Strip old implicit operands after foldMemoryOperand.
[oota-llvm.git] / lib / CodeGen / InlineSpiller.cpp
1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "Spiller.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/TinyPtrVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/LiveStackAnalysis.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 using namespace llvm;
36
37 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
38 STATISTIC(NumSnippets,        "Number of spilled snippets");
39 STATISTIC(NumSpills,          "Number of spills inserted");
40 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
41 STATISTIC(NumReloads,         "Number of reloads inserted");
42 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
43 STATISTIC(NumFolded,          "Number of folded stack accesses");
44 STATISTIC(NumFoldedLoads,     "Number of folded loads");
45 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
46 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
47 STATISTIC(NumHoists,          "Number of hoisted spills");
48
49 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
50                                      cl::desc("Disable inline spill hoisting"));
51
52 namespace {
53 class InlineSpiller : public Spiller {
54   MachineFunctionPass &Pass;
55   MachineFunction &MF;
56   LiveIntervals &LIS;
57   LiveStacks &LSS;
58   AliasAnalysis *AA;
59   MachineDominatorTree &MDT;
60   MachineLoopInfo &Loops;
61   VirtRegMap &VRM;
62   MachineFrameInfo &MFI;
63   MachineRegisterInfo &MRI;
64   const TargetInstrInfo &TII;
65   const TargetRegisterInfo &TRI;
66
67   // Variables that are valid during spill(), but used by multiple methods.
68   LiveRangeEdit *Edit;
69   LiveInterval *StackInt;
70   int StackSlot;
71   unsigned Original;
72
73   // All registers to spill to StackSlot, including the main register.
74   SmallVector<unsigned, 8> RegsToSpill;
75
76   // All COPY instructions to/from snippets.
77   // They are ignored since both operands refer to the same stack slot.
78   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
79
80   // Values that failed to remat at some point.
81   SmallPtrSet<VNInfo*, 8> UsedValues;
82
83 public:
84   // Information about a value that was defined by a copy from a sibling
85   // register.
86   struct SibValueInfo {
87     // True when all reaching defs were reloads: No spill is necessary.
88     bool AllDefsAreReloads;
89
90     // True when value is defined by an original PHI not from splitting.
91     bool DefByOrigPHI;
92
93     // True when the COPY defining this value killed its source.
94     bool KillsSource;
95
96     // The preferred register to spill.
97     unsigned SpillReg;
98
99     // The value of SpillReg that should be spilled.
100     VNInfo *SpillVNI;
101
102     // The block where SpillVNI should be spilled. Currently, this must be the
103     // block containing SpillVNI->def.
104     MachineBasicBlock *SpillMBB;
105
106     // A defining instruction that is not a sibling copy or a reload, or NULL.
107     // This can be used as a template for rematerialization.
108     MachineInstr *DefMI;
109
110     // List of values that depend on this one.  These values are actually the
111     // same, but live range splitting has placed them in different registers,
112     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
113     // copies of the current value and phi-kills.  Usually only phi-kills cause
114     // more than one dependent value.
115     TinyPtrVector<VNInfo*> Deps;
116
117     SibValueInfo(unsigned Reg, VNInfo *VNI)
118       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
119         SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
120
121     // Returns true when a def has been found.
122     bool hasDef() const { return DefByOrigPHI || DefMI; }
123   };
124
125 private:
126   // Values in RegsToSpill defined by sibling copies.
127   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
128   SibValueMap SibValues;
129
130   // Dead defs generated during spilling.
131   SmallVector<MachineInstr*, 8> DeadDefs;
132
133   ~InlineSpiller() {}
134
135 public:
136   InlineSpiller(MachineFunctionPass &pass,
137                 MachineFunction &mf,
138                 VirtRegMap &vrm)
139     : Pass(pass),
140       MF(mf),
141       LIS(pass.getAnalysis<LiveIntervals>()),
142       LSS(pass.getAnalysis<LiveStacks>()),
143       AA(&pass.getAnalysis<AliasAnalysis>()),
144       MDT(pass.getAnalysis<MachineDominatorTree>()),
145       Loops(pass.getAnalysis<MachineLoopInfo>()),
146       VRM(vrm),
147       MFI(*mf.getFrameInfo()),
148       MRI(mf.getRegInfo()),
149       TII(*mf.getTarget().getInstrInfo()),
150       TRI(*mf.getTarget().getRegisterInfo()) {}
151
152   void spill(LiveRangeEdit &);
153
154 private:
155   bool isSnippet(const LiveInterval &SnipLI);
156   void collectRegsToSpill();
157
158   bool isRegToSpill(unsigned Reg) {
159     return std::find(RegsToSpill.begin(),
160                      RegsToSpill.end(), Reg) != RegsToSpill.end();
161   }
162
163   bool isSibling(unsigned Reg);
164   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
165   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
166   void analyzeSiblingValues();
167
168   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
169   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
170
171   void markValueUsed(LiveInterval*, VNInfo*);
172   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
173   void reMaterializeAll();
174
175   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
176   bool foldMemoryOperand(MachineBasicBlock::iterator MI,
177                          const SmallVectorImpl<unsigned> &Ops,
178                          MachineInstr *LoadMI = 0);
179   void insertReload(LiveInterval &NewLI, SlotIndex,
180                     MachineBasicBlock::iterator MI);
181   void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
182                    SlotIndex, MachineBasicBlock::iterator MI);
183
184   void spillAroundUses(unsigned Reg);
185   void spillAll();
186 };
187 }
188
189 namespace llvm {
190 Spiller *createInlineSpiller(MachineFunctionPass &pass,
191                              MachineFunction &mf,
192                              VirtRegMap &vrm) {
193   return new InlineSpiller(pass, mf, vrm);
194 }
195 }
196
197 //===----------------------------------------------------------------------===//
198 //                                Snippets
199 //===----------------------------------------------------------------------===//
200
201 // When spilling a virtual register, we also spill any snippets it is connected
202 // to. The snippets are small live ranges that only have a single real use,
203 // leftovers from live range splitting. Spilling them enables memory operand
204 // folding or tightens the live range around the single use.
205 //
206 // This minimizes register pressure and maximizes the store-to-load distance for
207 // spill slots which can be important in tight loops.
208
209 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
210 /// otherwise return 0.
211 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
212   if (!MI->isFullCopy())
213     return 0;
214   if (MI->getOperand(0).getReg() == Reg)
215       return MI->getOperand(1).getReg();
216   if (MI->getOperand(1).getReg() == Reg)
217       return MI->getOperand(0).getReg();
218   return 0;
219 }
220
221 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
222 /// It is assumed that SnipLI is a virtual register with the same original as
223 /// Edit->getReg().
224 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
225   unsigned Reg = Edit->getReg();
226
227   // A snippet is a tiny live range with only a single instruction using it
228   // besides copies to/from Reg or spills/fills. We accept:
229   //
230   //   %snip = COPY %Reg / FILL fi#
231   //   %snip = USE %snip
232   //   %Reg = COPY %snip / SPILL %snip, fi#
233   //
234   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
235     return false;
236
237   MachineInstr *UseMI = 0;
238
239   // Check that all uses satisfy our criteria.
240   for (MachineRegisterInfo::reg_nodbg_iterator
241          RI = MRI.reg_nodbg_begin(SnipLI.reg);
242        MachineInstr *MI = RI.skipInstruction();) {
243
244     // Allow copies to/from Reg.
245     if (isFullCopyOf(MI, Reg))
246       continue;
247
248     // Allow stack slot loads.
249     int FI;
250     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
251       continue;
252
253     // Allow stack slot stores.
254     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
255       continue;
256
257     // Allow a single additional instruction.
258     if (UseMI && MI != UseMI)
259       return false;
260     UseMI = MI;
261   }
262   return true;
263 }
264
265 /// collectRegsToSpill - Collect live range snippets that only have a single
266 /// real use.
267 void InlineSpiller::collectRegsToSpill() {
268   unsigned Reg = Edit->getReg();
269
270   // Main register always spills.
271   RegsToSpill.assign(1, Reg);
272   SnippetCopies.clear();
273
274   // Snippets all have the same original, so there can't be any for an original
275   // register.
276   if (Original == Reg)
277     return;
278
279   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
280        MachineInstr *MI = RI.skipInstruction();) {
281     unsigned SnipReg = isFullCopyOf(MI, Reg);
282     if (!isSibling(SnipReg))
283       continue;
284     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
285     if (!isSnippet(SnipLI))
286       continue;
287     SnippetCopies.insert(MI);
288     if (isRegToSpill(SnipReg))
289       continue;
290     RegsToSpill.push_back(SnipReg);
291     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
292     ++NumSnippets;
293   }
294 }
295
296
297 //===----------------------------------------------------------------------===//
298 //                            Sibling Values
299 //===----------------------------------------------------------------------===//
300
301 // After live range splitting, some values to be spilled may be defined by
302 // copies from sibling registers. We trace the sibling copies back to the
303 // original value if it still exists. We need it for rematerialization.
304 //
305 // Even when the value can't be rematerialized, we still want to determine if
306 // the value has already been spilled, or we may want to hoist the spill from a
307 // loop.
308
309 bool InlineSpiller::isSibling(unsigned Reg) {
310   return TargetRegisterInfo::isVirtualRegister(Reg) &&
311            VRM.getOriginal(Reg) == Original;
312 }
313
314 #ifndef NDEBUG
315 static raw_ostream &operator<<(raw_ostream &OS,
316                                const InlineSpiller::SibValueInfo &SVI) {
317   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
318      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
319   if (SVI.SpillMBB)
320     OS << " in BB#" << SVI.SpillMBB->getNumber();
321   if (SVI.AllDefsAreReloads)
322     OS << " all-reloads";
323   if (SVI.DefByOrigPHI)
324     OS << " orig-phi";
325   if (SVI.KillsSource)
326     OS << " kill";
327   OS << " deps[";
328   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
329     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
330   OS << " ]";
331   if (SVI.DefMI)
332     OS << " def: " << *SVI.DefMI;
333   else
334     OS << '\n';
335   return OS;
336 }
337 #endif
338
339 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
340 /// known.  Otherwise remember the dependency for later.
341 ///
342 /// @param SVI SibValues entry to propagate.
343 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
344 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
345                                           VNInfo *VNI) {
346   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
347   TinyPtrVector<VNInfo*> FirstDeps;
348   if (VNI) {
349     FirstDeps.push_back(VNI);
350     SVI->second.Deps.push_back(VNI);
351   }
352
353   // Has the value been completely determined yet?  If not, defer propagation.
354   if (!SVI->second.hasDef())
355     return;
356
357   // Work list of values to propagate.  It would be nice to use a SetVector
358   // here, but then we would be forced to use a SmallSet.
359   SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
360   SmallPtrSet<VNInfo*, 8> WorkSet;
361
362   do {
363     SVI = WorkList.pop_back_val();
364     WorkSet.erase(SVI->first);
365     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
366     VNI = 0;
367
368     SibValueInfo &SV = SVI->second;
369     if (!SV.SpillMBB)
370       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
371
372     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
373                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
374
375     assert(SV.hasDef() && "Propagating undefined value");
376
377     // Should this value be propagated as a preferred spill candidate?  We don't
378     // propagate values of registers that are about to spill.
379     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
380     unsigned SpillDepth = ~0u;
381
382     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
383          DepE = Deps->end(); DepI != DepE; ++DepI) {
384       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
385       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
386       SibValueInfo &DepSV = DepSVI->second;
387       if (!DepSV.SpillMBB)
388         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
389
390       bool Changed = false;
391
392       // Propagate defining instruction.
393       if (!DepSV.hasDef()) {
394         Changed = true;
395         DepSV.DefMI = SV.DefMI;
396         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
397       }
398
399       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
400       // all predecessors.
401       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
402         Changed = true;
403         DepSV.AllDefsAreReloads = false;
404       }
405
406       // Propagate best spill value.
407       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
408         if (SV.SpillMBB == DepSV.SpillMBB) {
409           // DepSV is in the same block.  Hoist when dominated.
410           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
411             // This is an alternative def earlier in the same MBB.
412             // Hoist the spill as far as possible in SpillMBB. This can ease
413             // register pressure:
414             //
415             //   x = def
416             //   y = use x
417             //   s = copy x
418             //
419             // Hoisting the spill of s to immediately after the def removes the
420             // interference between x and y:
421             //
422             //   x = def
423             //   spill x
424             //   y = use x<kill>
425             //
426             // This hoist only helps when the DepSV copy kills its source.
427             Changed = true;
428             DepSV.SpillReg = SV.SpillReg;
429             DepSV.SpillVNI = SV.SpillVNI;
430             DepSV.SpillMBB = SV.SpillMBB;
431           }
432         } else {
433           // DepSV is in a different block.
434           if (SpillDepth == ~0u)
435             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
436
437           // Also hoist spills to blocks with smaller loop depth, but make sure
438           // that the new value dominates.  Non-phi dependents are always
439           // dominated, phis need checking.
440           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
441               (!DepSVI->first->isPHIDef() ||
442                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
443             Changed = true;
444             DepSV.SpillReg = SV.SpillReg;
445             DepSV.SpillVNI = SV.SpillVNI;
446             DepSV.SpillMBB = SV.SpillMBB;
447           }
448         }
449       }
450
451       if (!Changed)
452         continue;
453
454       // Something changed in DepSVI. Propagate to dependents.
455       if (WorkSet.insert(DepSVI->first))
456         WorkList.push_back(DepSVI);
457
458       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
459             << DepSVI->first->def << " to:\t" << DepSV);
460     }
461   } while (!WorkList.empty());
462 }
463
464 /// traceSiblingValue - Trace a value that is about to be spilled back to the
465 /// real defining instructions by looking through sibling copies. Always stay
466 /// within the range of OrigVNI so the registers are known to carry the same
467 /// value.
468 ///
469 /// Determine if the value is defined by all reloads, so spilling isn't
470 /// necessary - the value is already in the stack slot.
471 ///
472 /// Return a defining instruction that may be a candidate for rematerialization.
473 ///
474 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
475                                                VNInfo *OrigVNI) {
476   // Check if a cached value already exists.
477   SibValueMap::iterator SVI;
478   bool Inserted;
479   tie(SVI, Inserted) =
480     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
481   if (!Inserted) {
482     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
483                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
484     return SVI->second.DefMI;
485   }
486
487   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
488                << UseVNI->id << '@' << UseVNI->def << '\n');
489
490   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
491   // processed.
492   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
493   WorkList.push_back(std::make_pair(UseReg, UseVNI));
494
495   do {
496     unsigned Reg;
497     VNInfo *VNI;
498     tie(Reg, VNI) = WorkList.pop_back_val();
499     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
500                  << ":\t");
501
502     // First check if this value has already been computed.
503     SVI = SibValues.find(VNI);
504     assert(SVI != SibValues.end() && "Missing SibValues entry");
505
506     // Trace through PHI-defs created by live range splitting.
507     if (VNI->isPHIDef()) {
508       // Stop at original PHIs.  We don't know the value at the predecessors.
509       if (VNI->def == OrigVNI->def) {
510         DEBUG(dbgs() << "orig phi value\n");
511         SVI->second.DefByOrigPHI = true;
512         SVI->second.AllDefsAreReloads = false;
513         propagateSiblingValue(SVI);
514         continue;
515       }
516
517       // This is a PHI inserted by live range splitting.  We could trace the
518       // live-out value from predecessor blocks, but that search can be very
519       // expensive if there are many predecessors and many more PHIs as
520       // generated by tail-dup when it sees an indirectbr.  Instead, look at
521       // all the non-PHI defs that have the same value as OrigVNI.  They must
522       // jointly dominate VNI->def.  This is not optimal since VNI may actually
523       // be jointly dominated by a smaller subset of defs, so there is a change
524       // we will miss a AllDefsAreReloads optimization.
525
526       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
527       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
528       LiveInterval &LI = LIS.getInterval(Reg);
529       LiveInterval &OrigLI = LIS.getInterval(Original);
530
531       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
532            VI != VE; ++VI) {
533         VNInfo *VNI2 = *VI;
534         if (VNI2->isUnused())
535           continue;
536         if (!OrigLI.containsOneValue() &&
537             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
538           continue;
539         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
540           PHIs.push_back(VNI2);
541         else
542           NonPHIs.push_back(VNI2);
543       }
544       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
545                    << " phi-defs, and " << NonPHIs.size()
546                    << " non-phi/orig defs\n");
547
548       // Create entries for all the PHIs.  Don't add them to the worklist, we
549       // are processing all of them in one go here.
550       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
551         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
552
553       // Add every PHI as a dependent of all the non-PHIs.
554       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
555         VNInfo *NonPHI = NonPHIs[i];
556         // Known value? Try an insertion.
557         tie(SVI, Inserted) =
558           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
559         // Add all the PHIs as dependents of NonPHI.
560         for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
561           SVI->second.Deps.push_back(PHIs[pi]);
562         // This is the first time we see NonPHI, add it to the worklist.
563         if (Inserted)
564           WorkList.push_back(std::make_pair(Reg, NonPHI));
565         else
566           // Propagate to all inserted PHIs, not just VNI.
567           propagateSiblingValue(SVI);
568       }
569
570       // Next work list item.
571       continue;
572     }
573
574     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
575     assert(MI && "Missing def");
576
577     // Trace through sibling copies.
578     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
579       if (isSibling(SrcReg)) {
580         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
581         LiveRange *SrcLR = SrcLI.getLiveRangeContaining(VNI->def.getUseIndex());
582         assert(SrcLR && "Copy from non-existing value");
583         // Check if this COPY kills its source.
584         SVI->second.KillsSource = (SrcLR->end == VNI->def);
585         VNInfo *SrcVNI = SrcLR->valno;
586         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
587                      << SrcVNI->id << '@' << SrcVNI->def
588                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
589         // Known sibling source value? Try an insertion.
590         tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
591                                                  SibValueInfo(SrcReg, SrcVNI)));
592         // This is the first time we see Src, add it to the worklist.
593         if (Inserted)
594           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
595         propagateSiblingValue(SVI, VNI);
596         // Next work list item.
597         continue;
598       }
599     }
600
601     // Track reachable reloads.
602     SVI->second.DefMI = MI;
603     SVI->second.SpillMBB = MI->getParent();
604     int FI;
605     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
606       DEBUG(dbgs() << "reload\n");
607       propagateSiblingValue(SVI);
608       // Next work list item.
609       continue;
610     }
611
612     // Potential remat candidate.
613     DEBUG(dbgs() << "def " << *MI);
614     SVI->second.AllDefsAreReloads = false;
615     propagateSiblingValue(SVI);
616   } while (!WorkList.empty());
617
618   // Look up the value we were looking for.  We already did this lokup at the
619   // top of the function, but SibValues may have been invalidated.
620   SVI = SibValues.find(UseVNI);
621   assert(SVI != SibValues.end() && "Didn't compute requested info");
622   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
623   return SVI->second.DefMI;
624 }
625
626 /// analyzeSiblingValues - Trace values defined by sibling copies back to
627 /// something that isn't a sibling copy.
628 ///
629 /// Keep track of values that may be rematerializable.
630 void InlineSpiller::analyzeSiblingValues() {
631   SibValues.clear();
632
633   // No siblings at all?
634   if (Edit->getReg() == Original)
635     return;
636
637   LiveInterval &OrigLI = LIS.getInterval(Original);
638   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
639     unsigned Reg = RegsToSpill[i];
640     LiveInterval &LI = LIS.getInterval(Reg);
641     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
642          VE = LI.vni_end(); VI != VE; ++VI) {
643       VNInfo *VNI = *VI;
644       if (VNI->isUnused())
645         continue;
646       MachineInstr *DefMI = 0;
647       // Check possible sibling copies.
648       if (VNI->isPHIDef() || VNI->getCopy()) {
649         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
650         assert(OrigVNI && "Def outside original live range");
651         if (OrigVNI->def != VNI->def)
652           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
653       }
654       if (!DefMI && !VNI->isPHIDef())
655         DefMI = LIS.getInstructionFromIndex(VNI->def);
656       if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) {
657         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
658                      << VNI->def << " may remat from " << *DefMI);
659       }
660     }
661   }
662 }
663
664 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
665 /// a spill at a better location.
666 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
667   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
668   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex());
669   assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy");
670   SibValueMap::iterator I = SibValues.find(VNI);
671   if (I == SibValues.end())
672     return false;
673
674   const SibValueInfo &SVI = I->second;
675
676   // Let the normal folding code deal with the boring case.
677   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
678     return false;
679
680   // SpillReg may have been deleted by remat and DCE.
681   if (!LIS.hasInterval(SVI.SpillReg)) {
682     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
683     SibValues.erase(I);
684     return false;
685   }
686
687   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
688   if (!SibLI.containsValue(SVI.SpillVNI)) {
689     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
690     SibValues.erase(I);
691     return false;
692   }
693
694   // Conservatively extend the stack slot range to the range of the original
695   // value. We may be able to do better with stack slot coloring by being more
696   // careful here.
697   assert(StackInt && "No stack slot assigned yet.");
698   LiveInterval &OrigLI = LIS.getInterval(Original);
699   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
700   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
701   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
702                << *StackInt << '\n');
703
704   // Already spilled everywhere.
705   if (SVI.AllDefsAreReloads) {
706     DEBUG(dbgs() << "\tno spill needed: " << SVI);
707     ++NumOmitReloadSpill;
708     return true;
709   }
710   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
711   // any later spills of the same value.
712   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
713
714   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
715   MachineBasicBlock::iterator MII;
716   if (SVI.SpillVNI->isPHIDef())
717     MII = MBB->SkipPHIsAndLabels(MBB->begin());
718   else {
719     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
720     assert(DefMI && "Defining instruction disappeared");
721     MII = DefMI;
722     ++MII;
723   }
724   // Insert spill without kill flag immediately after def.
725   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
726                           MRI.getRegClass(SVI.SpillReg), &TRI);
727   --MII; // Point to store instruction.
728   LIS.InsertMachineInstrInMaps(MII);
729   VRM.addSpillSlotUse(StackSlot, MII);
730   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
731
732   ++NumSpills;
733   ++NumHoists;
734   return true;
735 }
736
737 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
738 /// redundant spills of this value in SLI.reg and sibling copies.
739 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
740   assert(VNI && "Missing value");
741   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
742   WorkList.push_back(std::make_pair(&SLI, VNI));
743   assert(StackInt && "No stack slot assigned yet.");
744
745   do {
746     LiveInterval *LI;
747     tie(LI, VNI) = WorkList.pop_back_val();
748     unsigned Reg = LI->reg;
749     DEBUG(dbgs() << "Checking redundant spills for "
750                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
751
752     // Regs to spill are taken care of.
753     if (isRegToSpill(Reg))
754       continue;
755
756     // Add all of VNI's live range to StackInt.
757     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
758     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
759
760     // Find all spills and copies of VNI.
761     for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
762          MachineInstr *MI = UI.skipInstruction();) {
763       if (!MI->isCopy() && !MI->getDesc().mayStore())
764         continue;
765       SlotIndex Idx = LIS.getInstructionIndex(MI);
766       if (LI->getVNInfoAt(Idx) != VNI)
767         continue;
768
769       // Follow sibling copies down the dominator tree.
770       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
771         if (isSibling(DstReg)) {
772            LiveInterval &DstLI = LIS.getInterval(DstReg);
773            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex());
774            assert(DstVNI && "Missing defined value");
775            assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot");
776            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
777         }
778         continue;
779       }
780
781       // Erase spills.
782       int FI;
783       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
784         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
785         // eliminateDeadDefs won't normally remove stores, so switch opcode.
786         MI->setDesc(TII.get(TargetOpcode::KILL));
787         DeadDefs.push_back(MI);
788         ++NumSpillsRemoved;
789         --NumSpills;
790       }
791     }
792   } while (!WorkList.empty());
793 }
794
795
796 //===----------------------------------------------------------------------===//
797 //                            Rematerialization
798 //===----------------------------------------------------------------------===//
799
800 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
801 /// instruction cannot be eliminated. See through snippet copies
802 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
803   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
804   WorkList.push_back(std::make_pair(LI, VNI));
805   do {
806     tie(LI, VNI) = WorkList.pop_back_val();
807     if (!UsedValues.insert(VNI))
808       continue;
809
810     if (VNI->isPHIDef()) {
811       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
812       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
813              PE = MBB->pred_end(); PI != PE; ++PI) {
814         VNInfo *PVNI = LI->getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot());
815         if (PVNI)
816           WorkList.push_back(std::make_pair(LI, PVNI));
817       }
818       continue;
819     }
820
821     // Follow snippet copies.
822     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
823     if (!SnippetCopies.count(MI))
824       continue;
825     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
826     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
827     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getUseIndex());
828     assert(SnipVNI && "Snippet undefined before copy");
829     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
830   } while (!WorkList.empty());
831 }
832
833 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
834 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
835                                      MachineBasicBlock::iterator MI) {
836   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex();
837   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
838
839   if (!ParentVNI) {
840     DEBUG(dbgs() << "\tadding <undef> flags: ");
841     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
842       MachineOperand &MO = MI->getOperand(i);
843       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
844         MO.setIsUndef();
845     }
846     DEBUG(dbgs() << UseIdx << '\t' << *MI);
847     return true;
848   }
849
850   if (SnippetCopies.count(MI))
851     return false;
852
853   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
854   LiveRangeEdit::Remat RM(ParentVNI);
855   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
856   if (SibI != SibValues.end())
857     RM.OrigMI = SibI->second.DefMI;
858   if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) {
859     markValueUsed(&VirtReg, ParentVNI);
860     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
861     return false;
862   }
863
864   // If the instruction also writes VirtReg.reg, it had better not require the
865   // same register for uses and defs.
866   bool Reads, Writes;
867   SmallVector<unsigned, 8> Ops;
868   tie(Reads, Writes) = MI->readsWritesVirtualRegister(VirtReg.reg, &Ops);
869   if (Writes) {
870     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
871       MachineOperand &MO = MI->getOperand(Ops[i]);
872       if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
873         markValueUsed(&VirtReg, ParentVNI);
874         DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
875         return false;
876       }
877     }
878   }
879
880   // Before rematerializing into a register for a single instruction, try to
881   // fold a load into the instruction. That avoids allocating a new register.
882   if (RM.OrigMI->getDesc().canFoldAsLoad() &&
883       foldMemoryOperand(MI, Ops, RM.OrigMI)) {
884     Edit->markRematerialized(RM.ParentVNI);
885     ++NumFoldedLoads;
886     return true;
887   }
888
889   // Alocate a new register for the remat.
890   LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM);
891   NewLI.markNotSpillable();
892
893   // Finally we can rematerialize OrigMI before MI.
894   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
895                                            LIS, TII, TRI);
896   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
897                << *LIS.getInstructionFromIndex(DefIdx));
898
899   // Replace operands
900   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
901     MachineOperand &MO = MI->getOperand(Ops[i]);
902     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
903       MO.setReg(NewLI.reg);
904       MO.setIsKill();
905     }
906   }
907   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
908
909   VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator());
910   NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
911   DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
912   ++NumRemats;
913   return true;
914 }
915
916 /// reMaterializeAll - Try to rematerialize as many uses as possible,
917 /// and trim the live ranges after.
918 void InlineSpiller::reMaterializeAll() {
919   // analyzeSiblingValues has already tested all relevant defining instructions.
920   if (!Edit->anyRematerializable(LIS, TII, AA))
921     return;
922
923   UsedValues.clear();
924
925   // Try to remat before all uses of snippets.
926   bool anyRemat = false;
927   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
928     unsigned Reg = RegsToSpill[i];
929     LiveInterval &LI = LIS.getInterval(Reg);
930     for (MachineRegisterInfo::use_nodbg_iterator
931          RI = MRI.use_nodbg_begin(Reg);
932          MachineInstr *MI = RI.skipInstruction();)
933       anyRemat |= reMaterializeFor(LI, MI);
934   }
935   if (!anyRemat)
936     return;
937
938   // Remove any values that were completely rematted.
939   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
940     unsigned Reg = RegsToSpill[i];
941     LiveInterval &LI = LIS.getInterval(Reg);
942     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
943          I != E; ++I) {
944       VNInfo *VNI = *I;
945       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
946         continue;
947       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
948       MI->addRegisterDead(Reg, &TRI);
949       if (!MI->allDefsAreDead())
950         continue;
951       DEBUG(dbgs() << "All defs dead: " << *MI);
952       DeadDefs.push_back(MI);
953     }
954   }
955
956   // Eliminate dead code after remat. Note that some snippet copies may be
957   // deleted here.
958   if (DeadDefs.empty())
959     return;
960   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
961   Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
962
963   // Get rid of deleted and empty intervals.
964   for (unsigned i = RegsToSpill.size(); i != 0; --i) {
965     unsigned Reg = RegsToSpill[i-1];
966     if (!LIS.hasInterval(Reg)) {
967       RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
968       continue;
969     }
970     LiveInterval &LI = LIS.getInterval(Reg);
971     if (!LI.empty())
972       continue;
973     Edit->eraseVirtReg(Reg, LIS);
974     RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
975   }
976   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
977 }
978
979
980 //===----------------------------------------------------------------------===//
981 //                                 Spilling
982 //===----------------------------------------------------------------------===//
983
984 /// If MI is a load or store of StackSlot, it can be removed.
985 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
986   int FI = 0;
987   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
988   bool IsLoad = InstrReg;
989   if (!IsLoad)
990     InstrReg = TII.isStoreToStackSlot(MI, FI);
991
992   // We have a stack access. Is it the right register and slot?
993   if (InstrReg != Reg || FI != StackSlot)
994     return false;
995
996   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
997   LIS.RemoveMachineInstrFromMaps(MI);
998   MI->eraseFromParent();
999
1000   if (IsLoad) {
1001     ++NumReloadsRemoved;
1002     --NumReloads;
1003   } else {
1004     ++NumSpillsRemoved;
1005     --NumSpills;
1006   }
1007
1008   return true;
1009 }
1010
1011 /// foldMemoryOperand - Try folding stack slot references in Ops into MI.
1012 /// @param MI     Instruction using or defining the current register.
1013 /// @param Ops    Operand indices from readsWritesVirtualRegister().
1014 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
1015 /// @return       True on success, and MI will be erased.
1016 bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
1017                                       const SmallVectorImpl<unsigned> &Ops,
1018                                       MachineInstr *LoadMI) {
1019   bool WasCopy = MI->isCopy();
1020   unsigned ImpReg = 0;
1021
1022   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1023   // operands.
1024   SmallVector<unsigned, 8> FoldOps;
1025   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1026     unsigned Idx = Ops[i];
1027     MachineOperand &MO = MI->getOperand(Idx);
1028     if (MO.isImplicit()) {
1029       ImpReg = MO.getReg();
1030       continue;
1031     }
1032     // FIXME: Teach targets to deal with subregs.
1033     if (MO.getSubReg())
1034       return false;
1035     // We cannot fold a load instruction into a def.
1036     if (LoadMI && MO.isDef())
1037       return false;
1038     // Tied use operands should not be passed to foldMemoryOperand.
1039     if (!MI->isRegTiedToDefOperand(Idx))
1040       FoldOps.push_back(Idx);
1041   }
1042
1043   MachineInstr *FoldMI =
1044                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1045                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1046   if (!FoldMI)
1047     return false;
1048   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1049   if (!LoadMI)
1050     VRM.addSpillSlotUse(StackSlot, FoldMI);
1051   MI->eraseFromParent();
1052
1053   // TII.foldMemoryOperand may have left some implicit operands on the
1054   // instruction.  Strip them.
1055   if (ImpReg)
1056     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1057       MachineOperand &MO = FoldMI->getOperand(i - 1);
1058       if (!MO.isReg() || !MO.isImplicit())
1059         break;
1060       if (MO.getReg() == ImpReg)
1061         FoldMI->RemoveOperand(i - 1);
1062     }
1063
1064   DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
1065                << *FoldMI);
1066   if (!WasCopy)
1067     ++NumFolded;
1068   else if (Ops.front() == 0)
1069     ++NumSpills;
1070   else
1071     ++NumReloads;
1072   return true;
1073 }
1074
1075 /// insertReload - Insert a reload of NewLI.reg before MI.
1076 void InlineSpiller::insertReload(LiveInterval &NewLI,
1077                                  SlotIndex Idx,
1078                                  MachineBasicBlock::iterator MI) {
1079   MachineBasicBlock &MBB = *MI->getParent();
1080   TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
1081                            MRI.getRegClass(NewLI.reg), &TRI);
1082   --MI; // Point to load instruction.
1083   SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
1084   VRM.addSpillSlotUse(StackSlot, MI);
1085   DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
1086   VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
1087                                        LIS.getVNInfoAllocator());
1088   NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
1089   ++NumReloads;
1090 }
1091
1092 /// insertSpill - Insert a spill of NewLI.reg after MI.
1093 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
1094                                 SlotIndex Idx, MachineBasicBlock::iterator MI) {
1095   MachineBasicBlock &MBB = *MI->getParent();
1096   TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
1097                           MRI.getRegClass(NewLI.reg), &TRI);
1098   --MI; // Point to store instruction.
1099   SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
1100   VRM.addSpillSlotUse(StackSlot, MI);
1101   DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
1102   VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
1103   NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
1104   ++NumSpills;
1105 }
1106
1107 /// spillAroundUses - insert spill code around each use of Reg.
1108 void InlineSpiller::spillAroundUses(unsigned Reg) {
1109   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1110   LiveInterval &OldLI = LIS.getInterval(Reg);
1111
1112   // Iterate over instructions using Reg.
1113   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
1114        MachineInstr *MI = RI.skipInstruction();) {
1115
1116     // Debug values are not allowed to affect codegen.
1117     if (MI->isDebugValue()) {
1118       // Modify DBG_VALUE now that the value is in a spill slot.
1119       uint64_t Offset = MI->getOperand(1).getImm();
1120       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1121       DebugLoc DL = MI->getDebugLoc();
1122       if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
1123                                                            Offset, MDPtr, DL)) {
1124         DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1125         MachineBasicBlock *MBB = MI->getParent();
1126         MBB->insert(MBB->erase(MI), NewDV);
1127       } else {
1128         DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
1129         MI->eraseFromParent();
1130       }
1131       continue;
1132     }
1133
1134     // Ignore copies to/from snippets. We'll delete them.
1135     if (SnippetCopies.count(MI))
1136       continue;
1137
1138     // Stack slot accesses may coalesce away.
1139     if (coalesceStackAccess(MI, Reg))
1140       continue;
1141
1142     // Analyze instruction.
1143     bool Reads, Writes;
1144     SmallVector<unsigned, 8> Ops;
1145     tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops);
1146
1147     // Find the slot index where this instruction reads and writes OldLI.
1148     // This is usually the def slot, except for tied early clobbers.
1149     SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
1150     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getUseIndex()))
1151       if (SlotIndex::isSameInstr(Idx, VNI->def))
1152         Idx = VNI->def;
1153
1154     // Check for a sibling copy.
1155     unsigned SibReg = isFullCopyOf(MI, Reg);
1156     if (SibReg && isSibling(SibReg)) {
1157       // This may actually be a copy between snippets.
1158       if (isRegToSpill(SibReg)) {
1159         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1160         SnippetCopies.insert(MI);
1161         continue;
1162       }
1163       if (Writes) {
1164         // Hoist the spill of a sib-reg copy.
1165         if (hoistSpill(OldLI, MI)) {
1166           // This COPY is now dead, the value is already in the stack slot.
1167           MI->getOperand(0).setIsDead();
1168           DeadDefs.push_back(MI);
1169           continue;
1170         }
1171       } else {
1172         // This is a reload for a sib-reg copy. Drop spills downstream.
1173         LiveInterval &SibLI = LIS.getInterval(SibReg);
1174         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1175         // The COPY will fold to a reload below.
1176       }
1177     }
1178
1179     // Attempt to fold memory ops.
1180     if (foldMemoryOperand(MI, Ops))
1181       continue;
1182
1183     // Allocate interval around instruction.
1184     // FIXME: Infer regclass from instruction alone.
1185     LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM);
1186     NewLI.markNotSpillable();
1187
1188     if (Reads)
1189       insertReload(NewLI, Idx, MI);
1190
1191     // Rewrite instruction operands.
1192     bool hasLiveDef = false;
1193     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1194       MachineOperand &MO = MI->getOperand(Ops[i]);
1195       MO.setReg(NewLI.reg);
1196       if (MO.isUse()) {
1197         if (!MI->isRegTiedToDefOperand(Ops[i]))
1198           MO.setIsKill();
1199       } else {
1200         if (!MO.isDead())
1201           hasLiveDef = true;
1202       }
1203     }
1204     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
1205
1206     // FIXME: Use a second vreg if instruction has no tied ops.
1207     if (Writes) {
1208      if (hasLiveDef)
1209       insertSpill(NewLI, OldLI, Idx, MI);
1210      else {
1211        // This instruction defines a dead value.  We don't need to spill it,
1212        // but do create a live range for the dead value.
1213        VNInfo *VNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
1214        NewLI.addRange(LiveRange(Idx, Idx.getNextSlot(), VNI));
1215      }
1216     }
1217
1218     DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
1219   }
1220 }
1221
1222 /// spillAll - Spill all registers remaining after rematerialization.
1223 void InlineSpiller::spillAll() {
1224   // Update LiveStacks now that we are committed to spilling.
1225   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1226     StackSlot = VRM.assignVirt2StackSlot(Original);
1227     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1228     StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator());
1229   } else
1230     StackInt = &LSS.getInterval(StackSlot);
1231
1232   if (Original != Edit->getReg())
1233     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1234
1235   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1236   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1237     StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
1238                                    StackInt->getValNumInfo(0));
1239   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1240
1241   // Spill around uses of all RegsToSpill.
1242   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1243     spillAroundUses(RegsToSpill[i]);
1244
1245   // Hoisted spills may cause dead code.
1246   if (!DeadDefs.empty()) {
1247     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1248     Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
1249   }
1250
1251   // Finally delete the SnippetCopies.
1252   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1253     for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1254          MachineInstr *MI = RI.skipInstruction();) {
1255       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1256       // FIXME: Do this with a LiveRangeEdit callback.
1257       VRM.RemoveMachineInstrFromMaps(MI);
1258       LIS.RemoveMachineInstrFromMaps(MI);
1259       MI->eraseFromParent();
1260     }
1261   }
1262
1263   // Delete all spilled registers.
1264   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1265     Edit->eraseVirtReg(RegsToSpill[i], LIS);
1266 }
1267
1268 void InlineSpiller::spill(LiveRangeEdit &edit) {
1269   ++NumSpilledRanges;
1270   Edit = &edit;
1271   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1272          && "Trying to spill a stack slot.");
1273   // Share a stack slot among all descendants of Original.
1274   Original = VRM.getOriginal(edit.getReg());
1275   StackSlot = VRM.getStackSlot(Original);
1276   StackInt = 0;
1277
1278   DEBUG(dbgs() << "Inline spilling "
1279                << MRI.getRegClass(edit.getReg())->getName()
1280                << ':' << edit.getParent() << "\nFrom original "
1281                << LIS.getInterval(Original) << '\n');
1282   assert(edit.getParent().isSpillable() &&
1283          "Attempting to spill already spilled value.");
1284   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1285
1286   collectRegsToSpill();
1287   analyzeSiblingValues();
1288   reMaterializeAll();
1289
1290   // Remat may handle everything.
1291   if (!RegsToSpill.empty())
1292     spillAll();
1293
1294   Edit->calculateRegClassAndHint(MF, LIS, Loops);
1295 }