Range-for-ify some things in GlobalMerge
[oota-llvm.git] / lib / CodeGen / ExecutionDepsFix.cpp
1 //===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the execution dependency fix pass.
11 //
12 // Some X86 SSE instructions like mov, and, or, xor are available in different
13 // variants for different operand types. These variant instructions are
14 // equivalent, but on Nehalem and newer cpus there is extra latency
15 // transferring data between integer and floating point domains.  ARM cores
16 // have similar issues when they are configured with both VFP and NEON
17 // pipelines.
18 //
19 // This pass changes the variant instructions to minimize domain crossings.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetSubtargetInfo.h"
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "execution-fix"
38
39 /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
40 /// of execution domains.
41 ///
42 /// An open DomainValue represents a set of instructions that can still switch
43 /// execution domain. Multiple registers may refer to the same open
44 /// DomainValue - they will eventually be collapsed to the same execution
45 /// domain.
46 ///
47 /// A collapsed DomainValue represents a single register that has been forced
48 /// into one of more execution domains. There is a separate collapsed
49 /// DomainValue for each register, but it may contain multiple execution
50 /// domains. A register value is initially created in a single execution
51 /// domain, but if we were forced to pay the penalty of a domain crossing, we
52 /// keep track of the fact that the register is now available in multiple
53 /// domains.
54 namespace {
55 struct DomainValue {
56   // Basic reference counting.
57   unsigned Refs;
58
59   // Bitmask of available domains. For an open DomainValue, it is the still
60   // possible domains for collapsing. For a collapsed DomainValue it is the
61   // domains where the register is available for free.
62   unsigned AvailableDomains;
63
64   // Pointer to the next DomainValue in a chain.  When two DomainValues are
65   // merged, Victim.Next is set to point to Victor, so old DomainValue
66   // references can be updated by following the chain.
67   DomainValue *Next;
68
69   // Twiddleable instructions using or defining these registers.
70   SmallVector<MachineInstr*, 8> Instrs;
71
72   // A collapsed DomainValue has no instructions to twiddle - it simply keeps
73   // track of the domains where the registers are already available.
74   bool isCollapsed() const { return Instrs.empty(); }
75
76   // Is domain available?
77   bool hasDomain(unsigned domain) const {
78     assert(domain <
79                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
80            "undefined behavior");
81     return AvailableDomains & (1u << domain);
82   }
83
84   // Mark domain as available.
85   void addDomain(unsigned domain) {
86     AvailableDomains |= 1u << domain;
87   }
88
89   // Restrict to a single domain available.
90   void setSingleDomain(unsigned domain) {
91     AvailableDomains = 1u << domain;
92   }
93
94   // Return bitmask of domains that are available and in mask.
95   unsigned getCommonDomains(unsigned mask) const {
96     return AvailableDomains & mask;
97   }
98
99   // First domain available.
100   unsigned getFirstDomain() const {
101     return countTrailingZeros(AvailableDomains);
102   }
103
104   DomainValue() : Refs(0) { clear(); }
105
106   // Clear this DomainValue and point to next which has all its data.
107   void clear() {
108     AvailableDomains = 0;
109     Next = nullptr;
110     Instrs.clear();
111   }
112 };
113 }
114
115 namespace {
116 /// Information about a live register.
117 struct LiveReg {
118   /// Value currently in this register, or NULL when no value is being tracked.
119   /// This counts as a DomainValue reference.
120   DomainValue *Value;
121
122   /// Instruction that defined this register, relative to the beginning of the
123   /// current basic block.  When a LiveReg is used to represent a live-out
124   /// register, this value is relative to the end of the basic block, so it
125   /// will be a negative number.
126   int Def;
127 };
128 } // anonymous namespace
129
130 namespace {
131 class ExeDepsFix : public MachineFunctionPass {
132   static char ID;
133   SpecificBumpPtrAllocator<DomainValue> Allocator;
134   SmallVector<DomainValue*,16> Avail;
135
136   const TargetRegisterClass *const RC;
137   MachineFunction *MF;
138   const TargetInstrInfo *TII;
139   const TargetRegisterInfo *TRI;
140   std::vector<SmallVector<int, 1>> AliasMap;
141   const unsigned NumRegs;
142   LiveReg *LiveRegs;
143   typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
144   LiveOutMap LiveOuts;
145
146   /// List of undefined register reads in this block in forward order.
147   std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
148
149   /// Storage for register unit liveness.
150   LivePhysRegs LiveRegSet;
151
152   /// Current instruction number.
153   /// The first instruction in each basic block is 0.
154   int CurInstr;
155
156   /// True when the current block has a predecessor that hasn't been visited
157   /// yet.
158   bool SeenUnknownBackEdge;
159
160 public:
161   ExeDepsFix(const TargetRegisterClass *rc)
162     : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
163
164   void getAnalysisUsage(AnalysisUsage &AU) const override {
165     AU.setPreservesAll();
166     MachineFunctionPass::getAnalysisUsage(AU);
167   }
168
169   bool runOnMachineFunction(MachineFunction &MF) override;
170
171   const char *getPassName() const override {
172     return "Execution dependency fix";
173   }
174
175 private:
176   iterator_range<SmallVectorImpl<int>::const_iterator>
177   regIndices(unsigned Reg) const;
178
179   // DomainValue allocation.
180   DomainValue *alloc(int domain = -1);
181   DomainValue *retain(DomainValue *DV) {
182     if (DV) ++DV->Refs;
183     return DV;
184   }
185   void release(DomainValue*);
186   DomainValue *resolve(DomainValue*&);
187
188   // LiveRegs manipulations.
189   void setLiveReg(int rx, DomainValue *DV);
190   void kill(int rx);
191   void force(int rx, unsigned domain);
192   void collapse(DomainValue *dv, unsigned domain);
193   bool merge(DomainValue *A, DomainValue *B);
194
195   void enterBasicBlock(MachineBasicBlock*);
196   void leaveBasicBlock(MachineBasicBlock*);
197   void visitInstr(MachineInstr*);
198   void processDefs(MachineInstr*, bool Kill);
199   void visitSoftInstr(MachineInstr*, unsigned mask);
200   void visitHardInstr(MachineInstr*, unsigned domain);
201   bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
202   void processUndefReads(MachineBasicBlock*);
203 };
204 }
205
206 char ExeDepsFix::ID = 0;
207
208 /// Translate TRI register number to a list of indices into our smaller tables
209 /// of interesting registers.
210 iterator_range<SmallVectorImpl<int>::const_iterator>
211 ExeDepsFix::regIndices(unsigned Reg) const {
212   assert(Reg < AliasMap.size() && "Invalid register");
213   const auto &Entry = AliasMap[Reg];
214   return make_range(Entry.begin(), Entry.end());
215 }
216
217 DomainValue *ExeDepsFix::alloc(int domain) {
218   DomainValue *dv = Avail.empty() ?
219                       new(Allocator.Allocate()) DomainValue :
220                       Avail.pop_back_val();
221   if (domain >= 0)
222     dv->addDomain(domain);
223   assert(dv->Refs == 0 && "Reference count wasn't cleared");
224   assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
225   return dv;
226 }
227
228 /// Release a reference to DV.  When the last reference is released,
229 /// collapse if needed.
230 void ExeDepsFix::release(DomainValue *DV) {
231   while (DV) {
232     assert(DV->Refs && "Bad DomainValue");
233     if (--DV->Refs)
234       return;
235
236     // There are no more DV references. Collapse any contained instructions.
237     if (DV->AvailableDomains && !DV->isCollapsed())
238       collapse(DV, DV->getFirstDomain());
239
240     DomainValue *Next = DV->Next;
241     DV->clear();
242     Avail.push_back(DV);
243     // Also release the next DomainValue in the chain.
244     DV = Next;
245   }
246 }
247
248 /// Follow the chain of dead DomainValues until a live DomainValue is reached.
249 /// Update the referenced pointer when necessary.
250 DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
251   DomainValue *DV = DVRef;
252   if (!DV || !DV->Next)
253     return DV;
254
255   // DV has a chain. Find the end.
256   do DV = DV->Next;
257   while (DV->Next);
258
259   // Update DVRef to point to DV.
260   retain(DV);
261   release(DVRef);
262   DVRef = DV;
263   return DV;
264 }
265
266 /// Set LiveRegs[rx] = dv, updating reference counts.
267 void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
268   assert(unsigned(rx) < NumRegs && "Invalid index");
269   assert(LiveRegs && "Must enter basic block first.");
270
271   if (LiveRegs[rx].Value == dv)
272     return;
273   if (LiveRegs[rx].Value)
274     release(LiveRegs[rx].Value);
275   LiveRegs[rx].Value = retain(dv);
276 }
277
278 // Kill register rx, recycle or collapse any DomainValue.
279 void ExeDepsFix::kill(int rx) {
280   assert(unsigned(rx) < NumRegs && "Invalid index");
281   assert(LiveRegs && "Must enter basic block first.");
282   if (!LiveRegs[rx].Value)
283     return;
284
285   release(LiveRegs[rx].Value);
286   LiveRegs[rx].Value = nullptr;
287 }
288
289 /// Force register rx into domain.
290 void ExeDepsFix::force(int rx, unsigned domain) {
291   assert(unsigned(rx) < NumRegs && "Invalid index");
292   assert(LiveRegs && "Must enter basic block first.");
293   if (DomainValue *dv = LiveRegs[rx].Value) {
294     if (dv->isCollapsed())
295       dv->addDomain(domain);
296     else if (dv->hasDomain(domain))
297       collapse(dv, domain);
298     else {
299       // This is an incompatible open DomainValue. Collapse it to whatever and
300       // force the new value into domain. This costs a domain crossing.
301       collapse(dv, dv->getFirstDomain());
302       assert(LiveRegs[rx].Value && "Not live after collapse?");
303       LiveRegs[rx].Value->addDomain(domain);
304     }
305   } else {
306     // Set up basic collapsed DomainValue.
307     setLiveReg(rx, alloc(domain));
308   }
309 }
310
311 /// Collapse open DomainValue into given domain. If there are multiple
312 /// registers using dv, they each get a unique collapsed DomainValue.
313 void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
314   assert(dv->hasDomain(domain) && "Cannot collapse");
315
316   // Collapse all the instructions.
317   while (!dv->Instrs.empty())
318     TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
319   dv->setSingleDomain(domain);
320
321   // If there are multiple users, give them new, unique DomainValues.
322   if (LiveRegs && dv->Refs > 1)
323     for (unsigned rx = 0; rx != NumRegs; ++rx)
324       if (LiveRegs[rx].Value == dv)
325         setLiveReg(rx, alloc(domain));
326 }
327
328 /// All instructions and registers in B are moved to A, and B is released.
329 bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
330   assert(!A->isCollapsed() && "Cannot merge into collapsed");
331   assert(!B->isCollapsed() && "Cannot merge from collapsed");
332   if (A == B)
333     return true;
334   // Restrict to the domains that A and B have in common.
335   unsigned common = A->getCommonDomains(B->AvailableDomains);
336   if (!common)
337     return false;
338   A->AvailableDomains = common;
339   A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
340
341   // Clear the old DomainValue so we won't try to swizzle instructions twice.
342   B->clear();
343   // All uses of B are referred to A.
344   B->Next = retain(A);
345
346   for (unsigned rx = 0; rx != NumRegs; ++rx) {
347     assert(LiveRegs && "no space allocated for live registers");
348     if (LiveRegs[rx].Value == B)
349       setLiveReg(rx, A);
350   }
351   return true;
352 }
353
354 /// Set up LiveRegs by merging predecessor live-out values.
355 void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
356   // Detect back-edges from predecessors we haven't processed yet.
357   SeenUnknownBackEdge = false;
358
359   // Reset instruction counter in each basic block.
360   CurInstr = 0;
361
362   // Set up UndefReads to track undefined register reads.
363   UndefReads.clear();
364   LiveRegSet.clear();
365
366   // Set up LiveRegs to represent registers entering MBB.
367   if (!LiveRegs)
368     LiveRegs = new LiveReg[NumRegs];
369
370   // Default values are 'nothing happened a long time ago'.
371   for (unsigned rx = 0; rx != NumRegs; ++rx) {
372     LiveRegs[rx].Value = nullptr;
373     LiveRegs[rx].Def = -(1 << 20);
374   }
375
376   // This is the entry block.
377   if (MBB->pred_empty()) {
378     for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
379          e = MBB->livein_end(); i != e; ++i) {
380       for (int rx : regIndices(*i)) {
381         // Treat function live-ins as if they were defined just before the first
382         // instruction.  Usually, function arguments are set up immediately
383         // before the call.
384         LiveRegs[rx].Def = -1;
385       }
386     }
387     DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
388     return;
389   }
390
391   // Try to coalesce live-out registers from predecessors.
392   for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
393        pe = MBB->pred_end(); pi != pe; ++pi) {
394     LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
395     if (fi == LiveOuts.end()) {
396       SeenUnknownBackEdge = true;
397       continue;
398     }
399     assert(fi->second && "Can't have NULL entries");
400
401     for (unsigned rx = 0; rx != NumRegs; ++rx) {
402       // Use the most recent predecessor def for each register.
403       LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
404
405       DomainValue *pdv = resolve(fi->second[rx].Value);
406       if (!pdv)
407         continue;
408       if (!LiveRegs[rx].Value) {
409         setLiveReg(rx, pdv);
410         continue;
411       }
412
413       // We have a live DomainValue from more than one predecessor.
414       if (LiveRegs[rx].Value->isCollapsed()) {
415         // We are already collapsed, but predecessor is not. Force it.
416         unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
417         if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
418           collapse(pdv, Domain);
419         continue;
420       }
421
422       // Currently open, merge in predecessor.
423       if (!pdv->isCollapsed())
424         merge(LiveRegs[rx].Value, pdv);
425       else
426         force(rx, pdv->getFirstDomain());
427     }
428   }
429   DEBUG(dbgs() << "BB#" << MBB->getNumber()
430         << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
431 }
432
433 void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
434   assert(LiveRegs && "Must enter basic block first.");
435   // Save live registers at end of MBB - used by enterBasicBlock().
436   // Also use LiveOuts as a visited set to detect back-edges.
437   bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
438
439   if (First) {
440     // LiveRegs was inserted in LiveOuts.  Adjust all defs to be relative to
441     // the end of this block instead of the beginning.
442     for (unsigned i = 0, e = NumRegs; i != e; ++i)
443       LiveRegs[i].Def -= CurInstr;
444   } else {
445     // Insertion failed, this must be the second pass.
446     // Release all the DomainValues instead of keeping them.
447     for (unsigned i = 0, e = NumRegs; i != e; ++i)
448       release(LiveRegs[i].Value);
449     delete[] LiveRegs;
450   }
451   LiveRegs = nullptr;
452 }
453
454 void ExeDepsFix::visitInstr(MachineInstr *MI) {
455   if (MI->isDebugValue())
456     return;
457
458   // Update instructions with explicit execution domains.
459   std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
460   if (DomP.first) {
461     if (DomP.second)
462       visitSoftInstr(MI, DomP.second);
463     else
464       visitHardInstr(MI, DomP.first);
465   }
466
467   // Process defs to track register ages, and kill values clobbered by generic
468   // instructions.
469   processDefs(MI, !DomP.first);
470 }
471
472 /// \brief Return true to if it makes sense to break dependence on a partial def
473 /// or undef use.
474 bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
475                                        unsigned Pref) {
476   unsigned reg = MI->getOperand(OpIdx).getReg();
477   for (int rx : regIndices(reg)) {
478     unsigned Clearance = CurInstr - LiveRegs[rx].Def;
479     DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
480
481     if (Pref > Clearance) {
482       DEBUG(dbgs() << ": Break dependency.\n");
483       continue;
484     }
485     // The current clearance seems OK, but we may be ignoring a def from a
486     // back-edge.
487     if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
488       DEBUG(dbgs() << ": OK .\n");
489       return false;
490     }
491     // A def from an unprocessed back-edge may make us break this dependency.
492     DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
493     return false;
494   }
495   return true;
496 }
497
498 // Update def-ages for registers defined by MI.
499 // If Kill is set, also kill off DomainValues clobbered by the defs.
500 //
501 // Also break dependencies on partial defs and undef uses.
502 void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
503   assert(!MI->isDebugValue() && "Won't process debug values");
504
505   // Break dependence on undef uses. Do this before updating LiveRegs below.
506   unsigned OpNum;
507   unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
508   if (Pref) {
509     if (shouldBreakDependence(MI, OpNum, Pref))
510       UndefReads.push_back(std::make_pair(MI, OpNum));
511   }
512   const MCInstrDesc &MCID = MI->getDesc();
513   for (unsigned i = 0,
514          e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
515          i != e; ++i) {
516     MachineOperand &MO = MI->getOperand(i);
517     if (!MO.isReg())
518       continue;
519     if (MO.isImplicit())
520       break;
521     if (MO.isUse())
522       continue;
523     for (int rx : regIndices(MO.getReg())) {
524       // This instruction explicitly defines rx.
525       DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
526                    << '\t' << *MI);
527
528       // Check clearance before partial register updates.
529       // Call breakDependence before setting LiveRegs[rx].Def.
530       unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
531       if (Pref && shouldBreakDependence(MI, i, Pref))
532         TII->breakPartialRegDependency(MI, i, TRI);
533
534       // How many instructions since rx was last written?
535       LiveRegs[rx].Def = CurInstr;
536
537       // Kill off domains redefined by generic instructions.
538       if (Kill)
539         kill(rx);
540     }
541   }
542   ++CurInstr;
543 }
544
545 /// \break Break false dependencies on undefined register reads.
546 ///
547 /// Walk the block backward computing precise liveness. This is expensive, so we
548 /// only do it on demand. Note that the occurrence of undefined register reads
549 /// that should be broken is very rare, but when they occur we may have many in
550 /// a single block.
551 void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
552   if (UndefReads.empty())
553     return;
554
555   // Collect this block's live out register units.
556   LiveRegSet.init(TRI);
557   LiveRegSet.addLiveOuts(MBB);
558
559   MachineInstr *UndefMI = UndefReads.back().first;
560   unsigned OpIdx = UndefReads.back().second;
561
562   for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
563     // Update liveness, including the current instruction's defs.
564     LiveRegSet.stepBackward(I);
565
566     if (UndefMI == &I) {
567       if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
568         TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);
569
570       UndefReads.pop_back();
571       if (UndefReads.empty())
572         return;
573
574       UndefMI = UndefReads.back().first;
575       OpIdx = UndefReads.back().second;
576     }
577   }
578 }
579
580 // A hard instruction only works in one domain. All input registers will be
581 // forced into that domain.
582 void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
583   // Collapse all uses.
584   for (unsigned i = mi->getDesc().getNumDefs(),
585                 e = mi->getDesc().getNumOperands(); i != e; ++i) {
586     MachineOperand &mo = mi->getOperand(i);
587     if (!mo.isReg()) continue;
588     for (int rx : regIndices(mo.getReg())) {
589       force(rx, domain);
590     }
591   }
592
593   // Kill all defs and force them.
594   for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
595     MachineOperand &mo = mi->getOperand(i);
596     if (!mo.isReg()) continue;
597     for (int rx : regIndices(mo.getReg())) {
598       kill(rx);
599       force(rx, domain);
600     }
601   }
602 }
603
604 // A soft instruction can be changed to work in other domains given by mask.
605 void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
606   // Bitmask of available domains for this instruction after taking collapsed
607   // operands into account.
608   unsigned available = mask;
609
610   // Scan the explicit use operands for incoming domains.
611   SmallVector<int, 4> used;
612   if (LiveRegs)
613     for (unsigned i = mi->getDesc().getNumDefs(),
614                   e = mi->getDesc().getNumOperands(); i != e; ++i) {
615       MachineOperand &mo = mi->getOperand(i);
616       if (!mo.isReg()) continue;
617       for (int rx : regIndices(mo.getReg())) {
618         DomainValue *dv = LiveRegs[rx].Value;
619         if (dv == nullptr)
620           continue;
621         // Bitmask of domains that dv and available have in common.
622         unsigned common = dv->getCommonDomains(available);
623         // Is it possible to use this collapsed register for free?
624         if (dv->isCollapsed()) {
625           // Restrict available domains to the ones in common with the operand.
626           // If there are no common domains, we must pay the cross-domain
627           // penalty for this operand.
628           if (common) available = common;
629         } else if (common)
630           // Open DomainValue is compatible, save it for merging.
631           used.push_back(rx);
632         else
633           // Open DomainValue is not compatible with instruction. It is useless
634           // now.
635           kill(rx);
636       }
637     }
638
639   // If the collapsed operands force a single domain, propagate the collapse.
640   if (isPowerOf2_32(available)) {
641     unsigned domain = countTrailingZeros(available);
642     TII->setExecutionDomain(mi, domain);
643     visitHardInstr(mi, domain);
644     return;
645   }
646
647   // Kill off any remaining uses that don't match available, and build a list of
648   // incoming DomainValues that we want to merge.
649   SmallVector<LiveReg, 4> Regs;
650   for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
651     int rx = *i;
652     assert(LiveRegs && "no space allocated for live registers");
653     const LiveReg &LR = LiveRegs[rx];
654     // This useless DomainValue could have been missed above.
655     if (!LR.Value->getCommonDomains(available)) {
656       kill(rx);
657       continue;
658     }
659     // Sorted insertion.
660     bool Inserted = false;
661     for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
662            i != e && !Inserted; ++i) {
663       if (LR.Def < i->Def) {
664         Inserted = true;
665         Regs.insert(i, LR);
666       }
667     }
668     if (!Inserted)
669       Regs.push_back(LR);
670   }
671
672   // doms are now sorted in order of appearance. Try to merge them all, giving
673   // priority to the latest ones.
674   DomainValue *dv = nullptr;
675   while (!Regs.empty()) {
676     if (!dv) {
677       dv = Regs.pop_back_val().Value;
678       // Force the first dv to match the current instruction.
679       dv->AvailableDomains = dv->getCommonDomains(available);
680       assert(dv->AvailableDomains && "Domain should have been filtered");
681       continue;
682     }
683
684     DomainValue *Latest = Regs.pop_back_val().Value;
685     // Skip already merged values.
686     if (Latest == dv || Latest->Next)
687       continue;
688     if (merge(dv, Latest))
689       continue;
690
691     // If latest didn't merge, it is useless now. Kill all registers using it.
692     for (int i : used) {
693       assert(LiveRegs && "no space allocated for live registers");
694       if (LiveRegs[i].Value == Latest)
695         kill(i);
696     }
697   }
698
699   // dv is the DomainValue we are going to use for this instruction.
700   if (!dv) {
701     dv = alloc();
702     dv->AvailableDomains = available;
703   }
704   dv->Instrs.push_back(mi);
705
706   // Finally set all defs and non-collapsed uses to dv. We must iterate through
707   // all the operators, including imp-def ones.
708   for (MachineInstr::mop_iterator ii = mi->operands_begin(),
709                                   ee = mi->operands_end();
710                                   ii != ee; ++ii) {
711     MachineOperand &mo = *ii;
712     if (!mo.isReg()) continue;
713     for (int rx : regIndices(mo.getReg())) {
714       if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
715         kill(rx);
716         setLiveReg(rx, dv);
717       }
718     }
719   }
720 }
721
722 bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
723   MF = &mf;
724   TII = MF->getSubtarget().getInstrInfo();
725   TRI = MF->getSubtarget().getRegisterInfo();
726   LiveRegs = nullptr;
727   assert(NumRegs == RC->getNumRegs() && "Bad regclass");
728
729   DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
730                << TRI->getRegClassName(RC) << " **********\n");
731
732   // If no relevant registers are used in the function, we can skip it
733   // completely.
734   bool anyregs = false;
735   const MachineRegisterInfo &MRI = mf.getRegInfo();
736   for (unsigned Reg : *RC) {
737     if (MRI.isPhysRegUsed(Reg)) {
738       anyregs = true;
739       break;
740     }
741   }
742   if (!anyregs) return false;
743
744   // Initialize the AliasMap on the first use.
745   if (AliasMap.empty()) {
746     // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
747     // therefore the LiveRegs array.
748     AliasMap.resize(TRI->getNumRegs());
749     for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
750       for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
751            AI.isValid(); ++AI)
752         AliasMap[*AI].push_back(i);
753   }
754
755   MachineBasicBlock *Entry = MF->begin();
756   ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
757   SmallVector<MachineBasicBlock*, 16> Loops;
758   for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
759          MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
760     MachineBasicBlock *MBB = *MBBI;
761     enterBasicBlock(MBB);
762     if (SeenUnknownBackEdge)
763       Loops.push_back(MBB);
764     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
765         ++I)
766       visitInstr(I);
767     processUndefReads(MBB);
768     leaveBasicBlock(MBB);
769   }
770
771   // Visit all the loop blocks again in order to merge DomainValues from
772   // back-edges.
773   for (unsigned i = 0, e = Loops.size(); i != e; ++i) {
774     MachineBasicBlock *MBB = Loops[i];
775     enterBasicBlock(MBB);
776     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
777         ++I)
778       if (!I->isDebugValue())
779         processDefs(I, false);
780     processUndefReads(MBB);
781     leaveBasicBlock(MBB);
782   }
783
784   // Clear the LiveOuts vectors and collapse any remaining DomainValues.
785   for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
786          MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
787     LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
788     if (FI == LiveOuts.end() || !FI->second)
789       continue;
790     for (unsigned i = 0, e = NumRegs; i != e; ++i)
791       if (FI->second[i].Value)
792         release(FI->second[i].Value);
793     delete[] FI->second;
794   }
795   LiveOuts.clear();
796   UndefReads.clear();
797   Avail.clear();
798   Allocator.DestroyAll();
799
800   return false;
801 }
802
803 FunctionPass *
804 llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
805   return new ExeDepsFix(RC);
806 }