EH: Sink computation of local PadMap variable into function that uses it
[oota-llvm.git] / lib / CodeGen / AsmPrinter / EHStreamer.cpp
1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing exception info into assembly files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "EHStreamer.h"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/MC/MCSymbol.h"
23 #include "llvm/Support/LEB128.h"
24 #include "llvm/Target/TargetLoweringObjectFile.h"
25
26 using namespace llvm;
27
28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
29
30 EHStreamer::~EHStreamer() {}
31
32 /// How many leading type ids two landing pads have in common.
33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
34                                    const LandingPadInfo *R) {
35   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
36   unsigned LSize = LIds.size(), RSize = RIds.size();
37   unsigned MinSize = LSize < RSize ? LSize : RSize;
38   unsigned Count = 0;
39
40   for (; Count != MinSize; ++Count)
41     if (LIds[Count] != RIds[Count])
42       return Count;
43
44   return Count;
45 }
46
47 /// Compute the actions table and gather the first action index for each landing
48 /// pad site.
49 unsigned EHStreamer::
50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
51                     SmallVectorImpl<ActionEntry> &Actions,
52                     SmallVectorImpl<unsigned> &FirstActions) {
53
54   // The action table follows the call-site table in the LSDA. The individual
55   // records are of two types:
56   //
57   //   * Catch clause
58   //   * Exception specification
59   //
60   // The two record kinds have the same format, with only small differences.
61   // They are distinguished by the "switch value" field: Catch clauses
62   // (TypeInfos) have strictly positive switch values, and exception
63   // specifications (FilterIds) have strictly negative switch values. Value 0
64   // indicates a catch-all clause.
65   //
66   // Negative type IDs index into FilterIds. Positive type IDs index into
67   // TypeInfos.  The value written for a positive type ID is just the type ID
68   // itself.  For a negative type ID, however, the value written is the
69   // (negative) byte offset of the corresponding FilterIds entry.  The byte
70   // offset is usually equal to the type ID (because the FilterIds entries are
71   // written using a variable width encoding, which outputs one byte per entry
72   // as long as the value written is not too large) but can differ.  This kind
73   // of complication does not occur for positive type IDs because type infos are
74   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
75   // offset corresponding to FilterIds[i].
76
77   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
78   SmallVector<int, 16> FilterOffsets;
79   FilterOffsets.reserve(FilterIds.size());
80   int Offset = -1;
81
82   for (std::vector<unsigned>::const_iterator
83          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
84     FilterOffsets.push_back(Offset);
85     Offset -= getULEB128Size(*I);
86   }
87
88   FirstActions.reserve(LandingPads.size());
89
90   int FirstAction = 0;
91   unsigned SizeActions = 0;
92   const LandingPadInfo *PrevLPI = nullptr;
93
94   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
95          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
96     const LandingPadInfo *LPI = *I;
97     const std::vector<int> &TypeIds = LPI->TypeIds;
98     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99     unsigned SizeSiteActions = 0;
100
101     if (NumShared < TypeIds.size()) {
102       unsigned SizeAction = 0;
103       unsigned PrevAction = (unsigned)-1;
104
105       if (NumShared) {
106         unsigned SizePrevIds = PrevLPI->TypeIds.size();
107         assert(Actions.size());
108         PrevAction = Actions.size() - 1;
109         SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
110                      getSLEB128Size(Actions[PrevAction].ValueForTypeID);
111
112         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
113           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
114           SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
115           SizeAction += -Actions[PrevAction].NextAction;
116           PrevAction = Actions[PrevAction].Previous;
117         }
118       }
119
120       // Compute the actions.
121       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
122         int TypeID = TypeIds[J];
123         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
124         int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
125         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
126
127         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
128         SizeAction = SizeTypeID + getSLEB128Size(NextAction);
129         SizeSiteActions += SizeAction;
130
131         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
132         Actions.push_back(Action);
133         PrevAction = Actions.size() - 1;
134       }
135
136       // Record the first action of the landing pad site.
137       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
138     } // else identical - re-use previous FirstAction
139
140     // Information used when created the call-site table. The action record
141     // field of the call site record is the offset of the first associated
142     // action record, relative to the start of the actions table. This value is
143     // biased by 1 (1 indicating the start of the actions table), and 0
144     // indicates that there are no actions.
145     FirstActions.push_back(FirstAction);
146
147     // Compute this sites contribution to size.
148     SizeActions += SizeSiteActions;
149
150     PrevLPI = LPI;
151   }
152
153   return SizeActions;
154 }
155
156 /// Return `true' if this is a call to a function marked `nounwind'. Return
157 /// `false' otherwise.
158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
159   assert(MI->isCall() && "This should be a call instruction!");
160
161   bool MarkedNoUnwind = false;
162   bool SawFunc = false;
163
164   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
165     const MachineOperand &MO = MI->getOperand(I);
166
167     if (!MO.isGlobal()) continue;
168
169     const Function *F = dyn_cast<Function>(MO.getGlobal());
170     if (!F) continue;
171
172     if (SawFunc) {
173       // Be conservative. If we have more than one function operand for this
174       // call, then we can't make the assumption that it's the callee and
175       // not a parameter to the call.
176       //
177       // FIXME: Determine if there's a way to say that `F' is the callee or
178       // parameter.
179       MarkedNoUnwind = false;
180       break;
181     }
182
183     MarkedNoUnwind = F->doesNotThrow();
184     SawFunc = true;
185   }
186
187   return MarkedNoUnwind;
188 }
189
190 /// Compute the call-site table.  The entry for an invoke has a try-range
191 /// containing the call, a non-zero landing pad, and an appropriate action.  The
192 /// entry for an ordinary call has a try-range containing the call and zero for
193 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
194 /// must not be contained in the try-range of any entry - they form gaps in the
195 /// table.  Entries must be ordered by try-range address.
196 void EHStreamer::
197 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
198                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
199                      const SmallVectorImpl<unsigned> &FirstActions) {
200   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
201   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
202   // try-ranges for them need be deduced so we can put them in the LSDA.
203   RangeMapType PadMap;
204   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
205     const LandingPadInfo *LandingPad = LandingPads[i];
206     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
207       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
208       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
209       PadRange P = { i, j };
210       PadMap[BeginLabel] = P;
211     }
212   }
213
214   // The end label of the previous invoke or nounwind try-range.
215   MCSymbol *LastLabel = nullptr;
216
217   // Whether there is a potentially throwing instruction (currently this means
218   // an ordinary call) between the end of the previous try-range and now.
219   bool SawPotentiallyThrowing = false;
220
221   // Whether the last CallSite entry was for an invoke.
222   bool PreviousIsInvoke = false;
223
224   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
225
226   // Visit all instructions in order of address.
227   for (const auto &MBB : *Asm->MF) {
228     for (const auto &MI : MBB) {
229       if (!MI.isEHLabel()) {
230         if (MI.isCall())
231           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
232         continue;
233       }
234
235       // End of the previous try-range?
236       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
237       if (BeginLabel == LastLabel)
238         SawPotentiallyThrowing = false;
239
240       // Beginning of a new try-range?
241       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
242       if (L == PadMap.end())
243         // Nope, it was just some random label.
244         continue;
245
246       const PadRange &P = L->second;
247       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
248       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
249              "Inconsistent landing pad map!");
250
251       // For Dwarf exception handling (SjLj handling doesn't use this). If some
252       // instruction between the previous try-range and this one may throw,
253       // create a call-site entry with no landing pad for the region between the
254       // try-ranges.
255       if (SawPotentiallyThrowing && !IsSJLJ) {
256         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
257         CallSites.push_back(Site);
258         PreviousIsInvoke = false;
259       }
260
261       LastLabel = LandingPad->EndLabels[P.RangeIndex];
262       assert(BeginLabel && LastLabel && "Invalid landing pad!");
263
264       if (!LandingPad->LandingPadLabel) {
265         // Create a gap.
266         PreviousIsInvoke = false;
267       } else {
268         // This try-range is for an invoke.
269         CallSiteEntry Site = {
270           BeginLabel,
271           LastLabel,
272           LandingPad->LandingPadLabel,
273           FirstActions[P.PadIndex]
274         };
275
276         // Try to merge with the previous call-site. SJLJ doesn't do this
277         if (PreviousIsInvoke && !IsSJLJ) {
278           CallSiteEntry &Prev = CallSites.back();
279           if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
280             // Extend the range of the previous entry.
281             Prev.EndLabel = Site.EndLabel;
282             continue;
283           }
284         }
285
286         // Otherwise, create a new call-site.
287         if (!IsSJLJ)
288           CallSites.push_back(Site);
289         else {
290           // SjLj EH must maintain the call sites in the order assigned
291           // to them by the SjLjPrepare pass.
292           unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
293           if (CallSites.size() < SiteNo)
294             CallSites.resize(SiteNo);
295           CallSites[SiteNo - 1] = Site;
296         }
297         PreviousIsInvoke = true;
298       }
299     }
300   }
301
302   // If some instruction between the previous try-range and the end of the
303   // function may throw, create a call-site entry with no landing pad for the
304   // region following the try-range.
305   if (SawPotentiallyThrowing && !IsSJLJ) {
306     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
307     CallSites.push_back(Site);
308   }
309 }
310
311 /// Emit landing pads and actions.
312 ///
313 /// The general organization of the table is complex, but the basic concepts are
314 /// easy.  First there is a header which describes the location and organization
315 /// of the three components that follow.
316 ///
317 ///  1. The landing pad site information describes the range of code covered by
318 ///     the try.  In our case it's an accumulation of the ranges covered by the
319 ///     invokes in the try.  There is also a reference to the landing pad that
320 ///     handles the exception once processed.  Finally an index into the actions
321 ///     table.
322 ///  2. The action table, in our case, is composed of pairs of type IDs and next
323 ///     action offset.  Starting with the action index from the landing pad
324 ///     site, each type ID is checked for a match to the current exception.  If
325 ///     it matches then the exception and type id are passed on to the landing
326 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
327 ///     with a next action of zero.  If no type id is found then the frame is
328 ///     unwound and handling continues.
329 ///  3. Type ID table contains references to all the C++ typeinfo for all
330 ///     catches in the function.  This tables is reverse indexed base 1.
331 void EHStreamer::emitExceptionTable() {
332   const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
333   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
334   const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
335
336   // Sort the landing pads in order of their type ids.  This is used to fold
337   // duplicate actions.
338   SmallVector<const LandingPadInfo *, 64> LandingPads;
339   LandingPads.reserve(PadInfos.size());
340
341   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
342     LandingPads.push_back(&PadInfos[i]);
343
344   // Order landing pads lexicographically by type id.
345   std::sort(LandingPads.begin(), LandingPads.end(),
346             [](const LandingPadInfo *L,
347                const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
348
349   // Compute the actions table and gather the first action index for each
350   // landing pad site.
351   SmallVector<ActionEntry, 32> Actions;
352   SmallVector<unsigned, 64> FirstActions;
353   unsigned SizeActions =
354     computeActionsTable(LandingPads, Actions, FirstActions);
355
356   // Compute the call-site table.
357   SmallVector<CallSiteEntry, 64> CallSites;
358   computeCallSiteTable(CallSites, LandingPads, FirstActions);
359
360   // Final tallies.
361
362   // Call sites.
363   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
364   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
365
366   unsigned CallSiteTableLength;
367   if (IsSJLJ)
368     CallSiteTableLength = 0;
369   else {
370     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
371     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
372     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
373     CallSiteTableLength =
374       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
375   }
376
377   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
378     CallSiteTableLength += getULEB128Size(CallSites[i].Action);
379     if (IsSJLJ)
380       CallSiteTableLength += getULEB128Size(i);
381   }
382
383   // Type infos.
384   const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
385   unsigned TTypeEncoding;
386   unsigned TypeFormatSize;
387
388   if (!HaveTTData) {
389     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
390     // that we're omitting that bit.
391     TTypeEncoding = dwarf::DW_EH_PE_omit;
392     // dwarf::DW_EH_PE_absptr
393     TypeFormatSize = Asm->getDataLayout().getPointerSize();
394   } else {
395     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
396     // pick a type encoding for them.  We're about to emit a list of pointers to
397     // typeinfo objects at the end of the LSDA.  However, unless we're in static
398     // mode, this reference will require a relocation by the dynamic linker.
399     //
400     // Because of this, we have a couple of options:
401     //
402     //   1) If we are in -static mode, we can always use an absolute reference
403     //      from the LSDA, because the static linker will resolve it.
404     //
405     //   2) Otherwise, if the LSDA section is writable, we can output the direct
406     //      reference to the typeinfo and allow the dynamic linker to relocate
407     //      it.  Since it is in a writable section, the dynamic linker won't
408     //      have a problem.
409     //
410     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
411     //      we need to use some form of indirection.  For example, on Darwin,
412     //      we can output a statically-relocatable reference to a dyld stub. The
413     //      offset to the stub is constant, but the contents are in a section
414     //      that is updated by the dynamic linker.  This is easy enough, but we
415     //      need to tell the personality function of the unwinder to indirect
416     //      through the dyld stub.
417     //
418     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
419     // somewhere.  This predicate should be moved to a shared location that is
420     // in target-independent code.
421     //
422     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
423     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
424   }
425
426   // Begin the exception table.
427   // Sometimes we want not to emit the data into separate section (e.g. ARM
428   // EHABI). In this case LSDASection will be NULL.
429   if (LSDASection)
430     Asm->OutStreamer.SwitchSection(LSDASection);
431   Asm->EmitAlignment(2);
432
433   // Emit the LSDA.
434   MCSymbol *GCCETSym =
435     Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
436                                       Twine(Asm->getFunctionNumber()));
437   Asm->OutStreamer.EmitLabel(GCCETSym);
438   Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
439                                                 Asm->getFunctionNumber()));
440
441   if (IsSJLJ)
442     Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
443                                                   Asm->getFunctionNumber()));
444
445   // Emit the LSDA header.
446   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
447   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
448
449   // The type infos need to be aligned. GCC does this by inserting padding just
450   // before the type infos. However, this changes the size of the exception
451   // table, so you need to take this into account when you output the exception
452   // table size. However, the size is output using a variable length encoding.
453   // So by increasing the size by inserting padding, you may increase the number
454   // of bytes used for writing the size. If it increases, say by one byte, then
455   // you now need to output one less byte of padding to get the type infos
456   // aligned. However this decreases the size of the exception table. This
457   // changes the value you have to output for the exception table size. Due to
458   // the variable length encoding, the number of bytes used for writing the
459   // length may decrease. If so, you then have to increase the amount of
460   // padding. And so on. If you look carefully at the GCC code you will see that
461   // it indeed does this in a loop, going on and on until the values stabilize.
462   // We chose another solution: don't output padding inside the table like GCC
463   // does, instead output it before the table.
464   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
465   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
466   unsigned TTypeBaseOffset =
467     sizeof(int8_t) +                            // Call site format
468     CallSiteTableLengthSize +                   // Call site table length size
469     CallSiteTableLength +                       // Call site table length
470     SizeActions +                               // Actions size
471     SizeTypes;
472   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
473   unsigned TotalSize =
474     sizeof(int8_t) +                            // LPStart format
475     sizeof(int8_t) +                            // TType format
476     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
477     TTypeBaseOffset;                            // TType base offset
478   unsigned SizeAlign = (4 - TotalSize) & 3;
479
480   if (HaveTTData) {
481     // Account for any extra padding that will be added to the call site table
482     // length.
483     Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
484     SizeAlign = 0;
485   }
486
487   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
488
489   // SjLj Exception handling
490   if (IsSJLJ) {
491     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
492
493     // Add extra padding if it wasn't added to the TType base offset.
494     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
495
496     // Emit the landing pad site information.
497     unsigned idx = 0;
498     for (SmallVectorImpl<CallSiteEntry>::const_iterator
499          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
500       const CallSiteEntry &S = *I;
501
502       // Offset of the landing pad, counted in 16-byte bundles relative to the
503       // @LPStart address.
504       if (VerboseAsm) {
505         Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
506         Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
507       }
508       Asm->EmitULEB128(idx);
509
510       // Offset of the first associated action record, relative to the start of
511       // the action table. This value is biased by 1 (1 indicates the start of
512       // the action table), and 0 indicates that there are no actions.
513       if (VerboseAsm) {
514         if (S.Action == 0)
515           Asm->OutStreamer.AddComment("  Action: cleanup");
516         else
517           Asm->OutStreamer.AddComment("  Action: " +
518                                       Twine((S.Action - 1) / 2 + 1));
519       }
520       Asm->EmitULEB128(S.Action);
521     }
522   } else {
523     // Itanium LSDA exception handling
524
525     // The call-site table is a list of all call sites that may throw an
526     // exception (including C++ 'throw' statements) in the procedure
527     // fragment. It immediately follows the LSDA header. Each entry indicates,
528     // for a given call, the first corresponding action record and corresponding
529     // landing pad.
530     //
531     // The table begins with the number of bytes, stored as an LEB128
532     // compressed, unsigned integer. The records immediately follow the record
533     // count. They are sorted in increasing call-site address. Each record
534     // indicates:
535     //
536     //   * The position of the call-site.
537     //   * The position of the landing pad.
538     //   * The first action record for that call site.
539     //
540     // A missing entry in the call-site table indicates that a call is not
541     // supposed to throw.
542
543     // Emit the landing pad call site table.
544     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
545
546     // Add extra padding if it wasn't added to the TType base offset.
547     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
548
549     unsigned Entry = 0;
550     for (SmallVectorImpl<CallSiteEntry>::const_iterator
551          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
552       const CallSiteEntry &S = *I;
553
554       MCSymbol *EHFuncBeginSym =
555         Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
556
557       MCSymbol *BeginLabel = S.BeginLabel;
558       if (!BeginLabel)
559         BeginLabel = EHFuncBeginSym;
560       MCSymbol *EndLabel = S.EndLabel;
561       if (!EndLabel)
562         EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
563
564
565       // Offset of the call site relative to the previous call site, counted in
566       // number of 16-byte bundles. The first call site is counted relative to
567       // the start of the procedure fragment.
568       if (VerboseAsm)
569         Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
570       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
571       if (VerboseAsm)
572         Asm->OutStreamer.AddComment(Twine("  Call between ") +
573                                     BeginLabel->getName() + " and " +
574                                     EndLabel->getName());
575       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
576
577       // Offset of the landing pad, counted in 16-byte bundles relative to the
578       // @LPStart address.
579       if (!S.PadLabel) {
580         if (VerboseAsm)
581           Asm->OutStreamer.AddComment("    has no landing pad");
582         Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
583       } else {
584         if (VerboseAsm)
585           Asm->OutStreamer.AddComment(Twine("    jumps to ") +
586                                       S.PadLabel->getName());
587         Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
588       }
589
590       // Offset of the first associated action record, relative to the start of
591       // the action table. This value is biased by 1 (1 indicates the start of
592       // the action table), and 0 indicates that there are no actions.
593       if (VerboseAsm) {
594         if (S.Action == 0)
595           Asm->OutStreamer.AddComment("  On action: cleanup");
596         else
597           Asm->OutStreamer.AddComment("  On action: " +
598                                       Twine((S.Action - 1) / 2 + 1));
599       }
600       Asm->EmitULEB128(S.Action);
601     }
602   }
603
604   // Emit the Action Table.
605   int Entry = 0;
606   for (SmallVectorImpl<ActionEntry>::const_iterator
607          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
608     const ActionEntry &Action = *I;
609
610     if (VerboseAsm) {
611       // Emit comments that decode the action table.
612       Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
613     }
614
615     // Type Filter
616     //
617     //   Used by the runtime to match the type of the thrown exception to the
618     //   type of the catch clauses or the types in the exception specification.
619     if (VerboseAsm) {
620       if (Action.ValueForTypeID > 0)
621         Asm->OutStreamer.AddComment("  Catch TypeInfo " +
622                                     Twine(Action.ValueForTypeID));
623       else if (Action.ValueForTypeID < 0)
624         Asm->OutStreamer.AddComment("  Filter TypeInfo " +
625                                     Twine(Action.ValueForTypeID));
626       else
627         Asm->OutStreamer.AddComment("  Cleanup");
628     }
629     Asm->EmitSLEB128(Action.ValueForTypeID);
630
631     // Action Record
632     //
633     //   Self-relative signed displacement in bytes of the next action record,
634     //   or 0 if there is no next action record.
635     if (VerboseAsm) {
636       if (Action.NextAction == 0) {
637         Asm->OutStreamer.AddComment("  No further actions");
638       } else {
639         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
640         Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
641       }
642     }
643     Asm->EmitSLEB128(Action.NextAction);
644   }
645
646   emitTypeInfos(TTypeEncoding);
647
648   Asm->EmitAlignment(2);
649 }
650
651 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
652   const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
653   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
654
655   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
656
657   int Entry = 0;
658   // Emit the Catch TypeInfos.
659   if (VerboseAsm && !TypeInfos.empty()) {
660     Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
661     Asm->OutStreamer.AddBlankLine();
662     Entry = TypeInfos.size();
663   }
664
665   for (std::vector<const GlobalValue *>::const_reverse_iterator
666          I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
667     const GlobalValue *GV = *I;
668     if (VerboseAsm)
669       Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
670     Asm->EmitTTypeReference(GV, TTypeEncoding);
671   }
672
673   // Emit the Exception Specifications.
674   if (VerboseAsm && !FilterIds.empty()) {
675     Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
676     Asm->OutStreamer.AddBlankLine();
677     Entry = 0;
678   }
679   for (std::vector<unsigned>::const_iterator
680          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
681     unsigned TypeID = *I;
682     if (VerboseAsm) {
683       --Entry;
684       if (TypeID != 0)
685         Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
686     }
687
688     Asm->EmitULEB128(TypeID);
689   }
690 }
691
692 /// Emit all exception information that should come after the content.
693 void EHStreamer::endModule() {
694   llvm_unreachable("Should be implemented");
695 }
696
697 /// Gather pre-function exception information. Assumes it's being emitted
698 /// immediately after the function entry point.
699 void EHStreamer::beginFunction(const MachineFunction *MF) {
700   llvm_unreachable("Should be implemented");
701 }
702
703 /// Gather and emit post-function exception information.
704 void EHStreamer::endFunction(const MachineFunction *) {
705   llvm_unreachable("Should be implemented");
706 }