   // Share a stack slot among all descendants of Original.
1037   Original = VRM.getOriginal(edit.getReg());
1038   StackSlot = VRM.getStackSlot(Original);
1039   StackInt = 0;
1040
1041   DEBUG(dbgs() << "Inline spilling "
1042                << MRI.getRegClass(edit.getReg())->getName()
1043                << ':' << edit.getParent() << "\nFrom original "
1044                << LIS.getInterval(Original) << '\n');
1045   assert(edit.getParent().isSpillable() &&
1046          "Attempting to spill already spilled value.");
1047   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1048
1049   collectRegsToSpill();
1050   analyzeSiblingValues();
1051   reMaterializeAll();
1052
1053   // Remat may handle everything.
1054   if (!RegsToSpill.empty())
1055     spillAll();
1056
1057   Edit->calculateRegClassAndHint(MF, LIS, Loops);
1058 }