Switch spill weights from a basic loop depth estimation to BlockFrequencyInfo.
[oota-llvm.git] / lib / CodeGen / InlineSpiller.cpp
1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "Spiller.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/LiveStackAnalysis.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38
39 using namespace llvm;
40
41 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
42 STATISTIC(NumSnippets,        "Number of spilled snippets");
43 STATISTIC(NumSpills,          "Number of spills inserted");
44 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
45 STATISTIC(NumReloads,         "Number of reloads inserted");
46 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
47 STATISTIC(NumFolded,          "Number of folded stack accesses");
48 STATISTIC(NumFoldedLoads,     "Number of folded loads");
49 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
50 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
51 STATISTIC(NumHoists,          "Number of hoisted spills");
52
53 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
54                                      cl::desc("Disable inline spill hoisting"));
55
56 namespace {
57 class InlineSpiller : public Spiller {
58   MachineFunction &MF;
59   LiveIntervals &LIS;
60   LiveStacks &LSS;
61   AliasAnalysis *AA;
62   MachineDominatorTree &MDT;
63   MachineLoopInfo &Loops;
64   VirtRegMap &VRM;
65   MachineFrameInfo &MFI;
66   MachineRegisterInfo &MRI;
67   const TargetInstrInfo &TII;
68   const TargetRegisterInfo &TRI;
69   const MachineBlockFrequencyInfo &MBFI;
70
71   // Variables that are valid during spill(), but used by multiple methods.
72   LiveRangeEdit *Edit;
73   LiveInterval *StackInt;
74   int StackSlot;
75   unsigned Original;
76
77   // All registers to spill to StackSlot, including the main register.
78   SmallVector<unsigned, 8> RegsToSpill;
79
80   // All COPY instructions to/from snippets.
81   // They are ignored since both operands refer to the same stack slot.
82   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
83
84   // Values that failed to remat at some point.
85   SmallPtrSet<VNInfo*, 8> UsedValues;
86
87 public:
88   // Information about a value that was defined by a copy from a sibling
89   // register.
90   struct SibValueInfo {
91     // True when all reaching defs were reloads: No spill is necessary.
92     bool AllDefsAreReloads;
93
94     // True when value is defined by an original PHI not from splitting.
95     bool DefByOrigPHI;
96
97     // True when the COPY defining this value killed its source.
98     bool KillsSource;
99
100     // The preferred register to spill.
101     unsigned SpillReg;
102
103     // The value of SpillReg that should be spilled.
104     VNInfo *SpillVNI;
105
106     // The block where SpillVNI should be spilled. Currently, this must be the
107     // block containing SpillVNI->def.
108     MachineBasicBlock *SpillMBB;
109
110     // A defining instruction that is not a sibling copy or a reload, or NULL.
111     // This can be used as a template for rematerialization.
112     MachineInstr *DefMI;
113
114     // List of values that depend on this one.  These values are actually the
115     // same, but live range splitting has placed them in different registers,
116     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
117     // copies of the current value and phi-kills.  Usually only phi-kills cause
118     // more than one dependent value.
119     TinyPtrVector<VNInfo*> Deps;
120
121     SibValueInfo(unsigned Reg, VNInfo *VNI)
122       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
123         SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
124
125     // Returns true when a def has been found.
126     bool hasDef() const { return DefByOrigPHI || DefMI; }
127   };
128
129 private:
130   // Values in RegsToSpill defined by sibling copies.
131   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
132   SibValueMap SibValues;
133
134   // Dead defs generated during spilling.
135   SmallVector<MachineInstr*, 8> DeadDefs;
136
137   ~InlineSpiller() {}
138
139 public:
140   InlineSpiller(MachineFunctionPass &pass,
141                 MachineFunction &mf,
142                 VirtRegMap &vrm)
143     : MF(mf),
144       LIS(pass.getAnalysis<LiveIntervals>()),
145       LSS(pass.getAnalysis<LiveStacks>()),
146       AA(&pass.getAnalysis<AliasAnalysis>()),
147       MDT(pass.getAnalysis<MachineDominatorTree>()),
148       Loops(pass.getAnalysis<MachineLoopInfo>()),
149       VRM(vrm),
150       MFI(*mf.getFrameInfo()),
151       MRI(mf.getRegInfo()),
152       TII(*mf.getTarget().getInstrInfo()),
153       TRI(*mf.getTarget().getRegisterInfo()),
154       MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
155
156   void spill(LiveRangeEdit &);
157
158 private:
159   bool isSnippet(const LiveInterval &SnipLI);
160   void collectRegsToSpill();
161
162   bool isRegToSpill(unsigned Reg) {
163     return std::find(RegsToSpill.begin(),
164                      RegsToSpill.end(), Reg) != RegsToSpill.end();
165   }
166
167   bool isSibling(unsigned Reg);
168   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
169   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
170   void analyzeSiblingValues();
171
172   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
173   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
174
175   void markValueUsed(LiveInterval*, VNInfo*);
176   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
177   void reMaterializeAll();
178
179   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
180   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
181                          MachineInstr *LoadMI = 0);
182   void insertReload(LiveInterval &NewLI, SlotIndex,
183                     MachineBasicBlock::iterator MI);
184   void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
185                    SlotIndex, MachineBasicBlock::iterator MI);
186
187   void spillAroundUses(unsigned Reg);
188   void spillAll();
189 };
190 }
191
192 namespace llvm {
193 Spiller *createInlineSpiller(MachineFunctionPass &pass,
194                              MachineFunction &mf,
195                              VirtRegMap &vrm) {
196   return new InlineSpiller(pass, mf, vrm);
197 }
198 }
199
200 //===----------------------------------------------------------------------===//
201 //                                Snippets
202 //===----------------------------------------------------------------------===//
203
204 // When spilling a virtual register, we also spill any snippets it is connected
205 // to. The snippets are small live ranges that only have a single real use,
206 // leftovers from live range splitting. Spilling them enables memory operand
207 // folding or tightens the live range around the single use.
208 //
209 // This minimizes register pressure and maximizes the store-to-load distance for
210 // spill slots which can be important in tight loops.
211
212 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
213 /// otherwise return 0.
214 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
215   if (!MI->isFullCopy())
216     return 0;
217   if (MI->getOperand(0).getReg() == Reg)
218       return MI->getOperand(1).getReg();
219   if (MI->getOperand(1).getReg() == Reg)
220       return MI->getOperand(0).getReg();
221   return 0;
222 }
223
224 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
225 /// It is assumed that SnipLI is a virtual register with the same original as
226 /// Edit->getReg().
227 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
228   unsigned Reg = Edit->getReg();
229
230   // A snippet is a tiny live range with only a single instruction using it
231   // besides copies to/from Reg or spills/fills. We accept:
232   //
233   //   %snip = COPY %Reg / FILL fi#
234   //   %snip = USE %snip
235   //   %Reg = COPY %snip / SPILL %snip, fi#
236   //
237   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
238     return false;
239
240   MachineInstr *UseMI = 0;
241
242   // Check that all uses satisfy our criteria.
243   for (MachineRegisterInfo::reg_nodbg_iterator
244          RI = MRI.reg_nodbg_begin(SnipLI.reg);
245        MachineInstr *MI = RI.skipInstruction();) {
246
247     // Allow copies to/from Reg.
248     if (isFullCopyOf(MI, Reg))
249       continue;
250
251     // Allow stack slot loads.
252     int FI;
253     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
254       continue;
255
256     // Allow stack slot stores.
257     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
258       continue;
259
260     // Allow a single additional instruction.
261     if (UseMI && MI != UseMI)
262       return false;
263     UseMI = MI;
264   }
265   return true;
266 }
267
268 /// collectRegsToSpill - Collect live range snippets that only have a single
269 /// real use.
270 void InlineSpiller::collectRegsToSpill() {
271   unsigned Reg = Edit->getReg();
272
273   // Main register always spills.
274   RegsToSpill.assign(1, Reg);
275   SnippetCopies.clear();
276
277   // Snippets all have the same original, so there can't be any for an original
278   // register.
279   if (Original == Reg)
280     return;
281
282   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
283        MachineInstr *MI = RI.skipInstruction();) {
284     unsigned SnipReg = isFullCopyOf(MI, Reg);
285     if (!isSibling(SnipReg))
286       continue;
287     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
288     if (!isSnippet(SnipLI))
289       continue;
290     SnippetCopies.insert(MI);
291     if (isRegToSpill(SnipReg))
292       continue;
293     RegsToSpill.push_back(SnipReg);
294     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
295     ++NumSnippets;
296   }
297 }
298
299
300 //===----------------------------------------------------------------------===//
301 //                            Sibling Values
302 //===----------------------------------------------------------------------===//
303
304 // After live range splitting, some values to be spilled may be defined by
305 // copies from sibling registers. We trace the sibling copies back to the
306 // original value if it still exists. We need it for rematerialization.
307 //
308 // Even when the value can't be rematerialized, we still want to determine if
309 // the value has already been spilled, or we may want to hoist the spill from a
310 // loop.
311
312 bool InlineSpiller::isSibling(unsigned Reg) {
313   return TargetRegisterInfo::isVirtualRegister(Reg) &&
314            VRM.getOriginal(Reg) == Original;
315 }
316
317 #ifndef NDEBUG
318 static raw_ostream &operator<<(raw_ostream &OS,
319                                const InlineSpiller::SibValueInfo &SVI) {
320   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
321      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
322   if (SVI.SpillMBB)
323     OS << " in BB#" << SVI.SpillMBB->getNumber();
324   if (SVI.AllDefsAreReloads)
325     OS << " all-reloads";
326   if (SVI.DefByOrigPHI)
327     OS << " orig-phi";
328   if (SVI.KillsSource)
329     OS << " kill";
330   OS << " deps[";
331   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
332     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
333   OS << " ]";
334   if (SVI.DefMI)
335     OS << " def: " << *SVI.DefMI;
336   else
337     OS << '\n';
338   return OS;
339 }
340 #endif
341
342 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
343 /// known.  Otherwise remember the dependency for later.
344 ///
345 /// @param SVIIter SibValues entry to propagate.
346 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
347 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
348                                           VNInfo *VNI) {
349   SibValueMap::value_type *SVI = &*SVIIter;
350
351   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
352   TinyPtrVector<VNInfo*> FirstDeps;
353   if (VNI) {
354     FirstDeps.push_back(VNI);
355     SVI->second.Deps.push_back(VNI);
356   }
357
358   // Has the value been completely determined yet?  If not, defer propagation.
359   if (!SVI->second.hasDef())
360     return;
361
362   // Work list of values to propagate.
363   SmallSetVector<SibValueMap::value_type *, 8> WorkList;
364   WorkList.insert(SVI);
365
366   do {
367     SVI = WorkList.pop_back_val();
368     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
369     VNI = 0;
370
371     SibValueInfo &SV = SVI->second;
372     if (!SV.SpillMBB)
373       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
374
375     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
376                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
377
378     assert(SV.hasDef() && "Propagating undefined value");
379
380     // Should this value be propagated as a preferred spill candidate?  We don't
381     // propagate values of registers that are about to spill.
382     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
383     unsigned SpillDepth = ~0u;
384
385     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
386          DepE = Deps->end(); DepI != DepE; ++DepI) {
387       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
388       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
389       SibValueInfo &DepSV = DepSVI->second;
390       if (!DepSV.SpillMBB)
391         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
392
393       bool Changed = false;
394
395       // Propagate defining instruction.
396       if (!DepSV.hasDef()) {
397         Changed = true;
398         DepSV.DefMI = SV.DefMI;
399         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
400       }
401
402       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
403       // all predecessors.
404       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
405         Changed = true;
406         DepSV.AllDefsAreReloads = false;
407       }
408
409       // Propagate best spill value.
410       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
411         if (SV.SpillMBB == DepSV.SpillMBB) {
412           // DepSV is in the same block.  Hoist when dominated.
413           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
414             // This is an alternative def earlier in the same MBB.
415             // Hoist the spill as far as possible in SpillMBB. This can ease
416             // register pressure:
417             //
418             //   x = def
419             //   y = use x
420             //   s = copy x
421             //
422             // Hoisting the spill of s to immediately after the def removes the
423             // interference between x and y:
424             //
425             //   x = def
426             //   spill x
427             //   y = use x<kill>
428             //
429             // This hoist only helps when the DepSV copy kills its source.
430             Changed = true;
431             DepSV.SpillReg = SV.SpillReg;
432             DepSV.SpillVNI = SV.SpillVNI;
433             DepSV.SpillMBB = SV.SpillMBB;
434           }
435         } else {
436           // DepSV is in a different block.
437           if (SpillDepth == ~0u)
438             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
439
440           // Also hoist spills to blocks with smaller loop depth, but make sure
441           // that the new value dominates.  Non-phi dependents are always
442           // dominated, phis need checking.
443           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
444               (!DepSVI->first->isPHIDef() ||
445                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
446             Changed = true;
447             DepSV.SpillReg = SV.SpillReg;
448             DepSV.SpillVNI = SV.SpillVNI;
449             DepSV.SpillMBB = SV.SpillMBB;
450           }
451         }
452       }
453
454       if (!Changed)
455         continue;
456
457       // Something changed in DepSVI. Propagate to dependents.
458       WorkList.insert(&*DepSVI);
459
460       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
461             << DepSVI->first->def << " to:\t" << DepSV);
462     }
463   } while (!WorkList.empty());
464 }
465
466 /// traceSiblingValue - Trace a value that is about to be spilled back to the
467 /// real defining instructions by looking through sibling copies. Always stay
468 /// within the range of OrigVNI so the registers are known to carry the same
469 /// value.
470 ///
471 /// Determine if the value is defined by all reloads, so spilling isn't
472 /// necessary - the value is already in the stack slot.
473 ///
474 /// Return a defining instruction that may be a candidate for rematerialization.
475 ///
476 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
477                                                VNInfo *OrigVNI) {
478   // Check if a cached value already exists.
479   SibValueMap::iterator SVI;
480   bool Inserted;
481   tie(SVI, Inserted) =
482     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
483   if (!Inserted) {
484     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
485                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
486     return SVI->second.DefMI;
487   }
488
489   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
490                << UseVNI->id << '@' << UseVNI->def << '\n');
491
492   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
493   // processed.
494   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
495   WorkList.push_back(std::make_pair(UseReg, UseVNI));
496
497   do {
498     unsigned Reg;
499     VNInfo *VNI;
500     tie(Reg, VNI) = WorkList.pop_back_val();
501     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
502                  << ":\t");
503
504     // First check if this value has already been computed.
505     SVI = SibValues.find(VNI);
506     assert(SVI != SibValues.end() && "Missing SibValues entry");
507
508     // Trace through PHI-defs created by live range splitting.
509     if (VNI->isPHIDef()) {
510       // Stop at original PHIs.  We don't know the value at the predecessors.
511       if (VNI->def == OrigVNI->def) {
512         DEBUG(dbgs() << "orig phi value\n");
513         SVI->second.DefByOrigPHI = true;
514         SVI->second.AllDefsAreReloads = false;
515         propagateSiblingValue(SVI);
516         continue;
517       }
518
519       // This is a PHI inserted by live range splitting.  We could trace the
520       // live-out value from predecessor blocks, but that search can be very
521       // expensive if there are many predecessors and many more PHIs as
522       // generated by tail-dup when it sees an indirectbr.  Instead, look at
523       // all the non-PHI defs that have the same value as OrigVNI.  They must
524       // jointly dominate VNI->def.  This is not optimal since VNI may actually
525       // be jointly dominated by a smaller subset of defs, so there is a change
526       // we will miss a AllDefsAreReloads optimization.
527
528       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
529       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
530       LiveInterval &LI = LIS.getInterval(Reg);
531       LiveInterval &OrigLI = LIS.getInterval(Original);
532
533       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
534            VI != VE; ++VI) {
535         VNInfo *VNI2 = *VI;
536         if (VNI2->isUnused())
537           continue;
538         if (!OrigLI.containsOneValue() &&
539             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
540           continue;
541         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
542           PHIs.push_back(VNI2);
543         else
544           NonPHIs.push_back(VNI2);
545       }
546       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
547                    << " phi-defs, and " << NonPHIs.size()
548                    << " non-phi/orig defs\n");
549
550       // Create entries for all the PHIs.  Don't add them to the worklist, we
551       // are processing all of them in one go here.
552       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
553         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
554
555       // Add every PHI as a dependent of all the non-PHIs.
556       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
557         VNInfo *NonPHI = NonPHIs[i];
558         // Known value? Try an insertion.
559         tie(SVI, Inserted) =
560           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
561         // Add all the PHIs as dependents of NonPHI.
562         for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
563           SVI->second.Deps.push_back(PHIs[pi]);
564         // This is the first time we see NonPHI, add it to the worklist.
565         if (Inserted)
566           WorkList.push_back(std::make_pair(Reg, NonPHI));
567         else
568           // Propagate to all inserted PHIs, not just VNI.
569           propagateSiblingValue(SVI);
570       }
571
572       // Next work list item.
573       continue;
574     }
575
576     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
577     assert(MI && "Missing def");
578
579     // Trace through sibling copies.
580     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
581       if (isSibling(SrcReg)) {
582         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
583         LiveRangeQuery SrcQ(SrcLI, VNI->def);
584         assert(SrcQ.valueIn() && "Copy from non-existing value");
585         // Check if this COPY kills its source.
586         SVI->second.KillsSource = SrcQ.isKill();
587         VNInfo *SrcVNI = SrcQ.valueIn();
588         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
589                      << SrcVNI->id << '@' << SrcVNI->def
590                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
591         // Known sibling source value? Try an insertion.
592         tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
593                                                  SibValueInfo(SrcReg, SrcVNI)));
594         // This is the first time we see Src, add it to the worklist.
595         if (Inserted)
596           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
597         propagateSiblingValue(SVI, VNI);
598         // Next work list item.
599         continue;
600       }
601     }
602
603     // Track reachable reloads.
604     SVI->second.DefMI = MI;
605     SVI->second.SpillMBB = MI->getParent();
606     int FI;
607     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
608       DEBUG(dbgs() << "reload\n");
609       propagateSiblingValue(SVI);
610       // Next work list item.
611       continue;
612     }
613
614     // Potential remat candidate.
615     DEBUG(dbgs() << "def " << *MI);
616     SVI->second.AllDefsAreReloads = false;
617     propagateSiblingValue(SVI);
618   } while (!WorkList.empty());
619
620   // Look up the value we were looking for.  We already did this lookup at the
621   // top of the function, but SibValues may have been invalidated.
622   SVI = SibValues.find(UseVNI);
623   assert(SVI != SibValues.end() && "Didn't compute requested info");
624   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
625   return SVI->second.DefMI;
626 }
627
628 /// analyzeSiblingValues - Trace values defined by sibling copies back to
629 /// something that isn't a sibling copy.
630 ///
631 /// Keep track of values that may be rematerializable.
632 void InlineSpiller::analyzeSiblingValues() {
633   SibValues.clear();
634
635   // No siblings at all?
636   if (Edit->getReg() == Original)
637     return;
638
639   LiveInterval &OrigLI = LIS.getInterval(Original);
640   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
641     unsigned Reg = RegsToSpill[i];
642     LiveInterval &LI = LIS.getInterval(Reg);
643     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
644          VE = LI.vni_end(); VI != VE; ++VI) {
645       VNInfo *VNI = *VI;
646       if (VNI->isUnused())
647         continue;
648       MachineInstr *DefMI = 0;
649       if (!VNI->isPHIDef()) {
650        DefMI = LIS.getInstructionFromIndex(VNI->def);
651        assert(DefMI && "No defining instruction");
652       }
653       // Check possible sibling copies.
654       if (VNI->isPHIDef() || DefMI->isCopy()) {
655         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
656         assert(OrigVNI && "Def outside original live range");
657         if (OrigVNI->def != VNI->def)
658           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
659       }
660       if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
661         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
662                      << VNI->def << " may remat from " << *DefMI);
663       }
664     }
665   }
666 }
667
668 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
669 /// a spill at a better location.
670 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
671   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
672   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
673   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
674   SibValueMap::iterator I = SibValues.find(VNI);
675   if (I == SibValues.end())
676     return false;
677
678   const SibValueInfo &SVI = I->second;
679
680   // Let the normal folding code deal with the boring case.
681   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
682     return false;
683
684   // SpillReg may have been deleted by remat and DCE.
685   if (!LIS.hasInterval(SVI.SpillReg)) {
686     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
687     SibValues.erase(I);
688     return false;
689   }
690
691   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
692   if (!SibLI.containsValue(SVI.SpillVNI)) {
693     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
694     SibValues.erase(I);
695     return false;
696   }
697
698   // Conservatively extend the stack slot range to the range of the original
699   // value. We may be able to do better with stack slot coloring by being more
700   // careful here.
701   assert(StackInt && "No stack slot assigned yet.");
702   LiveInterval &OrigLI = LIS.getInterval(Original);
703   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
704   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
705   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
706                << *StackInt << '\n');
707
708   // Already spilled everywhere.
709   if (SVI.AllDefsAreReloads) {
710     DEBUG(dbgs() << "\tno spill needed: " << SVI);
711     ++NumOmitReloadSpill;
712     return true;
713   }
714   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
715   // any later spills of the same value.
716   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
717
718   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
719   MachineBasicBlock::iterator MII;
720   if (SVI.SpillVNI->isPHIDef())
721     MII = MBB->SkipPHIsAndLabels(MBB->begin());
722   else {
723     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
724     assert(DefMI && "Defining instruction disappeared");
725     MII = DefMI;
726     ++MII;
727   }
728   // Insert spill without kill flag immediately after def.
729   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
730                           MRI.getRegClass(SVI.SpillReg), &TRI);
731   --MII; // Point to store instruction.
732   LIS.InsertMachineInstrInMaps(MII);
733   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
734
735   ++NumSpills;
736   ++NumHoists;
737   return true;
738 }
739
740 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
741 /// redundant spills of this value in SLI.reg and sibling copies.
742 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
743   assert(VNI && "Missing value");
744   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
745   WorkList.push_back(std::make_pair(&SLI, VNI));
746   assert(StackInt && "No stack slot assigned yet.");
747
748   do {
749     LiveInterval *LI;
750     tie(LI, VNI) = WorkList.pop_back_val();
751     unsigned Reg = LI->reg;
752     DEBUG(dbgs() << "Checking redundant spills for "
753                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
754
755     // Regs to spill are taken care of.
756     if (isRegToSpill(Reg))
757       continue;
758
759     // Add all of VNI's live range to StackInt.
760     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
761     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
762
763     // Find all spills and copies of VNI.
764     for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
765          MachineInstr *MI = UI.skipInstruction();) {
766       if (!MI->isCopy() && !MI->mayStore())
767         continue;
768       SlotIndex Idx = LIS.getInstructionIndex(MI);
769       if (LI->getVNInfoAt(Idx) != VNI)
770         continue;
771
772       // Follow sibling copies down the dominator tree.
773       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
774         if (isSibling(DstReg)) {
775            LiveInterval &DstLI = LIS.getInterval(DstReg);
776            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
777            assert(DstVNI && "Missing defined value");
778            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
779            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
780         }
781         continue;
782       }
783
784       // Erase spills.
785       int FI;
786       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
787         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
788         // eliminateDeadDefs won't normally remove stores, so switch opcode.
789         MI->setDesc(TII.get(TargetOpcode::KILL));
790         DeadDefs.push_back(MI);
791         ++NumSpillsRemoved;
792         --NumSpills;
793       }
794     }
795   } while (!WorkList.empty());
796 }
797
798
799 //===----------------------------------------------------------------------===//
800 //                            Rematerialization
801 //===----------------------------------------------------------------------===//
802
803 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
804 /// instruction cannot be eliminated. See through snippet copies
805 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
806   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
807   WorkList.push_back(std::make_pair(LI, VNI));
808   do {
809     tie(LI, VNI) = WorkList.pop_back_val();
810     if (!UsedValues.insert(VNI))
811       continue;
812
813     if (VNI->isPHIDef()) {
814       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
815       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
816              PE = MBB->pred_end(); PI != PE; ++PI) {
817         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
818         if (PVNI)
819           WorkList.push_back(std::make_pair(LI, PVNI));
820       }
821       continue;
822     }
823
824     // Follow snippet copies.
825     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
826     if (!SnippetCopies.count(MI))
827       continue;
828     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
829     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
830     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
831     assert(SnipVNI && "Snippet undefined before copy");
832     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
833   } while (!WorkList.empty());
834 }
835
836 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
837 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
838                                      MachineBasicBlock::iterator MI) {
839   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
840   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
841
842   if (!ParentVNI) {
843     DEBUG(dbgs() << "\tadding <undef> flags: ");
844     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
845       MachineOperand &MO = MI->getOperand(i);
846       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
847         MO.setIsUndef();
848     }
849     DEBUG(dbgs() << UseIdx << '\t' << *MI);
850     return true;
851   }
852
853   if (SnippetCopies.count(MI))
854     return false;
855
856   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
857   LiveRangeEdit::Remat RM(ParentVNI);
858   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
859   if (SibI != SibValues.end())
860     RM.OrigMI = SibI->second.DefMI;
861   if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
862     markValueUsed(&VirtReg, ParentVNI);
863     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
864     return false;
865   }
866
867   // If the instruction also writes VirtReg.reg, it had better not require the
868   // same register for uses and defs.
869   SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
870   MIBundleOperands::VirtRegInfo RI =
871     MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
872   if (RI.Tied) {
873     markValueUsed(&VirtReg, ParentVNI);
874     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
875     return false;
876   }
877
878   // Before rematerializing into a register for a single instruction, try to
879   // fold a load into the instruction. That avoids allocating a new register.
880   if (RM.OrigMI->canFoldAsLoad() &&
881       foldMemoryOperand(Ops, RM.OrigMI)) {
882     Edit->markRematerialized(RM.ParentVNI);
883     ++NumFoldedLoads;
884     return true;
885   }
886
887   // Alocate a new register for the remat.
888   LiveInterval &NewLI = Edit->createFrom(Original);
889   NewLI.markNotSpillable();
890
891   // Finally we can rematerialize OrigMI before MI.
892   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
893                                            TRI);
894   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
895                << *LIS.getInstructionFromIndex(DefIdx));
896
897   // Replace operands
898   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
899     MachineOperand &MO = MI->getOperand(Ops[i].second);
900     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
901       MO.setReg(NewLI.reg);
902       MO.setIsKill();
903     }
904   }
905   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
906
907   VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
908   NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
909   DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
910   ++NumRemats;
911   return true;
912 }
913
914 /// reMaterializeAll - Try to rematerialize as many uses as possible,
915 /// and trim the live ranges after.
916 void InlineSpiller::reMaterializeAll() {
917   // analyzeSiblingValues has already tested all relevant defining instructions.
918   if (!Edit->anyRematerializable(AA))
919     return;
920
921   UsedValues.clear();
922
923   // Try to remat before all uses of snippets.
924   bool anyRemat = false;
925   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
926     unsigned Reg = RegsToSpill[i];
927     LiveInterval &LI = LIS.getInterval(Reg);
928     for (MachineRegisterInfo::use_nodbg_iterator
929          RI = MRI.use_nodbg_begin(Reg);
930          MachineInstr *MI = RI.skipBundle();)
931       anyRemat |= reMaterializeFor(LI, MI);
932   }
933   if (!anyRemat)
934     return;
935
936   // Remove any values that were completely rematted.
937   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
938     unsigned Reg = RegsToSpill[i];
939     LiveInterval &LI = LIS.getInterval(Reg);
940     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
941          I != E; ++I) {
942       VNInfo *VNI = *I;
943       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
944         continue;
945       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
946       MI->addRegisterDead(Reg, &TRI);
947       if (!MI->allDefsAreDead())
948         continue;
949       DEBUG(dbgs() << "All defs dead: " << *MI);
950       DeadDefs.push_back(MI);
951     }
952   }
953
954   // Eliminate dead code after remat. Note that some snippet copies may be
955   // deleted here.
956   if (DeadDefs.empty())
957     return;
958   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
959   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
960
961   // Get rid of deleted and empty intervals.
962   unsigned ResultPos = 0;
963   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
964     unsigned Reg = RegsToSpill[i];
965     if (!LIS.hasInterval(Reg))
966       continue;
967
968     LiveInterval &LI = LIS.getInterval(Reg);
969     if (LI.empty()) {
970       Edit->eraseVirtReg(Reg);
971       continue;
972     }
973
974     RegsToSpill[ResultPos++] = Reg;
975   }
976   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
977   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
978 }
979
980
981 //===----------------------------------------------------------------------===//
982 //                                 Spilling
983 //===----------------------------------------------------------------------===//
984
985 /// If MI is a load or store of StackSlot, it can be removed.
986 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
987   int FI = 0;
988   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
989   bool IsLoad = InstrReg;
990   if (!IsLoad)
991     InstrReg = TII.isStoreToStackSlot(MI, FI);
992
993   // We have a stack access. Is it the right register and slot?
994   if (InstrReg != Reg || FI != StackSlot)
995     return false;
996
997   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
998   LIS.RemoveMachineInstrFromMaps(MI);
999   MI->eraseFromParent();
1000
1001   if (IsLoad) {
1002     ++NumReloadsRemoved;
1003     --NumReloads;
1004   } else {
1005     ++NumSpillsRemoved;
1006     --NumSpills;
1007   }
1008
1009   return true;
1010 }
1011
1012 /// foldMemoryOperand - Try folding stack slot references in Ops into their
1013 /// instructions.
1014 ///
1015 /// @param Ops    Operand indices from analyzeVirtReg().
1016 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
1017 /// @return       True on success.
1018 bool InlineSpiller::
1019 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1020                   MachineInstr *LoadMI) {
1021   if (Ops.empty())
1022     return false;
1023   // Don't attempt folding in bundles.
1024   MachineInstr *MI = Ops.front().first;
1025   if (Ops.back().first != MI || MI->isBundled())
1026     return false;
1027
1028   bool WasCopy = MI->isCopy();
1029   unsigned ImpReg = 0;
1030
1031   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1032   // operands.
1033   SmallVector<unsigned, 8> FoldOps;
1034   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1035     unsigned Idx = Ops[i].second;
1036     MachineOperand &MO = MI->getOperand(Idx);
1037     if (MO.isImplicit()) {
1038       ImpReg = MO.getReg();
1039       continue;
1040     }
1041     // FIXME: Teach targets to deal with subregs.
1042     if (MO.getSubReg())
1043       return false;
1044     // We cannot fold a load instruction into a def.
1045     if (LoadMI && MO.isDef())
1046       return false;
1047     // Tied use operands should not be passed to foldMemoryOperand.
1048     if (!MI->isRegTiedToDefOperand(Idx))
1049       FoldOps.push_back(Idx);
1050   }
1051
1052   MachineInstr *FoldMI =
1053                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1054                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1055   if (!FoldMI)
1056     return false;
1057   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1058   MI->eraseFromParent();
1059
1060   // TII.foldMemoryOperand may have left some implicit operands on the
1061   // instruction.  Strip them.
1062   if (ImpReg)
1063     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1064       MachineOperand &MO = FoldMI->getOperand(i - 1);
1065       if (!MO.isReg() || !MO.isImplicit())
1066         break;
1067       if (MO.getReg() == ImpReg)
1068         FoldMI->RemoveOperand(i - 1);
1069     }
1070
1071   DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
1072                << *FoldMI);
1073   if (!WasCopy)
1074     ++NumFolded;
1075   else if (Ops.front().second == 0)
1076     ++NumSpills;
1077   else
1078     ++NumReloads;
1079   return true;
1080 }
1081
1082 /// insertReload - Insert a reload of NewLI.reg before MI.
1083 void InlineSpiller::insertReload(LiveInterval &NewLI,
1084                                  SlotIndex Idx,
1085                                  MachineBasicBlock::iterator MI) {
1086   MachineBasicBlock &MBB = *MI->getParent();
1087   TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
1088                            MRI.getRegClass(NewLI.reg), &TRI);
1089   --MI; // Point to load instruction.
1090   SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1091   // Some (out-of-tree) targets have EC reload instructions.
1092   if (MachineOperand *MO = MI->findRegisterDefOperand(NewLI.reg))
1093     if (MO->isEarlyClobber())
1094       LoadIdx = LoadIdx.getRegSlot(true);
1095   DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
1096   VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
1097   NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
1098   ++NumReloads;
1099 }
1100
1101 /// insertSpill - Insert a spill of NewLI.reg after MI.
1102 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
1103                                 SlotIndex Idx, MachineBasicBlock::iterator MI) {
1104   MachineBasicBlock &MBB = *MI->getParent();
1105   TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
1106                           MRI.getRegClass(NewLI.reg), &TRI);
1107   --MI; // Point to store instruction.
1108   SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1109   DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
1110   VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
1111   NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
1112   ++NumSpills;
1113 }
1114
1115 /// spillAroundUses - insert spill code around each use of Reg.
1116 void InlineSpiller::spillAroundUses(unsigned Reg) {
1117   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1118   LiveInterval &OldLI = LIS.getInterval(Reg);
1119
1120   // Iterate over instructions using Reg.
1121   for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
1122        MachineInstr *MI = RegI.skipBundle();) {
1123
1124     // Debug values are not allowed to affect codegen.
1125     if (MI->isDebugValue()) {
1126       // Modify DBG_VALUE now that the value is in a spill slot.
1127       uint64_t Offset = MI->getOperand(1).getImm();
1128       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1129       DebugLoc DL = MI->getDebugLoc();
1130       DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1131       MachineBasicBlock *MBB = MI->getParent();
1132       BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
1133           .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
1134       continue;
1135     }
1136
1137     // Ignore copies to/from snippets. We'll delete them.
1138     if (SnippetCopies.count(MI))
1139       continue;
1140
1141     // Stack slot accesses may coalesce away.
1142     if (coalesceStackAccess(MI, Reg))
1143       continue;
1144
1145     // Analyze instruction.
1146     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1147     MIBundleOperands::VirtRegInfo RI =
1148       MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
1149
1150     // Find the slot index where this instruction reads and writes OldLI.
1151     // This is usually the def slot, except for tied early clobbers.
1152     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1153     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1154       if (SlotIndex::isSameInstr(Idx, VNI->def))
1155         Idx = VNI->def;
1156
1157     // Check for a sibling copy.
1158     unsigned SibReg = isFullCopyOf(MI, Reg);
1159     if (SibReg && isSibling(SibReg)) {
1160       // This may actually be a copy between snippets.
1161       if (isRegToSpill(SibReg)) {
1162         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1163         SnippetCopies.insert(MI);
1164         continue;
1165       }
1166       if (RI.Writes) {
1167         // Hoist the spill of a sib-reg copy.
1168         if (hoistSpill(OldLI, MI)) {
1169           // This COPY is now dead, the value is already in the stack slot.
1170           MI->getOperand(0).setIsDead();
1171           DeadDefs.push_back(MI);
1172           continue;
1173         }
1174       } else {
1175         // This is a reload for a sib-reg copy. Drop spills downstream.
1176         LiveInterval &SibLI = LIS.getInterval(SibReg);
1177         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1178         // The COPY will fold to a reload below.
1179       }
1180     }
1181
1182     // Attempt to fold memory ops.
1183     if (foldMemoryOperand(Ops))
1184       continue;
1185
1186     // Allocate interval around instruction.
1187     // FIXME: Infer regclass from instruction alone.
1188     LiveInterval &NewLI = Edit->createFrom(Reg);
1189     NewLI.markNotSpillable();
1190
1191     if (RI.Reads)
1192       insertReload(NewLI, Idx, MI);
1193
1194     // Rewrite instruction operands.
1195     bool hasLiveDef = false;
1196     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1197       MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
1198       MO.setReg(NewLI.reg);
1199       if (MO.isUse()) {
1200         if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
1201           MO.setIsKill();
1202       } else {
1203         if (!MO.isDead())
1204           hasLiveDef = true;
1205       }
1206     }
1207     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
1208
1209     // FIXME: Use a second vreg if instruction has no tied ops.
1210     if (RI.Writes) {
1211       if (hasLiveDef)
1212         insertSpill(NewLI, OldLI, Idx, MI);
1213       else {
1214         // This instruction defines a dead value.  We don't need to spill it,
1215         // but do create a live range for the dead value.
1216         VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
1217         NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
1218       }
1219     }
1220
1221     DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
1222   }
1223 }
1224
1225 /// spillAll - Spill all registers remaining after rematerialization.
1226 void InlineSpiller::spillAll() {
1227   // Update LiveStacks now that we are committed to spilling.
1228   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1229     StackSlot = VRM.assignVirt2StackSlot(Original);
1230     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1231     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1232   } else
1233     StackInt = &LSS.getInterval(StackSlot);
1234
1235   if (Original != Edit->getReg())
1236     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1237
1238   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1239   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1240     StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
1241                                    StackInt->getValNumInfo(0));
1242   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1243
1244   // Spill around uses of all RegsToSpill.
1245   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1246     spillAroundUses(RegsToSpill[i]);
1247
1248   // Hoisted spills may cause dead code.
1249   if (!DeadDefs.empty()) {
1250     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1251     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1252   }
1253
1254   // Finally delete the SnippetCopies.
1255   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1256     for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1257          MachineInstr *MI = RI.skipInstruction();) {
1258       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1259       // FIXME: Do this with a LiveRangeEdit callback.
1260       LIS.RemoveMachineInstrFromMaps(MI);
1261       MI->eraseFromParent();
1262     }
1263   }
1264
1265   // Delete all spilled registers.
1266   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1267     Edit->eraseVirtReg(RegsToSpill[i]);
1268 }
1269
1270 void InlineSpiller::spill(LiveRangeEdit &edit) {
1271   ++NumSpilledRanges;
1272   Edit = &edit;
1273   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1274          && "Trying to spill a stack slot.");
1275   // Share a stack slot among all descendants of Original.
1276   Original = VRM.getOriginal(edit.getReg());
1277   StackSlot = VRM.getStackSlot(Original);
1278   StackInt = 0;
1279
1280   DEBUG(dbgs() << "Inline spilling "
1281                << MRI.getRegClass(edit.getReg())->getName()
1282                << ':' << PrintReg(edit.getReg()) << ' ' << edit.getParent()
1283                << "\nFrom original " << LIS.getInterval(Original) << '\n');
1284   assert(edit.getParent().isSpillable() &&
1285          "Attempting to spill already spilled value.");
1286   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1287
1288   collectRegsToSpill();
1289   analyzeSiblingValues();
1290   reMaterializeAll();
1291
1292   // Remat may handle everything.
1293   if (!RegsToSpill.empty())
1294     spillAll();
1295
1296   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1297 }