1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/MemoryLocation.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/NoFolder.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Statepoint.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/IR/ValueMap.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/BuildLibCalls.h"
55 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
59 using namespace llvm::PatternMatch;
61 #define DEBUG_TYPE "codegenprepare"
63 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
64 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
65 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
66 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
68 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
70 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
71 "computations were sunk");
72 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
73 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
74 STATISTIC(NumAndsAdded,
75 "Number of and mask instructions added to form ext loads");
76 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
77 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
78 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
79 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
80 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
81 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
83 static cl::opt<bool> DisableBranchOpts(
84 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
85 cl::desc("Disable branch optimizations in CodeGenPrepare"));
88 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
89 cl::desc("Disable GC optimizations in CodeGenPrepare"));
91 static cl::opt<bool> DisableSelectToBranch(
92 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
93 cl::desc("Disable select to branch conversion."));
95 static cl::opt<bool> AddrSinkUsingGEPs(
96 "addr-sink-using-gep", cl::Hidden, cl::init(false),
97 cl::desc("Address sinking in CGP using GEPs."));
99 static cl::opt<bool> EnableAndCmpSinking(
100 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
101 cl::desc("Enable sinkinig and/cmp into branches."));
103 static cl::opt<bool> DisableStoreExtract(
104 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
105 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
107 static cl::opt<bool> StressStoreExtract(
108 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
109 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
111 static cl::opt<bool> DisableExtLdPromotion(
112 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
113 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
116 static cl::opt<bool> StressExtLdPromotion(
117 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
118 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
119 "optimization in CodeGenPrepare"));
122 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
123 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
124 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
125 class TypePromotionTransaction;
127 class CodeGenPrepare : public FunctionPass {
128 const TargetMachine *TM;
129 const TargetLowering *TLI;
130 const TargetTransformInfo *TTI;
131 const TargetLibraryInfo *TLInfo;
133 /// As we scan instructions optimizing them, this is the next instruction
134 /// to optimize. Transforms that can invalidate this should update it.
135 BasicBlock::iterator CurInstIterator;
137 /// Keeps track of non-local addresses that have been sunk into a block.
138 /// This allows us to avoid inserting duplicate code for blocks with
139 /// multiple load/stores of the same address.
140 ValueMap<Value*, Value*> SunkAddrs;
142 /// Keeps track of all instructions inserted for the current function.
143 SetOfInstrs InsertedInsts;
144 /// Keeps track of the type of the related instruction before their
145 /// promotion for the current function.
146 InstrToOrigTy PromotedInsts;
148 /// True if CFG is modified in any way.
151 /// True if optimizing for size.
154 /// DataLayout for the Function being processed.
155 const DataLayout *DL;
158 static char ID; // Pass identification, replacement for typeid
159 explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
160 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
161 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
163 bool runOnFunction(Function &F) override;
165 const char *getPassName() const override { return "CodeGen Prepare"; }
167 void getAnalysisUsage(AnalysisUsage &AU) const override {
168 AU.addPreserved<DominatorTreeWrapperPass>();
169 AU.addRequired<TargetLibraryInfoWrapperPass>();
170 AU.addRequired<TargetTransformInfoWrapperPass>();
174 bool eliminateFallThrough(Function &F);
175 bool eliminateMostlyEmptyBlocks(Function &F);
176 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
177 void eliminateMostlyEmptyBlock(BasicBlock *BB);
178 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
179 bool optimizeInst(Instruction *I, bool& ModifiedDT);
180 bool optimizeMemoryInst(Instruction *I, Value *Addr,
181 Type *AccessTy, unsigned AS);
182 bool optimizeInlineAsmInst(CallInst *CS);
183 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
184 bool moveExtToFormExtLoad(Instruction *&I);
185 bool optimizeExtUses(Instruction *I);
186 bool optimizeLoadExt(LoadInst *I);
187 bool optimizeSelectInst(SelectInst *SI);
188 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
189 bool optimizeSwitchInst(SwitchInst *CI);
190 bool optimizeExtractElementInst(Instruction *Inst);
191 bool dupRetToEnableTailCallOpts(BasicBlock *BB);
192 bool placeDbgValues(Function &F);
193 bool sinkAndCmp(Function &F);
194 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
196 const SmallVectorImpl<Instruction *> &Exts,
197 unsigned CreatedInstCost);
198 bool splitBranchCondition(Function &F);
199 bool simplifyOffsetableRelocate(Instruction &I);
200 void stripInvariantGroupMetadata(Instruction &I);
204 char CodeGenPrepare::ID = 0;
205 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
206 "Optimize for code generation", false, false)
208 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
209 return new CodeGenPrepare(TM);
214 bool StoreAddressDependOnValue(StoreInst* SI, Value* DepVal);
215 Value* GetUntaintedAddress(Value* CurrentAddress);
217 // The depth we trace down a variable to look for its dependence set.
218 const unsigned kDependenceDepth = 4;
220 // Recursively looks for variables that 'Val' depends on at the given depth
221 // 'Depth', and adds them in 'DepSet'. If 'InsertOnlyLeafNodes' is true, only
222 // inserts the leaf node values; otherwise, all visited nodes are included in
223 // 'DepSet'. Note that constants will be ignored.
224 template <typename SetType>
225 void recursivelyFindDependence(SetType* DepSet, Value* Val,
226 bool InsertOnlyLeafNodes = false,
227 unsigned Depth = kDependenceDepth) {
228 if (Val == nullptr) {
231 if (!InsertOnlyLeafNodes && !isa<Constant>(Val)) {
235 // Cannot go deeper. Insert the leaf nodes.
236 if (InsertOnlyLeafNodes && !isa<Constant>(Val)) {
242 // Go one step further to explore the dependence of the operands.
243 Instruction* I = nullptr;
244 if ((I = dyn_cast<Instruction>(Val))) {
245 if (isa<LoadInst>(I)) {
246 // A load is considerd the leaf load of the dependence tree. Done.
249 } else if (I->isBinaryOp()) {
250 BinaryOperator* I = dyn_cast<BinaryOperator>(Val);
251 Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
252 recursivelyFindDependence(DepSet, Op0, Depth - 1);
253 recursivelyFindDependence(DepSet, Op1, Depth - 1);
254 } else if (I->isCast()) {
255 Value* Op0 = I->getOperand(0);
256 recursivelyFindDependence(DepSet, Op0, Depth - 1);
257 } else if (I->getOpcode() == Instruction::Select) {
258 Value* Op0 = I->getOperand(0);
259 Value* Op1 = I->getOperand(1);
260 Value* Op2 = I->getOperand(2);
261 recursivelyFindDependence(DepSet, Op0, Depth - 1);
262 recursivelyFindDependence(DepSet, Op1, Depth - 1);
263 recursivelyFindDependence(DepSet, Op2, Depth - 1);
264 } else if (I->getOpcode() == Instruction::GetElementPtr) {
265 for (unsigned i = 0; i < I->getNumOperands(); i++) {
266 recursivelyFindDependence(DepSet, I->getOperand(i), Depth - 1);
268 } else if (I->getOpcode() == Instruction::Store) {
269 auto* SI = dyn_cast<StoreInst>(Val);
270 recursivelyFindDependence(DepSet, SI->getPointerOperand(), Depth - 1);
271 recursivelyFindDependence(DepSet, SI->getValueOperand(), Depth - 1);
273 Value* Op0 = nullptr;
274 Value* Op1 = nullptr;
275 switch (I->getOpcode()) {
276 case Instruction::ICmp:
277 case Instruction::FCmp: {
278 Op0 = I->getOperand(0);
279 Op1 = I->getOperand(1);
280 recursivelyFindDependence(DepSet, Op0, Depth - 1);
281 recursivelyFindDependence(DepSet, Op1, Depth - 1);
285 // Be conservative. Add it and be done with it.
291 } else if (isa<Constant>(Val)) {
292 // Not interested in constant values. Done.
295 // Be conservative. Add it and be done with it.
301 // Helper function to create a Cast instruction.
302 Value* createCast(IRBuilder<true, NoFolder>& Builder, Value* DepVal,
303 Type* TargetIntegerType) {
304 Instruction::CastOps CastOp = Instruction::BitCast;
305 switch (DepVal->getType()->getTypeID()) {
306 case Type::IntegerTyID: {
307 CastOp = Instruction::SExt;
310 case Type::FloatTyID:
311 case Type::DoubleTyID: {
312 CastOp = Instruction::FPToSI;
315 case Type::PointerTyID: {
316 CastOp = Instruction::PtrToInt;
322 return Builder.CreateCast(CastOp, DepVal, TargetIntegerType);
325 // Given a value, if it's a tainted address, this function returns the
326 // instruction that ORs the "dependence value" with the "original address".
327 // Otherwise, returns nullptr. This instruction is the first OR instruction
328 // where one of its operand is an AND instruction with an operand being 0.
330 // E.g., it returns '%4 = or i32 %3, %2' given 'CurrentAddress' is '%5'.
331 // %0 = load i32, i32* @y, align 4, !tbaa !1
332 // %cmp = icmp ne i32 %0, 42 // <== this is like the condition
333 // %1 = sext i1 %cmp to i32
334 // %2 = ptrtoint i32* @x to i32
335 // %3 = and i32 %1, 0
336 // %4 = or i32 %3, %2
337 // %5 = inttoptr i32 %4 to i32*
338 // store i32 1, i32* %5, align 4
339 Instruction* getOrAddress(Value* CurrentAddress) {
340 // Is it a cast from integer to pointer type.
341 Instruction* OrAddress = nullptr;
342 Instruction* AndDep = nullptr;
343 Instruction* CastToInt = nullptr;
344 Value* ActualAddress = nullptr;
345 Constant* ZeroConst = nullptr;
347 const Instruction* CastToPtr = dyn_cast<Instruction>(CurrentAddress);
348 if (CastToPtr && CastToPtr->getOpcode() == Instruction::IntToPtr) {
349 // Is it an OR instruction: %1 = or %and, %actualAddress.
350 if ((OrAddress = dyn_cast<Instruction>(CastToPtr->getOperand(0))) &&
351 OrAddress->getOpcode() == Instruction::Or) {
352 // The first operand should be and AND instruction.
353 AndDep = dyn_cast<Instruction>(OrAddress->getOperand(0));
354 if (AndDep && AndDep->getOpcode() == Instruction::And) {
355 // Also make sure its first operand of the "AND" is 0, or the "AND" is
356 // marked explicitly by "NoInstCombine".
357 if ((ZeroConst = dyn_cast<Constant>(AndDep->getOperand(1))) &&
358 ZeroConst->isNullValue()) {
364 // Looks like it's not been tainted.
368 // Given a value, if it's a tainted address, this function returns the
369 // instruction that taints the "dependence value". Otherwise, returns nullptr.
370 // This instruction is the last AND instruction where one of its operand is 0.
371 // E.g., it returns '%3' given 'CurrentAddress' is '%5'.
372 // %0 = load i32, i32* @y, align 4, !tbaa !1
373 // %cmp = icmp ne i32 %0, 42 // <== this is like the condition
374 // %1 = sext i1 %cmp to i32
375 // %2 = ptrtoint i32* @x to i32
376 // %3 = and i32 %1, 0
377 // %4 = or i32 %3, %2
378 // %5 = inttoptr i32 %4 to i32*
379 // store i32 1, i32* %5, align 4
380 Instruction* getAndDependence(Value* CurrentAddress) {
381 // If 'CurrentAddress' is tainted, get the OR instruction.
382 auto* OrAddress = getOrAddress(CurrentAddress);
383 if (OrAddress == nullptr) {
387 // No need to check the operands.
388 auto* AndDepInst = dyn_cast<Instruction>(OrAddress->getOperand(0));
393 // Given a value, if it's a tainted address, this function returns
394 // the "dependence value", which is the first operand in the AND instruction.
395 // E.g., it returns '%1' given 'CurrentAddress' is '%5'.
396 // %0 = load i32, i32* @y, align 4, !tbaa !1
397 // %cmp = icmp ne i32 %0, 42 // <== this is like the condition
398 // %1 = sext i1 %cmp to i32
399 // %2 = ptrtoint i32* @x to i32
400 // %3 = and i32 %1, 0
401 // %4 = or i32 %3, %2
402 // %5 = inttoptr i32 %4 to i32*
403 // store i32 1, i32* %5, align 4
404 Value* getDependence(Value* CurrentAddress) {
405 auto* AndInst = getAndDependence(CurrentAddress);
406 if (AndInst == nullptr) {
409 return AndInst->getOperand(0);
412 // Given an address that has been tainted, returns the only condition it depends
413 // on, if any; otherwise, returns nullptr.
414 Value* getConditionDependence(Value* Address) {
415 auto* Dep = getDependence(Address);
416 if (Dep == nullptr) {
417 // 'Address' has not been dependence-tainted.
421 Value* Operand = Dep;
423 auto* Inst = dyn_cast<Instruction>(Operand);
424 if (Inst == nullptr) {
425 // Non-instruction type does not have condition dependence.
428 if (Inst->getOpcode() == Instruction::ICmp) {
431 if (Inst->getNumOperands() != 1) {
434 Operand = Inst->getOperand(0);
440 // Conservatively decides whether the dependence set of 'Val1' includes the
441 // dependence set of 'Val2'. If 'ExpandSecondValue' is false, we do not expand
442 // 'Val2' and use that single value as its dependence set.
443 // If it returns true, it means the dependence set of 'Val1' includes that of
444 // 'Val2'; otherwise, it only means we cannot conclusively decide it.
445 bool dependenceSetInclusion(Value* Val1, Value* Val2,
446 int Val1ExpandLevel = 2 * kDependenceDepth,
447 int Val2ExpandLevel = kDependenceDepth) {
448 typedef SmallSet<Value*, 8> IncludingSet;
449 typedef SmallSet<Value*, 4> IncludedSet;
451 IncludingSet DepSet1;
453 // Look for more depths for the including set.
454 recursivelyFindDependence(&DepSet1, Val1, false /*Insert all visited nodes*/,
456 recursivelyFindDependence(&DepSet2, Val2, true /*Only insert leaf nodes*/,
459 auto set_inclusion = [](IncludingSet FullSet, IncludedSet Subset) {
460 for (auto* Dep : Subset) {
461 if (0 == FullSet.count(Dep)) {
467 bool inclusion = set_inclusion(DepSet1, DepSet2);
468 DEBUG(dbgs() << "[dependenceSetInclusion]: " << inclusion << "\n");
469 DEBUG(dbgs() << "Including set for: " << *Val1 << "\n");
470 DEBUG(for (const auto* Dep : DepSet1) { dbgs() << "\t\t" << *Dep << "\n"; });
471 DEBUG(dbgs() << "Included set for: " << *Val2 << "\n");
472 DEBUG(for (const auto* Dep : DepSet2) { dbgs() << "\t\t" << *Dep << "\n"; });
477 // Recursively iterates through the operands spawned from 'DepVal'. If there
478 // exists a single value that 'DepVal' only depends on, we call that value the
479 // root dependence of 'DepVal' and return it. Otherwise, return 'DepVal'.
480 Value* getRootDependence(Value* DepVal) {
481 SmallSet<Value*, 8> DepSet;
482 for (unsigned depth = kDependenceDepth; depth > 0; --depth) {
483 recursivelyFindDependence(&DepSet, DepVal, true /*Only insert leaf nodes*/,
485 if (DepSet.size() == 1) {
486 return *DepSet.begin();
493 // This function actually taints 'DepVal' to the address to 'SI'. If the
495 // of 'SI' already depends on whatever 'DepVal' depends on, this function
496 // doesn't do anything and returns false. Otherwise, returns true.
498 // This effect forces the store and any stores that comes later to depend on
499 // 'DepVal'. For example, we have a condition "cond", and a store instruction
500 // "s: STORE addr, val". If we want "s" (and any later store) to depend on
501 // "cond", we do the following:
502 // %conv = sext i1 %cond to i32
503 // %addrVal = ptrtoint i32* %addr to i32
504 // %andCond = and i32 conv, 0;
505 // %orAddr = or i32 %andCond, %addrVal;
506 // %NewAddr = inttoptr i32 %orAddr to i32*;
508 // This is a more concrete example:
510 // %0 = load i32, i32* @y, align 4, !tbaa !1
511 // %cmp = icmp ne i32 %0, 42 // <== this is like the condition
512 // %1 = sext i1 %cmp to i32
513 // %2 = ptrtoint i32* @x to i32
514 // %3 = and i32 %1, 0
515 // %4 = or i32 %3, %2
516 // %5 = inttoptr i32 %4 to i32*
517 // store i32 1, i32* %5, align 4
518 bool taintStoreAddress(StoreInst* SI, Value* DepVal,
519 const char* calling_func = __builtin_FUNCTION()) {
520 DEBUG(dbgs() << "Called from " << calling_func << '\n');
521 // Set the insertion point right after the 'DepVal'.
522 Instruction* Inst = nullptr;
523 IRBuilder<true, NoFolder> Builder(SI);
524 BasicBlock* BB = SI->getParent();
525 Value* Address = SI->getPointerOperand();
526 Type* TargetIntegerType =
527 IntegerType::get(Address->getContext(),
528 BB->getModule()->getDataLayout().getPointerSizeInBits());
530 // Does SI's address already depends on whatever 'DepVal' depends on?
531 if (StoreAddressDependOnValue(SI, DepVal)) {
535 // Figure out if there's a root variable 'DepVal' depends on. For example, we
536 // can extract "getelementptr inbounds %struct, %struct* %0, i64 0, i32 123"
537 // to be "%struct* %0" since all other operands are constant.
538 DepVal = getRootDependence(DepVal);
540 // Is this already a dependence-tainted store?
541 Value* OldDep = getDependence(Address);
543 // The address of 'SI' has already been tainted. Just need to absorb the
544 // DepVal to the existing dependence in the address of SI.
545 Instruction* AndDep = getAndDependence(Address);
546 IRBuilder<true, NoFolder> Builder(AndDep);
547 Value* NewDep = nullptr;
548 if (DepVal->getType() == AndDep->getType()) {
549 NewDep = Builder.CreateAnd(OldDep, DepVal);
551 NewDep = Builder.CreateAnd(
552 OldDep, createCast(Builder, DepVal, TargetIntegerType));
555 auto* NewDepInst = dyn_cast<Instruction>(NewDep);
557 // Use the new AND instruction as the dependence
558 AndDep->setOperand(0, NewDep);
562 // SI's address has not been tainted. Now taint it with 'DepVal'.
563 Value* CastDepToInt = createCast(Builder, DepVal, TargetIntegerType);
564 Value* PtrToIntCast = Builder.CreatePtrToInt(Address, TargetIntegerType);
566 Builder.CreateAnd(CastDepToInt, ConstantInt::get(TargetIntegerType, 0));
567 auto AndInst = dyn_cast<Instruction>(AndDepVal);
568 // XXX-comment: The original IR InstCombiner would change our and instruction
569 // to a select and then the back end optimize the condition out. We attach a
570 // flag to instructions and set it here to inform the InstCombiner to not to
571 // touch this and instruction at all.
572 Value* OrAddr = Builder.CreateOr(AndDepVal, PtrToIntCast);
573 Value* NewAddr = Builder.CreateIntToPtr(OrAddr, Address->getType());
575 DEBUG(dbgs() << "[taintStoreAddress]\n"
576 << "Original store: " << *SI << '\n');
577 SI->setOperand(1, NewAddr);
580 DEBUG(dbgs() << "\tTargetIntegerType: " << *TargetIntegerType << '\n'
581 << "\tCast dependence value to integer: " << *CastDepToInt
583 << "\tCast address to integer: " << *PtrToIntCast << '\n'
584 << "\tAnd dependence value: " << *AndDepVal << '\n'
585 << "\tOr address: " << *OrAddr << '\n'
586 << "\tCast or instruction to address: " << *NewAddr << "\n\n");
591 // Looks for the previous store in the if block --- 'BrBB', which makes the
592 // speculative store 'StoreToHoist' safe.
593 Value* getSpeculativeStoreInPrevBB(StoreInst* StoreToHoist, BasicBlock* BrBB) {
594 assert(StoreToHoist && "StoreToHoist must be a real store");
596 Value* StorePtr = StoreToHoist->getPointerOperand();
598 // Look for a store to the same pointer in BrBB.
599 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), RE = BrBB->rend();
601 Instruction* CurI = &*RI;
603 StoreInst* SI = dyn_cast<StoreInst>(CurI);
604 // Found the previous store make sure it stores to the same location.
605 // XXX-update: If the previous store's original untainted address are the
606 // same as 'StorePtr', we are also good to hoist the store.
607 if (SI && (SI->getPointerOperand() == StorePtr ||
608 GetUntaintedAddress(SI->getPointerOperand()) == StorePtr)) {
609 // Found the previous store, return its value operand.
615 "We should not reach here since this store is safe to speculate");
618 // XXX-comment: Returns true if it changes the code, false otherwise (the branch
619 // condition already depends on 'DepVal'.
620 bool taintConditionalBranch(BranchInst* BI, Value* DepVal) {
621 assert(BI->isConditional());
622 auto* Cond = BI->getOperand(0);
623 if (dependenceSetInclusion(Cond, DepVal)) {
624 // The dependence/ordering is self-evident.
628 IRBuilder<true, NoFolder> Builder(BI);
630 Builder.CreateAnd(DepVal, ConstantInt::get(DepVal->getType(), 0));
632 Builder.CreateTrunc(AndDep, IntegerType::get(DepVal->getContext(), 1));
633 auto* OrCond = Builder.CreateOr(TruncAndDep, Cond);
634 BI->setOperand(0, OrCond);
637 DEBUG(dbgs() << "\tTainted branch condition:\n" << *BI->getParent());
642 bool ConditionalBranchDependsOnValue(BranchInst* BI, Value* DepVal) {
643 assert(BI->isConditional());
644 auto* Cond = BI->getOperand(0);
645 return dependenceSetInclusion(Cond, DepVal);
648 // XXX-update: For a relaxed load 'LI', find the first immediate atomic store or
649 // the first conditional branch. Returns nullptr if there's no such immediately
650 // following store/branch instructions, which we can only enforce the load with
652 Instruction* findFirstStoreCondBranchInst(LoadInst* LI) {
653 // In some situations, relaxed loads can be left as is:
654 // 1. The relaxed load is used to calculate the address of the immediate
656 // 2. The relaxed load is used as a condition in the immediate following
657 // condition, and there are no stores in between. This is actually quite
659 // int r1 = x.load(relaxed);
661 // y.store(1, relaxed);
663 // However, in this function, we don't deal with them directly. Instead, we
664 // just find the immediate following store/condition branch and return it.
666 auto* BB = LI->getParent();
668 auto BBI = BasicBlock::iterator(LI);
670 for (; BBI != BE; BBI++) {
671 auto* Inst = dyn_cast<Instruction>(&*BBI);
672 if (Inst == nullptr) {
675 if (Inst->getOpcode() == Instruction::Store) {
677 } else if (Inst->getOpcode() == Instruction::Br) {
678 auto* BrInst = dyn_cast<BranchInst>(Inst);
679 if (BrInst->isConditional()) {
689 // XXX-comment: Returns whether the code has been changed.
690 bool taintMonotonicLoads(const SmallVector<LoadInst*, 1>& MonotonicLoadInsts) {
691 bool Changed = false;
692 for (auto* LI : MonotonicLoadInsts) {
693 auto* FirstInst = findFirstStoreCondBranchInst(LI);
694 if (FirstInst == nullptr) {
695 // We don't seem to be able to taint a following store/conditional branch
696 // instruction. Simply make it acquire.
697 DEBUG(dbgs() << "[RelaxedLoad]: Transformed to acquire load\n"
699 LI->setOrdering(Acquire);
703 // Taint 'FirstInst', which could be a store or a condition branch
705 if (FirstInst->getOpcode() == Instruction::Store) {
706 Changed |= taintStoreAddress(dyn_cast<StoreInst>(FirstInst), LI);
707 } else if (FirstInst->getOpcode() == Instruction::Br) {
708 Changed |= taintConditionalBranch(dyn_cast<BranchInst>(FirstInst), LI);
710 assert(false && "findFirstStoreCondBranchInst() should return a "
711 "store/condition branch instruction");
717 // Inserts a fake conditional branch right after the instruction 'SplitInst',
718 // and the branch condition is 'Condition'. 'SplitInst' will be placed in the
719 // newly created block.
720 void AddFakeConditionalBranch(Instruction* SplitInst, Value* Condition) {
721 auto* BB = SplitInst->getParent();
722 TerminatorInst* ThenTerm = nullptr;
723 TerminatorInst* ElseTerm = nullptr;
724 SplitBlockAndInsertIfThenElse(Condition, SplitInst, &ThenTerm, &ElseTerm);
725 assert(ThenTerm && ElseTerm &&
726 "Then/Else terminators cannot be empty after basic block spliting");
727 auto* ThenBB = ThenTerm->getParent();
728 auto* ElseBB = ElseTerm->getParent();
729 auto* TailBB = ThenBB->getSingleSuccessor();
730 assert(TailBB && "Tail block cannot be empty after basic block spliting");
732 ThenBB->disableCanEliminateBlock();
733 ThenBB->disableCanEliminateBlock();
734 TailBB->disableCanEliminateBlock();
735 ThenBB->setName(BB->getName() + "Then.Fake");
736 ElseBB->setName(BB->getName() + "Else.Fake");
737 DEBUG(dbgs() << "Add fake conditional branch:\n"
739 << *ThenBB << "Else Block:\n"
743 // Returns true if the code is changed, and false otherwise.
744 void TaintRelaxedLoads(LoadInst* LI) {
745 // For better performance, we can add a "AND X 0" instruction before the
747 auto* FirstInst = findFirstStoreCondBranchInst(LI);
748 Instruction* InsertPoint = nullptr;
749 if (FirstInst == nullptr) {
750 InsertPoint = LI->getParent()->getTerminator();
751 InsertPoint = LI->getNextNode();
753 InsertPoint = LI->getNextNode();
755 IRBuilder<true, NoFolder> Builder(InsertPoint);
756 auto* AndZero = dyn_cast<Instruction>(
757 Builder.CreateAnd(LI, Constant::getNullValue(LI->getType())));
758 auto* FakeCondition = dyn_cast<Instruction>(Builder.CreateICmp(
759 CmpInst::ICMP_NE, AndZero, Constant::getNullValue(LI->getType())));
760 AddFakeConditionalBranch(FakeCondition->getNextNode(), FakeCondition);
763 // XXX-comment: Returns whether the code has been changed.
764 bool AddFakeConditionalBranchAfterMonotonicLoads(
765 const SmallVector<LoadInst*, 1>& MonotonicLoadInsts) {
766 bool Changed = false;
767 for (auto* LI : MonotonicLoadInsts) {
768 auto* FirstInst = findFirstStoreCondBranchInst(LI);
769 if (FirstInst != nullptr) {
770 if (FirstInst->getOpcode() == Instruction::Store) {
771 if (StoreAddressDependOnValue(dyn_cast<StoreInst>(FirstInst), LI)) {
774 } else if (FirstInst->getOpcode() == Instruction::Br &&
775 isa<BranchInst>(FirstInst)) {
776 if (ConditionalBranchDependsOnValue(dyn_cast<BranchInst>(FirstInst),
781 dbgs() << "FirstInst=" << *FirstInst << "\n";
782 assert(false && "findFirstStoreCondBranchInst() should return a "
783 "store/condition branch instruction");
787 // We really need to process the relaxed load now.
788 StoreInst* SI = nullptr;;
789 if (FirstInst && (SI = dyn_cast<StoreInst>(FirstInst))) {
790 // For immediately coming stores, taint the address of the store.
791 taintStoreAddress(SI, LI);
793 // For immediately coming branch, directly add a fake branch.
794 TaintRelaxedLoads(LI);
801 /**** Implementations of public methods for dependence tainting ****/
802 Value* GetUntaintedAddress(Value* CurrentAddress) {
803 auto* OrAddress = getOrAddress(CurrentAddress);
804 if (OrAddress == nullptr) {
805 // Is it tainted by a select instruction?
806 auto* Inst = dyn_cast<Instruction>(CurrentAddress);
807 if (nullptr != Inst && Inst->getOpcode() == Instruction::Select) {
808 // A selection instruction.
809 if (Inst->getOperand(1) == Inst->getOperand(2)) {
810 return Inst->getOperand(1);
814 return CurrentAddress;
816 Value* ActualAddress = nullptr;
818 auto* CastToInt = dyn_cast<Instruction>(OrAddress->getOperand(1));
819 if (CastToInt && CastToInt->getOpcode() == Instruction::PtrToInt) {
820 return CastToInt->getOperand(0);
822 // This should be a IntToPtr constant expression.
823 ConstantExpr* PtrToIntExpr =
824 dyn_cast<ConstantExpr>(OrAddress->getOperand(1));
825 if (PtrToIntExpr && PtrToIntExpr->getOpcode() == Instruction::PtrToInt) {
826 return PtrToIntExpr->getOperand(0);
830 // Looks like it's not been dependence-tainted. Returns itself.
831 return CurrentAddress;
834 MemoryLocation GetUntaintedMemoryLocation(StoreInst* SI) {
836 SI->getAAMetadata(AATags);
837 const auto& DL = SI->getModule()->getDataLayout();
838 const auto* OriginalAddr = GetUntaintedAddress(SI->getPointerOperand());
839 DEBUG(if (OriginalAddr != SI->getPointerOperand()) {
840 dbgs() << "[GetUntaintedMemoryLocation]\n"
841 << "Storing address: " << *SI->getPointerOperand()
842 << "\nUntainted address: " << *OriginalAddr << "\n";
844 return MemoryLocation(OriginalAddr,
845 DL.getTypeStoreSize(SI->getValueOperand()->getType()),
849 bool TaintDependenceToStore(StoreInst* SI, Value* DepVal) {
850 if (dependenceSetInclusion(SI, DepVal)) {
854 bool tainted = taintStoreAddress(SI, DepVal);
859 bool TaintDependenceToStoreAddress(StoreInst* SI, Value* DepVal) {
860 if (dependenceSetInclusion(SI->getPointerOperand(), DepVal)) {
864 bool tainted = taintStoreAddress(SI, DepVal);
869 bool CompressTaintedStore(BasicBlock* BB) {
870 // This function looks for windows of adajcent stores in 'BB' that satisfy the
871 // following condition (and then do optimization):
872 // *Addr(d1) = v1, d1 is a condition and is the only dependence the store's
873 // address depends on && Dep(v1) includes Dep(d1);
874 // *Addr(d2) = v2, d2 is a condition and is the only dependnece the store's
875 // address depends on && Dep(v2) includes Dep(d2) &&
876 // Dep(d2) includes Dep(d1);
878 // *Addr(dN) = vN, dN is a condition and is the only dependence the store's
879 // address depends on && Dep(dN) includes Dep(d"N-1").
881 // As a result, Dep(dN) includes [Dep(d1) V ... V Dep(d"N-1")], so we can
882 // safely transform the above to the following. In between these stores, we
883 // can omit untainted stores to the same address 'Addr' since they internally
884 // have dependence on the previous stores on the same address.
889 for (auto BI = BB->begin(), BE = BB->end(); BI != BE; BI++) {
890 // Look for the first store in such a window of adajacent stores.
891 auto* FirstSI = dyn_cast<StoreInst>(&*BI);
896 // The first store in the window must be tainted.
897 auto* UntaintedAddress = GetUntaintedAddress(FirstSI->getPointerOperand());
898 if (UntaintedAddress == FirstSI->getPointerOperand()) {
902 // The first store's address must directly depend on and only depend on a
904 auto* FirstSIDepCond = getConditionDependence(FirstSI->getPointerOperand());
905 if (nullptr == FirstSIDepCond) {
909 // Dep(first store's storing value) includes Dep(tainted dependence).
910 if (!dependenceSetInclusion(FirstSI->getValueOperand(), FirstSIDepCond)) {
914 // Look for subsequent stores to the same address that satisfy the condition
915 // of "compressing the dependence".
916 SmallVector<StoreInst*, 8> AdajacentStores;
917 AdajacentStores.push_back(FirstSI);
918 auto BII = BasicBlock::iterator(FirstSI);
919 for (BII++; BII != BE; BII++) {
920 auto* CurrSI = dyn_cast<StoreInst>(&*BII);
922 if (BII->mayHaveSideEffects()) {
923 // Be conservative. Instructions with side effects are similar to
930 auto* OrigAddress = GetUntaintedAddress(CurrSI->getPointerOperand());
931 auto* CurrSIDepCond = getConditionDependence(CurrSI->getPointerOperand());
932 // All other stores must satisfy either:
933 // A. 'CurrSI' is an untainted store to the same address, or
934 // B. the combination of the following 5 subconditions:
936 // 2. Untainted address is the same as the group's address;
937 // 3. The address is tainted with a sole value which is a condition;
938 // 4. The storing value depends on the condition in 3.
939 // 5. The condition in 3 depends on the previous stores dependence
942 // Condition A. Should ignore this store directly.
943 if (OrigAddress == CurrSI->getPointerOperand() &&
944 OrigAddress == UntaintedAddress) {
947 // Check condition B.
948 Value* Cond = nullptr;
949 if (OrigAddress == CurrSI->getPointerOperand() ||
950 OrigAddress != UntaintedAddress || CurrSIDepCond == nullptr ||
951 !dependenceSetInclusion(CurrSI->getValueOperand(), CurrSIDepCond)) {
952 // Check condition 1, 2, 3 & 4.
956 // Check condition 5.
957 StoreInst* PrevSI = AdajacentStores[AdajacentStores.size() - 1];
958 auto* PrevSIDepCond = getConditionDependence(PrevSI->getPointerOperand());
959 assert(PrevSIDepCond &&
960 "Store in the group must already depend on a condtion");
961 if (!dependenceSetInclusion(CurrSIDepCond, PrevSIDepCond)) {
965 AdajacentStores.push_back(CurrSI);
968 if (AdajacentStores.size() == 1) {
969 // The outer loop should keep looking from the next store.
973 // Now we have such a group of tainted stores to the same address.
974 DEBUG(dbgs() << "[CompressTaintedStore]\n");
975 DEBUG(dbgs() << "Original BB\n");
976 DEBUG(dbgs() << *BB << '\n');
977 auto* LastSI = AdajacentStores[AdajacentStores.size() - 1];
978 for (unsigned i = 0; i < AdajacentStores.size() - 1; ++i) {
979 auto* SI = AdajacentStores[i];
981 // Use the original address for stores before the last one.
982 SI->setOperand(1, UntaintedAddress);
984 DEBUG(dbgs() << "Store address has been reversed: " << *SI << '\n';);
986 // XXX-comment: Try to make the last store use fewer registers.
987 // If LastSI's storing value is a select based on the condition with which
988 // its address is tainted, transform the tainted address to a select
989 // instruction, as follows:
990 // r1 = Select Cond ? A : B
995 // r1 = Select Cond ? A : B
996 // r2 = Select Cond ? Addr : Addr
998 // The idea is that both Select instructions depend on the same condition,
999 // so hopefully the backend can generate two cmov instructions for them (and
1000 // this saves the number of registers needed).
1001 auto* LastSIDep = getConditionDependence(LastSI->getPointerOperand());
1002 auto* LastSIValue = dyn_cast<Instruction>(LastSI->getValueOperand());
1003 if (LastSIValue && LastSIValue->getOpcode() == Instruction::Select &&
1004 LastSIValue->getOperand(0) == LastSIDep) {
1005 // XXX-comment: Maybe it's better for us to just leave it as an and/or
1006 // dependence pattern.
1008 IRBuilder<true, NoFolder> Builder(LastSI);
1010 Builder.CreateSelect(LastSIDep, UntaintedAddress, UntaintedAddress);
1011 LastSI->setOperand(1, Address);
1012 DEBUG(dbgs() << "The last store becomes :" << *LastSI << "\n\n";);
1020 bool PassDependenceToStore(Value* OldAddress, StoreInst* NewStore) {
1021 Value* OldDep = getDependence(OldAddress);
1022 // Return false when there's no dependence to pass from the OldAddress.
1027 // No need to pass the dependence to NewStore's address if it already depends
1028 // on whatever 'OldAddress' depends on.
1029 if (StoreAddressDependOnValue(NewStore, OldDep)) {
1032 return taintStoreAddress(NewStore, OldAddress);
1035 SmallSet<Value*, 8> FindDependence(Value* Val) {
1036 SmallSet<Value*, 8> DepSet;
1037 recursivelyFindDependence(&DepSet, Val, true /*Only insert leaf nodes*/);
1041 bool StoreAddressDependOnValue(StoreInst* SI, Value* DepVal) {
1042 return dependenceSetInclusion(SI->getPointerOperand(), DepVal);
1045 bool StoreDependOnValue(StoreInst* SI, Value* Dep) {
1046 return dependenceSetInclusion(SI, Dep);
1053 bool CodeGenPrepare::runOnFunction(Function &F) {
1054 bool EverMadeChange = false;
1056 if (skipOptnoneFunction(F))
1059 DL = &F.getParent()->getDataLayout();
1061 // Clear per function information.
1062 InsertedInsts.clear();
1063 PromotedInsts.clear();
1067 TLI = TM->getSubtargetImpl(F)->getTargetLowering();
1068 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1069 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1070 OptSize = F.optForSize();
1072 /// This optimization identifies DIV instructions that can be
1073 /// profitably bypassed and carried out with a shorter, faster divide.
1074 if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
1075 const DenseMap<unsigned int, unsigned int> &BypassWidths =
1076 TLI->getBypassSlowDivWidths();
1077 BasicBlock* BB = &*F.begin();
1078 while (BB != nullptr) {
1079 // bypassSlowDivision may create new BBs, but we don't want to reapply the
1080 // optimization to those blocks.
1081 BasicBlock* Next = BB->getNextNode();
1082 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
1087 // Eliminate blocks that contain only PHI nodes and an
1088 // unconditional branch.
1089 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
1091 // llvm.dbg.value is far away from the value then iSel may not be able
1092 // handle it properly. iSel will drop llvm.dbg.value if it can not
1093 // find a node corresponding to the value.
1094 EverMadeChange |= placeDbgValues(F);
1096 // If there is a mask, compare against zero, and branch that can be combined
1097 // into a single target instruction, push the mask and compare into branch
1098 // users. Do this before OptimizeBlock -> OptimizeInst ->
1099 // OptimizeCmpExpression, which perturbs the pattern being searched for.
1100 if (!DisableBranchOpts) {
1101 EverMadeChange |= sinkAndCmp(F);
1102 EverMadeChange |= splitBranchCondition(F);
1105 bool MadeChange = true;
1106 while (MadeChange) {
1108 for (Function::iterator I = F.begin(); I != F.end(); ) {
1109 BasicBlock *BB = &*I++;
1110 bool ModifiedDTOnIteration = false;
1111 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
1113 // Restart BB iteration if the dominator tree of the Function was changed
1114 if (ModifiedDTOnIteration)
1117 EverMadeChange |= MadeChange;
1122 if (!DisableBranchOpts) {
1124 SmallPtrSet<BasicBlock*, 8> WorkList;
1125 for (BasicBlock &BB : F) {
1126 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
1127 MadeChange |= ConstantFoldTerminator(&BB, true);
1128 if (!MadeChange) continue;
1130 for (SmallVectorImpl<BasicBlock*>::iterator
1131 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
1132 if (pred_begin(*II) == pred_end(*II))
1133 WorkList.insert(*II);
1136 // Delete the dead blocks and any of their dead successors.
1137 MadeChange |= !WorkList.empty();
1138 while (!WorkList.empty()) {
1139 BasicBlock *BB = *WorkList.begin();
1141 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
1143 DeleteDeadBlock(BB);
1145 for (SmallVectorImpl<BasicBlock*>::iterator
1146 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
1147 if (pred_begin(*II) == pred_end(*II))
1148 WorkList.insert(*II);
1151 // Merge pairs of basic blocks with unconditional branches, connected by
1153 if (EverMadeChange || MadeChange)
1154 MadeChange |= eliminateFallThrough(F);
1156 EverMadeChange |= MadeChange;
1159 if (!DisableGCOpts) {
1160 SmallVector<Instruction *, 2> Statepoints;
1161 for (BasicBlock &BB : F)
1162 for (Instruction &I : BB)
1163 if (isStatepoint(I))
1164 Statepoints.push_back(&I);
1165 for (auto &I : Statepoints)
1166 EverMadeChange |= simplifyOffsetableRelocate(*I);
1169 // XXX-comment: Delay dealing with relaxed loads in this function to avoid
1170 // further changes done by other passes (e.g., SimplifyCFG).
1171 // Collect all the relaxed loads.
1172 SmallVector<LoadInst*, 1> MonotonicLoadInsts;
1173 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
1174 if (I->isAtomic()) {
1175 switch (I->getOpcode()) {
1176 case Instruction::Load: {
1177 auto* LI = dyn_cast<LoadInst>(&*I);
1178 if (LI->getOrdering() == Monotonic) {
1179 MonotonicLoadInsts.push_back(LI);
1190 AddFakeConditionalBranchAfterMonotonicLoads(MonotonicLoadInsts);
1192 return EverMadeChange;
1195 /// Merge basic blocks which are connected by a single edge, where one of the
1196 /// basic blocks has a single successor pointing to the other basic block,
1197 /// which has a single predecessor.
1198 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
1199 bool Changed = false;
1200 // Scan all of the blocks in the function, except for the entry block.
1201 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
1202 BasicBlock *BB = &*I++;
1203 // If the destination block has a single pred, then this is a trivial
1204 // edge, just collapse it.
1205 BasicBlock *SinglePred = BB->getSinglePredecessor();
1207 // Don't merge if BB's address is taken.
1208 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
1210 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
1211 if (Term && !Term->isConditional()) {
1213 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
1214 // Remember if SinglePred was the entry block of the function.
1215 // If so, we will need to move BB back to the entry position.
1216 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
1217 MergeBasicBlockIntoOnlyPred(BB, nullptr);
1219 if (isEntry && BB != &BB->getParent()->getEntryBlock())
1220 BB->moveBefore(&BB->getParent()->getEntryBlock());
1222 // We have erased a block. Update the iterator.
1223 I = BB->getIterator();
1229 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
1230 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
1231 /// edges in ways that are non-optimal for isel. Start by eliminating these
1232 /// blocks so we can split them the way we want them.
1233 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
1234 bool MadeChange = false;
1235 // Note that this intentionally skips the entry block.
1236 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
1237 BasicBlock *BB = &*I++;
1238 // If this block doesn't end with an uncond branch, ignore it.
1239 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1240 if (!BI || !BI->isUnconditional())
1243 // If the instruction before the branch (skipping debug info) isn't a phi
1244 // node, then other stuff is happening here.
1245 BasicBlock::iterator BBI = BI->getIterator();
1246 if (BBI != BB->begin()) {
1248 while (isa<DbgInfoIntrinsic>(BBI)) {
1249 if (BBI == BB->begin())
1253 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
1257 // Do not break infinite loops.
1258 BasicBlock *DestBB = BI->getSuccessor(0);
1262 if (!canMergeBlocks(BB, DestBB))
1265 eliminateMostlyEmptyBlock(BB);
1271 /// Return true if we can merge BB into DestBB if there is a single
1272 /// unconditional branch between them, and BB contains no other non-phi
1274 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1275 const BasicBlock *DestBB) const {
1276 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1277 // the successor. If there are more complex condition (e.g. preheaders),
1278 // don't mess around with them.
1279 BasicBlock::const_iterator BBI = BB->begin();
1280 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
1281 for (const User *U : PN->users()) {
1282 const Instruction *UI = cast<Instruction>(U);
1283 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1285 // If User is inside DestBB block and it is a PHINode then check
1286 // incoming value. If incoming value is not from BB then this is
1287 // a complex condition (e.g. preheaders) we want to avoid here.
1288 if (UI->getParent() == DestBB) {
1289 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1290 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1291 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1292 if (Insn && Insn->getParent() == BB &&
1293 Insn->getParent() != UPN->getIncomingBlock(I))
1300 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1301 // and DestBB may have conflicting incoming values for the block. If so, we
1302 // can't merge the block.
1303 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1304 if (!DestBBPN) return true; // no conflict.
1306 // Collect the preds of BB.
1307 SmallPtrSet<const BasicBlock*, 16> BBPreds;
1308 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1309 // It is faster to get preds from a PHI than with pred_iterator.
1310 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1311 BBPreds.insert(BBPN->getIncomingBlock(i));
1313 BBPreds.insert(pred_begin(BB), pred_end(BB));
1316 // Walk the preds of DestBB.
1317 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1318 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1319 if (BBPreds.count(Pred)) { // Common predecessor?
1320 BBI = DestBB->begin();
1321 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
1322 const Value *V1 = PN->getIncomingValueForBlock(Pred);
1323 const Value *V2 = PN->getIncomingValueForBlock(BB);
1325 // If V2 is a phi node in BB, look up what the mapped value will be.
1326 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1327 if (V2PN->getParent() == BB)
1328 V2 = V2PN->getIncomingValueForBlock(Pred);
1330 // If there is a conflict, bail out.
1331 if (V1 != V2) return false;
1340 /// Eliminate a basic block that has only phi's and an unconditional branch in
1342 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1343 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1344 BasicBlock *DestBB = BI->getSuccessor(0);
1346 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
1348 // If the destination block has a single pred, then this is a trivial edge,
1349 // just collapse it.
1350 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1351 if (SinglePred != DestBB) {
1352 // Remember if SinglePred was the entry block of the function. If so, we
1353 // will need to move BB back to the entry position.
1354 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
1355 MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
1357 if (isEntry && BB != &BB->getParent()->getEntryBlock())
1358 BB->moveBefore(&BB->getParent()->getEntryBlock());
1360 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1365 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1366 // to handle the new incoming edges it is about to have.
1368 for (BasicBlock::iterator BBI = DestBB->begin();
1369 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1370 // Remove the incoming value for BB, and remember it.
1371 Value *InVal = PN->removeIncomingValue(BB, false);
1373 // Two options: either the InVal is a phi node defined in BB or it is some
1374 // value that dominates BB.
1375 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1376 if (InValPhi && InValPhi->getParent() == BB) {
1377 // Add all of the input values of the input PHI as inputs of this phi.
1378 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1379 PN->addIncoming(InValPhi->getIncomingValue(i),
1380 InValPhi->getIncomingBlock(i));
1382 // Otherwise, add one instance of the dominating value for each edge that
1383 // we will be adding.
1384 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1385 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1386 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
1388 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1389 PN->addIncoming(InVal, *PI);
1394 // The PHIs are now updated, change everything that refers to BB to use
1395 // DestBB and remove BB.
1396 BB->replaceAllUsesWith(DestBB);
1397 BB->eraseFromParent();
1400 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1403 // Computes a map of base pointer relocation instructions to corresponding
1404 // derived pointer relocation instructions given a vector of all relocate calls
1405 static void computeBaseDerivedRelocateMap(
1406 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1407 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1409 // Collect information in two maps: one primarily for locating the base object
1410 // while filling the second map; the second map is the final structure holding
1411 // a mapping between Base and corresponding Derived relocate calls
1412 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1413 for (auto *ThisRelocate : AllRelocateCalls) {
1414 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1415 ThisRelocate->getDerivedPtrIndex());
1416 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1418 for (auto &Item : RelocateIdxMap) {
1419 std::pair<unsigned, unsigned> Key = Item.first;
1420 if (Key.first == Key.second)
1421 // Base relocation: nothing to insert
1424 GCRelocateInst *I = Item.second;
1425 auto BaseKey = std::make_pair(Key.first, Key.first);
1427 // We're iterating over RelocateIdxMap so we cannot modify it.
1428 auto MaybeBase = RelocateIdxMap.find(BaseKey);
1429 if (MaybeBase == RelocateIdxMap.end())
1430 // TODO: We might want to insert a new base object relocate and gep off
1431 // that, if there are enough derived object relocates.
1434 RelocateInstMap[MaybeBase->second].push_back(I);
1438 // Accepts a GEP and extracts the operands into a vector provided they're all
1439 // small integer constants
1440 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1441 SmallVectorImpl<Value *> &OffsetV) {
1442 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1443 // Only accept small constant integer operands
1444 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1445 if (!Op || Op->getZExtValue() > 20)
1449 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1450 OffsetV.push_back(GEP->getOperand(i));
1454 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1455 // replace, computes a replacement, and affects it.
1457 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1458 const SmallVectorImpl<GCRelocateInst *> &Targets) {
1459 bool MadeChange = false;
1460 for (GCRelocateInst *ToReplace : Targets) {
1461 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1462 "Not relocating a derived object of the original base object");
1463 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1464 // A duplicate relocate call. TODO: coalesce duplicates.
1468 if (RelocatedBase->getParent() != ToReplace->getParent()) {
1469 // Base and derived relocates are in different basic blocks.
1470 // In this case transform is only valid when base dominates derived
1471 // relocate. However it would be too expensive to check dominance
1472 // for each such relocate, so we skip the whole transformation.
1476 Value *Base = ToReplace->getBasePtr();
1477 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1478 if (!Derived || Derived->getPointerOperand() != Base)
1481 SmallVector<Value *, 2> OffsetV;
1482 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1485 // Create a Builder and replace the target callsite with a gep
1486 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator");
1488 // Insert after RelocatedBase
1489 IRBuilder<> Builder(RelocatedBase->getNextNode());
1490 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1492 // If gc_relocate does not match the actual type, cast it to the right type.
1493 // In theory, there must be a bitcast after gc_relocate if the type does not
1494 // match, and we should reuse it to get the derived pointer. But it could be
1498 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1503 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1507 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1508 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1510 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1511 // no matter there is already one or not. In this way, we can handle all cases, and
1512 // the extra bitcast should be optimized away in later passes.
1513 Value *ActualRelocatedBase = RelocatedBase;
1514 if (RelocatedBase->getType() != Base->getType()) {
1515 ActualRelocatedBase =
1516 Builder.CreateBitCast(RelocatedBase, Base->getType());
1518 Value *Replacement = Builder.CreateGEP(
1519 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1520 Replacement->takeName(ToReplace);
1521 // If the newly generated derived pointer's type does not match the original derived
1522 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1523 Value *ActualReplacement = Replacement;
1524 if (Replacement->getType() != ToReplace->getType()) {
1526 Builder.CreateBitCast(Replacement, ToReplace->getType());
1528 ToReplace->replaceAllUsesWith(ActualReplacement);
1529 ToReplace->eraseFromParent();
1539 // %ptr = gep %base + 15
1540 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1541 // %base' = relocate(%tok, i32 4, i32 4)
1542 // %ptr' = relocate(%tok, i32 4, i32 5)
1543 // %val = load %ptr'
1548 // %ptr = gep %base + 15
1549 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1550 // %base' = gc.relocate(%tok, i32 4, i32 4)
1551 // %ptr' = gep %base' + 15
1552 // %val = load %ptr'
1553 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1554 bool MadeChange = false;
1555 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1557 for (auto *U : I.users())
1558 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1559 // Collect all the relocate calls associated with a statepoint
1560 AllRelocateCalls.push_back(Relocate);
1562 // We need atleast one base pointer relocation + one derived pointer
1563 // relocation to mangle
1564 if (AllRelocateCalls.size() < 2)
1567 // RelocateInstMap is a mapping from the base relocate instruction to the
1568 // corresponding derived relocate instructions
1569 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1570 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1571 if (RelocateInstMap.empty())
1574 for (auto &Item : RelocateInstMap)
1575 // Item.first is the RelocatedBase to offset against
1576 // Item.second is the vector of Targets to replace
1577 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1581 /// SinkCast - Sink the specified cast instruction into its user blocks
1582 static bool SinkCast(CastInst *CI) {
1583 BasicBlock *DefBB = CI->getParent();
1585 /// InsertedCasts - Only insert a cast in each block once.
1586 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1588 bool MadeChange = false;
1589 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1591 Use &TheUse = UI.getUse();
1592 Instruction *User = cast<Instruction>(*UI);
1594 // Figure out which BB this cast is used in. For PHI's this is the
1595 // appropriate predecessor block.
1596 BasicBlock *UserBB = User->getParent();
1597 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1598 UserBB = PN->getIncomingBlock(TheUse);
1601 // Preincrement use iterator so we don't invalidate it.
1604 // If the block selected to receive the cast is an EH pad that does not
1605 // allow non-PHI instructions before the terminator, we can't sink the
1607 if (UserBB->getTerminator()->isEHPad())
1610 // If this user is in the same block as the cast, don't change the cast.
1611 if (UserBB == DefBB) continue;
1613 // If we have already inserted a cast into this block, use it.
1614 CastInst *&InsertedCast = InsertedCasts[UserBB];
1616 if (!InsertedCast) {
1617 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1618 assert(InsertPt != UserBB->end());
1619 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1620 CI->getType(), "", &*InsertPt);
1623 // Replace a use of the cast with a use of the new cast.
1624 TheUse = InsertedCast;
1629 // If we removed all uses, nuke the cast.
1630 if (CI->use_empty()) {
1631 CI->eraseFromParent();
1638 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1639 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1640 /// reduce the number of virtual registers that must be created and coalesced.
1642 /// Return true if any changes are made.
1644 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1645 const DataLayout &DL) {
1646 // If this is a noop copy,
1647 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1648 EVT DstVT = TLI.getValueType(DL, CI->getType());
1650 // This is an fp<->int conversion?
1651 if (SrcVT.isInteger() != DstVT.isInteger())
1654 // If this is an extension, it will be a zero or sign extension, which
1656 if (SrcVT.bitsLT(DstVT)) return false;
1658 // If these values will be promoted, find out what they will be promoted
1659 // to. This helps us consider truncates on PPC as noop copies when they
1661 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1662 TargetLowering::TypePromoteInteger)
1663 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1664 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1665 TargetLowering::TypePromoteInteger)
1666 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1668 // If, after promotion, these are the same types, this is a noop copy.
1672 return SinkCast(CI);
1675 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1678 /// Return true if any changes were made.
1679 static bool CombineUAddWithOverflow(CmpInst *CI) {
1683 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1686 Type *Ty = AddI->getType();
1687 if (!isa<IntegerType>(Ty))
1690 // We don't want to move around uses of condition values this late, so we we
1691 // check if it is legal to create the call to the intrinsic in the basic
1692 // block containing the icmp:
1694 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1698 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1700 if (AddI->hasOneUse())
1701 assert(*AddI->user_begin() == CI && "expected!");
1704 Module *M = CI->getModule();
1705 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1707 auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1709 auto *UAddWithOverflow =
1710 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1711 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1713 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1715 CI->replaceAllUsesWith(Overflow);
1716 AddI->replaceAllUsesWith(UAdd);
1717 CI->eraseFromParent();
1718 AddI->eraseFromParent();
1722 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1723 /// registers that must be created and coalesced. This is a clear win except on
1724 /// targets with multiple condition code registers (PowerPC), where it might
1725 /// lose; some adjustment may be wanted there.
1727 /// Return true if any changes are made.
1728 static bool SinkCmpExpression(CmpInst *CI) {
1729 BasicBlock *DefBB = CI->getParent();
1731 /// Only insert a cmp in each block once.
1732 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1734 bool MadeChange = false;
1735 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1737 Use &TheUse = UI.getUse();
1738 Instruction *User = cast<Instruction>(*UI);
1740 // Preincrement use iterator so we don't invalidate it.
1743 // Don't bother for PHI nodes.
1744 if (isa<PHINode>(User))
1747 // Figure out which BB this cmp is used in.
1748 BasicBlock *UserBB = User->getParent();
1750 // If this user is in the same block as the cmp, don't change the cmp.
1751 if (UserBB == DefBB) continue;
1753 // If we have already inserted a cmp into this block, use it.
1754 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1757 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1758 assert(InsertPt != UserBB->end());
1760 CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1761 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1764 // Replace a use of the cmp with a use of the new cmp.
1765 TheUse = InsertedCmp;
1770 // If we removed all uses, nuke the cmp.
1771 if (CI->use_empty()) {
1772 CI->eraseFromParent();
1779 static bool OptimizeCmpExpression(CmpInst *CI) {
1780 if (SinkCmpExpression(CI))
1783 if (CombineUAddWithOverflow(CI))
1789 /// Check if the candidates could be combined with a shift instruction, which
1791 /// 1. Truncate instruction
1792 /// 2. And instruction and the imm is a mask of the low bits:
1793 /// imm & (imm+1) == 0
1794 static bool isExtractBitsCandidateUse(Instruction *User) {
1795 if (!isa<TruncInst>(User)) {
1796 if (User->getOpcode() != Instruction::And ||
1797 !isa<ConstantInt>(User->getOperand(1)))
1800 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1802 if ((Cimm & (Cimm + 1)).getBoolValue())
1808 /// Sink both shift and truncate instruction to the use of truncate's BB.
1810 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1811 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1812 const TargetLowering &TLI, const DataLayout &DL) {
1813 BasicBlock *UserBB = User->getParent();
1814 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1815 TruncInst *TruncI = dyn_cast<TruncInst>(User);
1816 bool MadeChange = false;
1818 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1819 TruncE = TruncI->user_end();
1820 TruncUI != TruncE;) {
1822 Use &TruncTheUse = TruncUI.getUse();
1823 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1824 // Preincrement use iterator so we don't invalidate it.
1828 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1832 // If the use is actually a legal node, there will not be an
1833 // implicit truncate.
1834 // FIXME: always querying the result type is just an
1835 // approximation; some nodes' legality is determined by the
1836 // operand or other means. There's no good way to find out though.
1837 if (TLI.isOperationLegalOrCustom(
1838 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1841 // Don't bother for PHI nodes.
1842 if (isa<PHINode>(TruncUser))
1845 BasicBlock *TruncUserBB = TruncUser->getParent();
1847 if (UserBB == TruncUserBB)
1850 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1851 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1853 if (!InsertedShift && !InsertedTrunc) {
1854 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1855 assert(InsertPt != TruncUserBB->end());
1857 if (ShiftI->getOpcode() == Instruction::AShr)
1858 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1861 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1865 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1867 assert(TruncInsertPt != TruncUserBB->end());
1869 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1870 TruncI->getType(), "", &*TruncInsertPt);
1874 TruncTheUse = InsertedTrunc;
1880 /// Sink the shift *right* instruction into user blocks if the uses could
1881 /// potentially be combined with this shift instruction and generate BitExtract
1882 /// instruction. It will only be applied if the architecture supports BitExtract
1883 /// instruction. Here is an example:
1885 /// %x.extract.shift = lshr i64 %arg1, 32
1887 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1891 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1892 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1894 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1896 /// Return true if any changes are made.
1897 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1898 const TargetLowering &TLI,
1899 const DataLayout &DL) {
1900 BasicBlock *DefBB = ShiftI->getParent();
1902 /// Only insert instructions in each block once.
1903 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1905 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1907 bool MadeChange = false;
1908 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1910 Use &TheUse = UI.getUse();
1911 Instruction *User = cast<Instruction>(*UI);
1912 // Preincrement use iterator so we don't invalidate it.
1915 // Don't bother for PHI nodes.
1916 if (isa<PHINode>(User))
1919 if (!isExtractBitsCandidateUse(User))
1922 BasicBlock *UserBB = User->getParent();
1924 if (UserBB == DefBB) {
1925 // If the shift and truncate instruction are in the same BB. The use of
1926 // the truncate(TruncUse) may still introduce another truncate if not
1927 // legal. In this case, we would like to sink both shift and truncate
1928 // instruction to the BB of TruncUse.
1931 // i64 shift.result = lshr i64 opnd, imm
1932 // trunc.result = trunc shift.result to i16
1935 // ----> We will have an implicit truncate here if the architecture does
1936 // not have i16 compare.
1937 // cmp i16 trunc.result, opnd2
1939 if (isa<TruncInst>(User) && shiftIsLegal
1940 // If the type of the truncate is legal, no trucate will be
1941 // introduced in other basic blocks.
1943 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1945 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1949 // If we have already inserted a shift into this block, use it.
1950 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1952 if (!InsertedShift) {
1953 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1954 assert(InsertPt != UserBB->end());
1956 if (ShiftI->getOpcode() == Instruction::AShr)
1957 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1960 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1966 // Replace a use of the shift with a use of the new shift.
1967 TheUse = InsertedShift;
1970 // If we removed all uses, nuke the shift.
1971 if (ShiftI->use_empty())
1972 ShiftI->eraseFromParent();
1977 // Translate a masked load intrinsic like
1978 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1979 // <16 x i1> %mask, <16 x i32> %passthru)
1980 // to a chain of basic blocks, with loading element one-by-one if
1981 // the appropriate mask bit is set
1983 // %1 = bitcast i8* %addr to i32*
1984 // %2 = extractelement <16 x i1> %mask, i32 0
1985 // %3 = icmp eq i1 %2, true
1986 // br i1 %3, label %cond.load, label %else
1988 //cond.load: ; preds = %0
1989 // %4 = getelementptr i32* %1, i32 0
1990 // %5 = load i32* %4
1991 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1994 //else: ; preds = %0, %cond.load
1995 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1996 // %7 = extractelement <16 x i1> %mask, i32 1
1997 // %8 = icmp eq i1 %7, true
1998 // br i1 %8, label %cond.load1, label %else2
2000 //cond.load1: ; preds = %else
2001 // %9 = getelementptr i32* %1, i32 1
2002 // %10 = load i32* %9
2003 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
2006 //else2: ; preds = %else, %cond.load1
2007 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
2008 // %12 = extractelement <16 x i1> %mask, i32 2
2009 // %13 = icmp eq i1 %12, true
2010 // br i1 %13, label %cond.load4, label %else5
2012 static void ScalarizeMaskedLoad(CallInst *CI) {
2013 Value *Ptr = CI->getArgOperand(0);
2014 Value *Alignment = CI->getArgOperand(1);
2015 Value *Mask = CI->getArgOperand(2);
2016 Value *Src0 = CI->getArgOperand(3);
2018 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
2019 VectorType *VecType = dyn_cast<VectorType>(CI->getType());
2020 assert(VecType && "Unexpected return type of masked load intrinsic");
2022 Type *EltTy = CI->getType()->getVectorElementType();
2024 IRBuilder<> Builder(CI->getContext());
2025 Instruction *InsertPt = CI;
2026 BasicBlock *IfBlock = CI->getParent();
2027 BasicBlock *CondBlock = nullptr;
2028 BasicBlock *PrevIfBlock = CI->getParent();
2030 Builder.SetInsertPoint(InsertPt);
2031 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
2033 // Short-cut if the mask is all-true.
2034 bool IsAllOnesMask = isa<Constant>(Mask) &&
2035 cast<Constant>(Mask)->isAllOnesValue();
2037 if (IsAllOnesMask) {
2038 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
2039 CI->replaceAllUsesWith(NewI);
2040 CI->eraseFromParent();
2044 // Adjust alignment for the scalar instruction.
2045 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
2046 // Bitcast %addr fron i8* to EltTy*
2048 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
2049 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
2050 unsigned VectorWidth = VecType->getNumElements();
2052 Value *UndefVal = UndefValue::get(VecType);
2054 // The result vector
2055 Value *VResult = UndefVal;
2057 if (isa<ConstantVector>(Mask)) {
2058 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2059 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
2062 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
2063 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
2064 VResult = Builder.CreateInsertElement(VResult, Load,
2065 Builder.getInt32(Idx));
2067 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
2068 CI->replaceAllUsesWith(NewI);
2069 CI->eraseFromParent();
2073 PHINode *Phi = nullptr;
2074 Value *PrevPhi = UndefVal;
2076 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2078 // Fill the "else" block, created in the previous iteration
2080 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
2081 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
2082 // %to_load = icmp eq i1 %mask_1, true
2083 // br i1 %to_load, label %cond.load, label %else
2086 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
2087 Phi->addIncoming(VResult, CondBlock);
2088 Phi->addIncoming(PrevPhi, PrevIfBlock);
2093 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
2094 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
2095 ConstantInt::get(Predicate->getType(), 1));
2097 // Create "cond" block
2099 // %EltAddr = getelementptr i32* %1, i32 0
2100 // %Elt = load i32* %EltAddr
2101 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
2103 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
2104 Builder.SetInsertPoint(InsertPt);
2107 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
2108 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
2109 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
2111 // Create "else" block, fill it in the next iteration
2112 BasicBlock *NewIfBlock =
2113 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
2114 Builder.SetInsertPoint(InsertPt);
2115 Instruction *OldBr = IfBlock->getTerminator();
2116 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2117 OldBr->eraseFromParent();
2118 PrevIfBlock = IfBlock;
2119 IfBlock = NewIfBlock;
2122 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
2123 Phi->addIncoming(VResult, CondBlock);
2124 Phi->addIncoming(PrevPhi, PrevIfBlock);
2125 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
2126 CI->replaceAllUsesWith(NewI);
2127 CI->eraseFromParent();
2130 // Translate a masked store intrinsic, like
2131 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
2133 // to a chain of basic blocks, that stores element one-by-one if
2134 // the appropriate mask bit is set
2136 // %1 = bitcast i8* %addr to i32*
2137 // %2 = extractelement <16 x i1> %mask, i32 0
2138 // %3 = icmp eq i1 %2, true
2139 // br i1 %3, label %cond.store, label %else
2141 // cond.store: ; preds = %0
2142 // %4 = extractelement <16 x i32> %val, i32 0
2143 // %5 = getelementptr i32* %1, i32 0
2144 // store i32 %4, i32* %5
2147 // else: ; preds = %0, %cond.store
2148 // %6 = extractelement <16 x i1> %mask, i32 1
2149 // %7 = icmp eq i1 %6, true
2150 // br i1 %7, label %cond.store1, label %else2
2152 // cond.store1: ; preds = %else
2153 // %8 = extractelement <16 x i32> %val, i32 1
2154 // %9 = getelementptr i32* %1, i32 1
2155 // store i32 %8, i32* %9
2158 static void ScalarizeMaskedStore(CallInst *CI) {
2159 Value *Src = CI->getArgOperand(0);
2160 Value *Ptr = CI->getArgOperand(1);
2161 Value *Alignment = CI->getArgOperand(2);
2162 Value *Mask = CI->getArgOperand(3);
2164 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
2165 VectorType *VecType = dyn_cast<VectorType>(Src->getType());
2166 assert(VecType && "Unexpected data type in masked store intrinsic");
2168 Type *EltTy = VecType->getElementType();
2170 IRBuilder<> Builder(CI->getContext());
2171 Instruction *InsertPt = CI;
2172 BasicBlock *IfBlock = CI->getParent();
2173 Builder.SetInsertPoint(InsertPt);
2174 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
2176 // Short-cut if the mask is all-true.
2177 bool IsAllOnesMask = isa<Constant>(Mask) &&
2178 cast<Constant>(Mask)->isAllOnesValue();
2180 if (IsAllOnesMask) {
2181 Builder.CreateAlignedStore(Src, Ptr, AlignVal);
2182 CI->eraseFromParent();
2186 // Adjust alignment for the scalar instruction.
2187 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
2188 // Bitcast %addr fron i8* to EltTy*
2190 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
2191 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
2192 unsigned VectorWidth = VecType->getNumElements();
2194 if (isa<ConstantVector>(Mask)) {
2195 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2196 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
2198 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
2200 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
2201 Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
2203 CI->eraseFromParent();
2207 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2209 // Fill the "else" block, created in the previous iteration
2211 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
2212 // %to_store = icmp eq i1 %mask_1, true
2213 // br i1 %to_store, label %cond.store, label %else
2215 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
2216 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
2217 ConstantInt::get(Predicate->getType(), 1));
2219 // Create "cond" block
2221 // %OneElt = extractelement <16 x i32> %Src, i32 Idx
2222 // %EltAddr = getelementptr i32* %1, i32 0
2223 // %store i32 %OneElt, i32* %EltAddr
2225 BasicBlock *CondBlock =
2226 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
2227 Builder.SetInsertPoint(InsertPt);
2229 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
2231 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
2232 Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
2234 // Create "else" block, fill it in the next iteration
2235 BasicBlock *NewIfBlock =
2236 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
2237 Builder.SetInsertPoint(InsertPt);
2238 Instruction *OldBr = IfBlock->getTerminator();
2239 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2240 OldBr->eraseFromParent();
2241 IfBlock = NewIfBlock;
2243 CI->eraseFromParent();
2246 // Translate a masked gather intrinsic like
2247 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
2248 // <16 x i1> %Mask, <16 x i32> %Src)
2249 // to a chain of basic blocks, with loading element one-by-one if
2250 // the appropriate mask bit is set
2252 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
2253 // % Mask0 = extractelement <16 x i1> %Mask, i32 0
2254 // % ToLoad0 = icmp eq i1 % Mask0, true
2255 // br i1 % ToLoad0, label %cond.load, label %else
2258 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
2259 // % Load0 = load i32, i32* % Ptr0, align 4
2260 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
2264 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
2265 // % Mask1 = extractelement <16 x i1> %Mask, i32 1
2266 // % ToLoad1 = icmp eq i1 % Mask1, true
2267 // br i1 % ToLoad1, label %cond.load1, label %else2
2270 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
2271 // % Load1 = load i32, i32* % Ptr1, align 4
2272 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
2275 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
2276 // ret <16 x i32> %Result
2277 static void ScalarizeMaskedGather(CallInst *CI) {
2278 Value *Ptrs = CI->getArgOperand(0);
2279 Value *Alignment = CI->getArgOperand(1);
2280 Value *Mask = CI->getArgOperand(2);
2281 Value *Src0 = CI->getArgOperand(3);
2283 VectorType *VecType = dyn_cast<VectorType>(CI->getType());
2285 assert(VecType && "Unexpected return type of masked load intrinsic");
2287 IRBuilder<> Builder(CI->getContext());
2288 Instruction *InsertPt = CI;
2289 BasicBlock *IfBlock = CI->getParent();
2290 BasicBlock *CondBlock = nullptr;
2291 BasicBlock *PrevIfBlock = CI->getParent();
2292 Builder.SetInsertPoint(InsertPt);
2293 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
2295 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
2297 Value *UndefVal = UndefValue::get(VecType);
2299 // The result vector
2300 Value *VResult = UndefVal;
2301 unsigned VectorWidth = VecType->getNumElements();
2303 // Shorten the way if the mask is a vector of constants.
2304 bool IsConstMask = isa<ConstantVector>(Mask);
2307 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2308 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
2310 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
2311 "Ptr" + Twine(Idx));
2312 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
2313 "Load" + Twine(Idx));
2314 VResult = Builder.CreateInsertElement(VResult, Load,
2315 Builder.getInt32(Idx),
2316 "Res" + Twine(Idx));
2318 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
2319 CI->replaceAllUsesWith(NewI);
2320 CI->eraseFromParent();
2324 PHINode *Phi = nullptr;
2325 Value *PrevPhi = UndefVal;
2327 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2329 // Fill the "else" block, created in the previous iteration
2331 // %Mask1 = extractelement <16 x i1> %Mask, i32 1
2332 // %ToLoad1 = icmp eq i1 %Mask1, true
2333 // br i1 %ToLoad1, label %cond.load, label %else
2336 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
2337 Phi->addIncoming(VResult, CondBlock);
2338 Phi->addIncoming(PrevPhi, PrevIfBlock);
2343 Value *Predicate = Builder.CreateExtractElement(Mask,
2344 Builder.getInt32(Idx),
2345 "Mask" + Twine(Idx));
2346 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
2347 ConstantInt::get(Predicate->getType(), 1),
2348 "ToLoad" + Twine(Idx));
2350 // Create "cond" block
2352 // %EltAddr = getelementptr i32* %1, i32 0
2353 // %Elt = load i32* %EltAddr
2354 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
2356 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
2357 Builder.SetInsertPoint(InsertPt);
2359 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
2360 "Ptr" + Twine(Idx));
2361 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
2362 "Load" + Twine(Idx));
2363 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
2364 "Res" + Twine(Idx));
2366 // Create "else" block, fill it in the next iteration
2367 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
2368 Builder.SetInsertPoint(InsertPt);
2369 Instruction *OldBr = IfBlock->getTerminator();
2370 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2371 OldBr->eraseFromParent();
2372 PrevIfBlock = IfBlock;
2373 IfBlock = NewIfBlock;
2376 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
2377 Phi->addIncoming(VResult, CondBlock);
2378 Phi->addIncoming(PrevPhi, PrevIfBlock);
2379 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
2380 CI->replaceAllUsesWith(NewI);
2381 CI->eraseFromParent();
2384 // Translate a masked scatter intrinsic, like
2385 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
2387 // to a chain of basic blocks, that stores element one-by-one if
2388 // the appropriate mask bit is set.
2390 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
2391 // % Mask0 = extractelement <16 x i1> % Mask, i32 0
2392 // % ToStore0 = icmp eq i1 % Mask0, true
2393 // br i1 %ToStore0, label %cond.store, label %else
2396 // % Elt0 = extractelement <16 x i32> %Src, i32 0
2397 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
2398 // store i32 %Elt0, i32* % Ptr0, align 4
2402 // % Mask1 = extractelement <16 x i1> % Mask, i32 1
2403 // % ToStore1 = icmp eq i1 % Mask1, true
2404 // br i1 % ToStore1, label %cond.store1, label %else2
2407 // % Elt1 = extractelement <16 x i32> %Src, i32 1
2408 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
2409 // store i32 % Elt1, i32* % Ptr1, align 4
2412 static void ScalarizeMaskedScatter(CallInst *CI) {
2413 Value *Src = CI->getArgOperand(0);
2414 Value *Ptrs = CI->getArgOperand(1);
2415 Value *Alignment = CI->getArgOperand(2);
2416 Value *Mask = CI->getArgOperand(3);
2418 assert(isa<VectorType>(Src->getType()) &&
2419 "Unexpected data type in masked scatter intrinsic");
2420 assert(isa<VectorType>(Ptrs->getType()) &&
2421 isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
2422 "Vector of pointers is expected in masked scatter intrinsic");
2424 IRBuilder<> Builder(CI->getContext());
2425 Instruction *InsertPt = CI;
2426 BasicBlock *IfBlock = CI->getParent();
2427 Builder.SetInsertPoint(InsertPt);
2428 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
2430 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
2431 unsigned VectorWidth = Src->getType()->getVectorNumElements();
2433 // Shorten the way if the mask is a vector of constants.
2434 bool IsConstMask = isa<ConstantVector>(Mask);
2437 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2438 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
2440 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
2441 "Elt" + Twine(Idx));
2442 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
2443 "Ptr" + Twine(Idx));
2444 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
2446 CI->eraseFromParent();
2449 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
2450 // Fill the "else" block, created in the previous iteration
2452 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
2453 // % ToStore = icmp eq i1 % Mask1, true
2454 // br i1 % ToStore, label %cond.store, label %else
2456 Value *Predicate = Builder.CreateExtractElement(Mask,
2457 Builder.getInt32(Idx),
2458 "Mask" + Twine(Idx));
2460 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
2461 ConstantInt::get(Predicate->getType(), 1),
2462 "ToStore" + Twine(Idx));
2464 // Create "cond" block
2466 // % Elt1 = extractelement <16 x i32> %Src, i32 1
2467 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
2468 // %store i32 % Elt1, i32* % Ptr1
2470 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
2471 Builder.SetInsertPoint(InsertPt);
2473 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
2474 "Elt" + Twine(Idx));
2475 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
2476 "Ptr" + Twine(Idx));
2477 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
2479 // Create "else" block, fill it in the next iteration
2480 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
2481 Builder.SetInsertPoint(InsertPt);
2482 Instruction *OldBr = IfBlock->getTerminator();
2483 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2484 OldBr->eraseFromParent();
2485 IfBlock = NewIfBlock;
2487 CI->eraseFromParent();
2490 /// If counting leading or trailing zeros is an expensive operation and a zero
2491 /// input is defined, add a check for zero to avoid calling the intrinsic.
2493 /// We want to transform:
2494 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2498 /// %cmpz = icmp eq i64 %A, 0
2499 /// br i1 %cmpz, label %cond.end, label %cond.false
2501 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2502 /// br label %cond.end
2504 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2506 /// If the transform is performed, return true and set ModifiedDT to true.
2507 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2508 const TargetLowering *TLI,
2509 const DataLayout *DL,
2514 // If a zero input is undefined, it doesn't make sense to despeculate that.
2515 if (match(CountZeros->getOperand(1), m_One()))
2518 // If it's cheap to speculate, there's nothing to do.
2519 auto IntrinsicID = CountZeros->getIntrinsicID();
2520 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
2521 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
2524 // Only handle legal scalar cases. Anything else requires too much work.
2525 Type *Ty = CountZeros->getType();
2526 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
2527 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize())
2530 // The intrinsic will be sunk behind a compare against zero and branch.
2531 BasicBlock *StartBlock = CountZeros->getParent();
2532 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2534 // Create another block after the count zero intrinsic. A PHI will be added
2535 // in this block to select the result of the intrinsic or the bit-width
2536 // constant if the input to the intrinsic is zero.
2537 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2538 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2540 // Set up a builder to create a compare, conditional branch, and PHI.
2541 IRBuilder<> Builder(CountZeros->getContext());
2542 Builder.SetInsertPoint(StartBlock->getTerminator());
2543 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2545 // Replace the unconditional branch that was created by the first split with
2546 // a compare against zero and a conditional branch.
2547 Value *Zero = Constant::getNullValue(Ty);
2548 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
2549 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2550 StartBlock->getTerminator()->eraseFromParent();
2552 // Create a PHI in the end block to select either the output of the intrinsic
2553 // or the bit width of the operand.
2554 Builder.SetInsertPoint(&EndBlock->front());
2555 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2556 CountZeros->replaceAllUsesWith(PN);
2557 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2558 PN->addIncoming(BitWidth, StartBlock);
2559 PN->addIncoming(CountZeros, CallBlock);
2561 // We are explicitly handling the zero case, so we can set the intrinsic's
2562 // undefined zero argument to 'true'. This will also prevent reprocessing the
2563 // intrinsic; we only despeculate when a zero input is defined.
2564 CountZeros->setArgOperand(1, Builder.getTrue());
2569 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
2570 BasicBlock *BB = CI->getParent();
2572 // Lower inline assembly if we can.
2573 // If we found an inline asm expession, and if the target knows how to
2574 // lower it to normal LLVM code, do so now.
2575 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2576 if (TLI->ExpandInlineAsm(CI)) {
2577 // Avoid invalidating the iterator.
2578 CurInstIterator = BB->begin();
2579 // Avoid processing instructions out of order, which could cause
2580 // reuse before a value is defined.
2584 // Sink address computing for memory operands into the block.
2585 if (optimizeInlineAsmInst(CI))
2589 // Align the pointer arguments to this call if the target thinks it's a good
2591 unsigned MinSize, PrefAlign;
2592 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2593 for (auto &Arg : CI->arg_operands()) {
2594 // We want to align both objects whose address is used directly and
2595 // objects whose address is used in casts and GEPs, though it only makes
2596 // sense for GEPs if the offset is a multiple of the desired alignment and
2597 // if size - offset meets the size threshold.
2598 if (!Arg->getType()->isPointerTy())
2600 APInt Offset(DL->getPointerSizeInBits(
2601 cast<PointerType>(Arg->getType())->getAddressSpace()),
2603 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2604 uint64_t Offset2 = Offset.getLimitedValue();
2605 if ((Offset2 & (PrefAlign-1)) != 0)
2608 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2609 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2610 AI->setAlignment(PrefAlign);
2611 // Global variables can only be aligned if they are defined in this
2612 // object (i.e. they are uniquely initialized in this object), and
2613 // over-aligning global variables that have an explicit section is
2616 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2617 GV->getAlignment() < PrefAlign &&
2618 DL->getTypeAllocSize(GV->getType()->getElementType()) >=
2620 GV->setAlignment(PrefAlign);
2622 // If this is a memcpy (or similar) then we may be able to improve the
2624 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2625 unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2626 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2627 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2628 if (Align > MI->getAlignment())
2629 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2633 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2635 switch (II->getIntrinsicID()) {
2637 case Intrinsic::objectsize: {
2638 // Lower all uses of llvm.objectsize.*
2639 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
2640 Type *ReturnTy = CI->getType();
2641 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
2643 // Substituting this can cause recursive simplifications, which can
2644 // invalidate our iterator. Use a WeakVH to hold onto it in case this
2646 WeakVH IterHandle(&*CurInstIterator);
2648 replaceAndRecursivelySimplify(CI, RetVal,
2651 // If the iterator instruction was recursively deleted, start over at the
2652 // start of the block.
2653 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
2654 CurInstIterator = BB->begin();
2659 case Intrinsic::masked_load: {
2660 // Scalarize unsupported vector masked load
2661 if (!TTI->isLegalMaskedLoad(CI->getType())) {
2662 ScalarizeMaskedLoad(CI);
2668 case Intrinsic::masked_store: {
2669 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
2670 ScalarizeMaskedStore(CI);
2676 case Intrinsic::masked_gather: {
2677 if (!TTI->isLegalMaskedGather(CI->getType())) {
2678 ScalarizeMaskedGather(CI);
2684 case Intrinsic::masked_scatter: {
2685 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
2686 ScalarizeMaskedScatter(CI);
2692 case Intrinsic::aarch64_stlxr:
2693 case Intrinsic::aarch64_stxr: {
2694 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2695 if (!ExtVal || !ExtVal->hasOneUse() ||
2696 ExtVal->getParent() == CI->getParent())
2698 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2699 ExtVal->moveBefore(CI);
2700 // Mark this instruction as "inserted by CGP", so that other
2701 // optimizations don't touch it.
2702 InsertedInsts.insert(ExtVal);
2705 case Intrinsic::invariant_group_barrier:
2706 II->replaceAllUsesWith(II->getArgOperand(0));
2707 II->eraseFromParent();
2710 case Intrinsic::cttz:
2711 case Intrinsic::ctlz:
2712 // If counting zeros is expensive, try to avoid it.
2713 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2717 // Unknown address space.
2718 // TODO: Target hook to pick which address space the intrinsic cares
2720 unsigned AddrSpace = ~0u;
2721 SmallVector<Value*, 2> PtrOps;
2723 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
2724 while (!PtrOps.empty())
2725 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
2730 // From here on out we're working with named functions.
2731 if (!CI->getCalledFunction()) return false;
2733 // Lower all default uses of _chk calls. This is very similar
2734 // to what InstCombineCalls does, but here we are only lowering calls
2735 // to fortified library functions (e.g. __memcpy_chk) that have the default
2736 // "don't know" as the objectsize. Anything else should be left alone.
2737 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2738 if (Value *V = Simplifier.optimizeCall(CI)) {
2739 CI->replaceAllUsesWith(V);
2740 CI->eraseFromParent();
2746 /// Look for opportunities to duplicate return instructions to the predecessor
2747 /// to enable tail call optimizations. The case it is currently looking for is:
2750 /// %tmp0 = tail call i32 @f0()
2751 /// br label %return
2753 /// %tmp1 = tail call i32 @f1()
2754 /// br label %return
2756 /// %tmp2 = tail call i32 @f2()
2757 /// br label %return
2759 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2767 /// %tmp0 = tail call i32 @f0()
2770 /// %tmp1 = tail call i32 @f1()
2773 /// %tmp2 = tail call i32 @f2()
2776 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2780 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
2784 PHINode *PN = nullptr;
2785 BitCastInst *BCI = nullptr;
2786 Value *V = RI->getReturnValue();
2788 BCI = dyn_cast<BitCastInst>(V);
2790 V = BCI->getOperand(0);
2792 PN = dyn_cast<PHINode>(V);
2797 if (PN && PN->getParent() != BB)
2800 // It's not safe to eliminate the sign / zero extension of the return value.
2801 // See llvm::isInTailCallPosition().
2802 const Function *F = BB->getParent();
2803 AttributeSet CallerAttrs = F->getAttributes();
2804 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
2805 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
2808 // Make sure there are no instructions between the PHI and return, or that the
2809 // return is the first instruction in the block.
2811 BasicBlock::iterator BI = BB->begin();
2812 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2814 // Also skip over the bitcast.
2819 BasicBlock::iterator BI = BB->begin();
2820 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2825 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2827 SmallVector<CallInst*, 4> TailCalls;
2829 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2830 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2831 // Make sure the phi value is indeed produced by the tail call.
2832 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2833 TLI->mayBeEmittedAsTailCall(CI))
2834 TailCalls.push_back(CI);
2837 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2838 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2839 if (!VisitedBBs.insert(*PI).second)
2842 BasicBlock::InstListType &InstList = (*PI)->getInstList();
2843 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2844 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2845 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2849 CallInst *CI = dyn_cast<CallInst>(&*RI);
2850 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
2851 TailCalls.push_back(CI);
2855 bool Changed = false;
2856 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2857 CallInst *CI = TailCalls[i];
2860 // Conservatively require the attributes of the call to match those of the
2861 // return. Ignore noalias because it doesn't affect the call sequence.
2862 AttributeSet CalleeAttrs = CS.getAttributes();
2863 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
2864 removeAttribute(Attribute::NoAlias) !=
2865 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
2866 removeAttribute(Attribute::NoAlias))
2869 // Make sure the call instruction is followed by an unconditional branch to
2870 // the return block.
2871 BasicBlock *CallBB = CI->getParent();
2872 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2873 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2876 // Duplicate the return into CallBB.
2877 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
2878 ModifiedDT = Changed = true;
2882 // If we eliminated all predecessors of the block, delete the block now.
2883 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2884 BB->eraseFromParent();
2889 //===----------------------------------------------------------------------===//
2890 // Memory Optimization
2891 //===----------------------------------------------------------------------===//
2895 /// This is an extended version of TargetLowering::AddrMode
2896 /// which holds actual Value*'s for register values.
2897 struct ExtAddrMode : public TargetLowering::AddrMode {
2900 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2901 void print(raw_ostream &OS) const;
2904 bool operator==(const ExtAddrMode& O) const {
2905 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2906 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2907 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2912 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2918 void ExtAddrMode::print(raw_ostream &OS) const {
2919 bool NeedPlus = false;
2922 OS << (NeedPlus ? " + " : "")
2924 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2929 OS << (NeedPlus ? " + " : "")
2935 OS << (NeedPlus ? " + " : "")
2937 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2941 OS << (NeedPlus ? " + " : "")
2943 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2949 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2950 void ExtAddrMode::dump() const {
2956 /// \brief This class provides transaction based operation on the IR.
2957 /// Every change made through this class is recorded in the internal state and
2958 /// can be undone (rollback) until commit is called.
2959 class TypePromotionTransaction {
2961 /// \brief This represents the common interface of the individual transaction.
2962 /// Each class implements the logic for doing one specific modification on
2963 /// the IR via the TypePromotionTransaction.
2964 class TypePromotionAction {
2966 /// The Instruction modified.
2970 /// \brief Constructor of the action.
2971 /// The constructor performs the related action on the IR.
2972 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2974 virtual ~TypePromotionAction() {}
2976 /// \brief Undo the modification done by this action.
2977 /// When this method is called, the IR must be in the same state as it was
2978 /// before this action was applied.
2979 /// \pre Undoing the action works if and only if the IR is in the exact same
2980 /// state as it was directly after this action was applied.
2981 virtual void undo() = 0;
2983 /// \brief Advocate every change made by this action.
2984 /// When the results on the IR of the action are to be kept, it is important
2985 /// to call this function, otherwise hidden information may be kept forever.
2986 virtual void commit() {
2987 // Nothing to be done, this action is not doing anything.
2991 /// \brief Utility to remember the position of an instruction.
2992 class InsertionHandler {
2993 /// Position of an instruction.
2994 /// Either an instruction:
2995 /// - Is the first in a basic block: BB is used.
2996 /// - Has a previous instructon: PrevInst is used.
2998 Instruction *PrevInst;
3001 /// Remember whether or not the instruction had a previous instruction.
3002 bool HasPrevInstruction;
3005 /// \brief Record the position of \p Inst.
3006 InsertionHandler(Instruction *Inst) {
3007 BasicBlock::iterator It = Inst->getIterator();
3008 HasPrevInstruction = (It != (Inst->getParent()->begin()));
3009 if (HasPrevInstruction)
3010 Point.PrevInst = &*--It;
3012 Point.BB = Inst->getParent();
3015 /// \brief Insert \p Inst at the recorded position.
3016 void insert(Instruction *Inst) {
3017 if (HasPrevInstruction) {
3018 if (Inst->getParent())
3019 Inst->removeFromParent();
3020 Inst->insertAfter(Point.PrevInst);
3022 Instruction *Position = &*Point.BB->getFirstInsertionPt();
3023 if (Inst->getParent())
3024 Inst->moveBefore(Position);
3026 Inst->insertBefore(Position);
3031 /// \brief Move an instruction before another.
3032 class InstructionMoveBefore : public TypePromotionAction {
3033 /// Original position of the instruction.
3034 InsertionHandler Position;
3037 /// \brief Move \p Inst before \p Before.
3038 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
3039 : TypePromotionAction(Inst), Position(Inst) {
3040 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
3041 Inst->moveBefore(Before);
3044 /// \brief Move the instruction back to its original position.
3045 void undo() override {
3046 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
3047 Position.insert(Inst);
3051 /// \brief Set the operand of an instruction with a new value.
3052 class OperandSetter : public TypePromotionAction {
3053 /// Original operand of the instruction.
3055 /// Index of the modified instruction.
3059 /// \brief Set \p Idx operand of \p Inst with \p NewVal.
3060 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
3061 : TypePromotionAction(Inst), Idx(Idx) {
3062 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
3063 << "for:" << *Inst << "\n"
3064 << "with:" << *NewVal << "\n");
3065 Origin = Inst->getOperand(Idx);
3066 Inst->setOperand(Idx, NewVal);
3069 /// \brief Restore the original value of the instruction.
3070 void undo() override {
3071 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
3072 << "for: " << *Inst << "\n"
3073 << "with: " << *Origin << "\n");
3074 Inst->setOperand(Idx, Origin);
3078 /// \brief Hide the operands of an instruction.
3079 /// Do as if this instruction was not using any of its operands.
3080 class OperandsHider : public TypePromotionAction {
3081 /// The list of original operands.
3082 SmallVector<Value *, 4> OriginalValues;
3085 /// \brief Remove \p Inst from the uses of the operands of \p Inst.
3086 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
3087 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
3088 unsigned NumOpnds = Inst->getNumOperands();
3089 OriginalValues.reserve(NumOpnds);
3090 for (unsigned It = 0; It < NumOpnds; ++It) {
3091 // Save the current operand.
3092 Value *Val = Inst->getOperand(It);
3093 OriginalValues.push_back(Val);
3095 // We could use OperandSetter here, but that would imply an overhead
3096 // that we are not willing to pay.
3097 Inst->setOperand(It, UndefValue::get(Val->getType()));
3101 /// \brief Restore the original list of uses.
3102 void undo() override {
3103 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3104 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3105 Inst->setOperand(It, OriginalValues[It]);
3109 /// \brief Build a truncate instruction.
3110 class TruncBuilder : public TypePromotionAction {
3113 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
3115 /// trunc Opnd to Ty.
3116 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3117 IRBuilder<> Builder(Opnd);
3118 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3119 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3122 /// \brief Get the built value.
3123 Value *getBuiltValue() { return Val; }
3125 /// \brief Remove the built instruction.
3126 void undo() override {
3127 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3128 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3129 IVal->eraseFromParent();
3133 /// \brief Build a sign extension instruction.
3134 class SExtBuilder : public TypePromotionAction {
3137 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
3139 /// sext Opnd to Ty.
3140 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3141 : TypePromotionAction(InsertPt) {
3142 IRBuilder<> Builder(InsertPt);
3143 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3144 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3147 /// \brief Get the built value.
3148 Value *getBuiltValue() { return Val; }
3150 /// \brief Remove the built instruction.
3151 void undo() override {
3152 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3153 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3154 IVal->eraseFromParent();
3158 /// \brief Build a zero extension instruction.
3159 class ZExtBuilder : public TypePromotionAction {
3162 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
3164 /// zext Opnd to Ty.
3165 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3166 : TypePromotionAction(InsertPt) {
3167 IRBuilder<> Builder(InsertPt);
3168 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3169 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3172 /// \brief Get the built value.
3173 Value *getBuiltValue() { return Val; }
3175 /// \brief Remove the built instruction.
3176 void undo() override {
3177 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3178 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3179 IVal->eraseFromParent();
3183 /// \brief Mutate an instruction to another type.
3184 class TypeMutator : public TypePromotionAction {
3185 /// Record the original type.
3189 /// \brief Mutate the type of \p Inst into \p NewTy.
3190 TypeMutator(Instruction *Inst, Type *NewTy)
3191 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3192 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3194 Inst->mutateType(NewTy);
3197 /// \brief Mutate the instruction back to its original type.
3198 void undo() override {
3199 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3201 Inst->mutateType(OrigTy);
3205 /// \brief Replace the uses of an instruction by another instruction.
3206 class UsesReplacer : public TypePromotionAction {
3207 /// Helper structure to keep track of the replaced uses.
3208 struct InstructionAndIdx {
3209 /// The instruction using the instruction.
3211 /// The index where this instruction is used for Inst.
3213 InstructionAndIdx(Instruction *Inst, unsigned Idx)
3214 : Inst(Inst), Idx(Idx) {}
3217 /// Keep track of the original uses (pair Instruction, Index).
3218 SmallVector<InstructionAndIdx, 4> OriginalUses;
3219 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
3222 /// \brief Replace all the use of \p Inst by \p New.
3223 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
3224 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3226 // Record the original uses.
3227 for (Use &U : Inst->uses()) {
3228 Instruction *UserI = cast<Instruction>(U.getUser());
3229 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3231 // Now, we can replace the uses.
3232 Inst->replaceAllUsesWith(New);
3235 /// \brief Reassign the original uses of Inst to Inst.
3236 void undo() override {
3237 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3238 for (use_iterator UseIt = OriginalUses.begin(),
3239 EndIt = OriginalUses.end();
3240 UseIt != EndIt; ++UseIt) {
3241 UseIt->Inst->setOperand(UseIt->Idx, Inst);
3246 /// \brief Remove an instruction from the IR.
3247 class InstructionRemover : public TypePromotionAction {
3248 /// Original position of the instruction.
3249 InsertionHandler Inserter;
3250 /// Helper structure to hide all the link to the instruction. In other
3251 /// words, this helps to do as if the instruction was removed.
3252 OperandsHider Hider;
3253 /// Keep track of the uses replaced, if any.
3254 UsesReplacer *Replacer;
3257 /// \brief Remove all reference of \p Inst and optinally replace all its
3259 /// \pre If !Inst->use_empty(), then New != nullptr
3260 InstructionRemover(Instruction *Inst, Value *New = nullptr)
3261 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3264 Replacer = new UsesReplacer(Inst, New);
3265 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3266 Inst->removeFromParent();
3269 ~InstructionRemover() override { delete Replacer; }
3271 /// \brief Really remove the instruction.
3272 void commit() override { delete Inst; }
3274 /// \brief Resurrect the instruction and reassign it to the proper uses if
3275 /// new value was provided when build this action.
3276 void undo() override {
3277 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3278 Inserter.insert(Inst);
3286 /// Restoration point.
3287 /// The restoration point is a pointer to an action instead of an iterator
3288 /// because the iterator may be invalidated but not the pointer.
3289 typedef const TypePromotionAction *ConstRestorationPt;
3290 /// Advocate every changes made in that transaction.
3292 /// Undo all the changes made after the given point.
3293 void rollback(ConstRestorationPt Point);
3294 /// Get the current restoration point.
3295 ConstRestorationPt getRestorationPoint() const;
3297 /// \name API for IR modification with state keeping to support rollback.
3299 /// Same as Instruction::setOperand.
3300 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3301 /// Same as Instruction::eraseFromParent.
3302 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3303 /// Same as Value::replaceAllUsesWith.
3304 void replaceAllUsesWith(Instruction *Inst, Value *New);
3305 /// Same as Value::mutateType.
3306 void mutateType(Instruction *Inst, Type *NewTy);
3307 /// Same as IRBuilder::createTrunc.
3308 Value *createTrunc(Instruction *Opnd, Type *Ty);
3309 /// Same as IRBuilder::createSExt.
3310 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3311 /// Same as IRBuilder::createZExt.
3312 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3313 /// Same as Instruction::moveBefore.
3314 void moveBefore(Instruction *Inst, Instruction *Before);
3318 /// The ordered list of actions made so far.
3319 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3320 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
3323 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3326 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
3329 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3332 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
3335 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3337 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3340 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3341 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3344 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3346 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3347 Value *Val = Ptr->getBuiltValue();
3348 Actions.push_back(std::move(Ptr));
3352 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3353 Value *Opnd, Type *Ty) {
3354 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3355 Value *Val = Ptr->getBuiltValue();
3356 Actions.push_back(std::move(Ptr));
3360 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3361 Value *Opnd, Type *Ty) {
3362 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3363 Value *Val = Ptr->getBuiltValue();
3364 Actions.push_back(std::move(Ptr));
3368 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3369 Instruction *Before) {
3371 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
3374 TypePromotionTransaction::ConstRestorationPt
3375 TypePromotionTransaction::getRestorationPoint() const {
3376 return !Actions.empty() ? Actions.back().get() : nullptr;
3379 void TypePromotionTransaction::commit() {
3380 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3386 void TypePromotionTransaction::rollback(
3387 TypePromotionTransaction::ConstRestorationPt Point) {
3388 while (!Actions.empty() && Point != Actions.back().get()) {
3389 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3394 /// \brief A helper class for matching addressing modes.
3396 /// This encapsulates the logic for matching the target-legal addressing modes.
3397 class AddressingModeMatcher {
3398 SmallVectorImpl<Instruction*> &AddrModeInsts;
3399 const TargetMachine &TM;
3400 const TargetLowering &TLI;
3401 const DataLayout &DL;
3403 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3404 /// the memory instruction that we're computing this address for.
3407 Instruction *MemoryInst;
3409 /// This is the addressing mode that we're building up. This is
3410 /// part of the return value of this addressing mode matching stuff.
3411 ExtAddrMode &AddrMode;
3413 /// The instructions inserted by other CodeGenPrepare optimizations.
3414 const SetOfInstrs &InsertedInsts;
3415 /// A map from the instructions to their type before promotion.
3416 InstrToOrigTy &PromotedInsts;
3417 /// The ongoing transaction where every action should be registered.
3418 TypePromotionTransaction &TPT;
3420 /// This is set to true when we should not do profitability checks.
3421 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3422 bool IgnoreProfitability;
3424 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3425 const TargetMachine &TM, Type *AT, unsigned AS,
3426 Instruction *MI, ExtAddrMode &AM,
3427 const SetOfInstrs &InsertedInsts,
3428 InstrToOrigTy &PromotedInsts,
3429 TypePromotionTransaction &TPT)
3430 : AddrModeInsts(AMI), TM(TM),
3431 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
3432 ->getTargetLowering()),
3433 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3434 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3435 PromotedInsts(PromotedInsts), TPT(TPT) {
3436 IgnoreProfitability = false;
3440 /// Find the maximal addressing mode that a load/store of V can fold,
3441 /// give an access type of AccessTy. This returns a list of involved
3442 /// instructions in AddrModeInsts.
3443 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3445 /// \p PromotedInsts maps the instructions to their type before promotion.
3446 /// \p The ongoing transaction where every action should be registered.
3447 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3448 Instruction *MemoryInst,
3449 SmallVectorImpl<Instruction*> &AddrModeInsts,
3450 const TargetMachine &TM,
3451 const SetOfInstrs &InsertedInsts,
3452 InstrToOrigTy &PromotedInsts,
3453 TypePromotionTransaction &TPT) {
3456 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
3457 MemoryInst, Result, InsertedInsts,
3458 PromotedInsts, TPT).matchAddr(V, 0);
3459 (void)Success; assert(Success && "Couldn't select *anything*?");
3463 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3464 bool matchAddr(Value *V, unsigned Depth);
3465 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3466 bool *MovedAway = nullptr);
3467 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3468 ExtAddrMode &AMBefore,
3469 ExtAddrMode &AMAfter);
3470 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3471 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3472 Value *PromotedOperand) const;
3475 /// Try adding ScaleReg*Scale to the current addressing mode.
3476 /// Return true and update AddrMode if this addr mode is legal for the target,
3478 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3480 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3481 // mode. Just process that directly.
3483 return matchAddr(ScaleReg, Depth);
3485 // If the scale is 0, it takes nothing to add this.
3489 // If we already have a scale of this value, we can add to it, otherwise, we