[cleanup] Re-sort all the #include lines in LLVM using
[oota-llvm.git] / lib / CodeGen / AsmPrinter / DwarfDebug.cpp
1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing dwarf debug info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DwarfDebug.h"
15 #include "ByteStreamer.h"
16 #include "DIEHash.h"
17 #include "DwarfCompileUnit.h"
18 #include "DwarfExpression.h"
19 #include "DwarfUnit.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCSection.h"
36 #include "llvm/MC/MCStreamer.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/Endian.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/LEB128.h"
45 #include "llvm/Support/MD5.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55
56 #define DEBUG_TYPE "dwarfdebug"
57
58 static cl::opt<bool>
59 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
60                          cl::desc("Disable debug info printing"));
61
62 static cl::opt<bool> UnknownLocations(
63     "use-unknown-locations", cl::Hidden,
64     cl::desc("Make an absence of debug location information explicit."),
65     cl::init(false));
66
67 static cl::opt<bool>
68 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
69                        cl::desc("Generate GNU-style pubnames and pubtypes"),
70                        cl::init(false));
71
72 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
73                                            cl::Hidden,
74                                            cl::desc("Generate dwarf aranges"),
75                                            cl::init(false));
76
77 namespace {
78 enum DefaultOnOff { Default, Enable, Disable };
79 }
80
81 static cl::opt<DefaultOnOff>
82 DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
83                  cl::desc("Output prototype dwarf accelerator tables."),
84                  cl::values(clEnumVal(Default, "Default for platform"),
85                             clEnumVal(Enable, "Enabled"),
86                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
87                  cl::init(Default));
88
89 static cl::opt<DefaultOnOff>
90 SplitDwarf("split-dwarf", cl::Hidden,
91            cl::desc("Output DWARF5 split debug info."),
92            cl::values(clEnumVal(Default, "Default for platform"),
93                       clEnumVal(Enable, "Enabled"),
94                       clEnumVal(Disable, "Disabled"), clEnumValEnd),
95            cl::init(Default));
96
97 static cl::opt<DefaultOnOff>
98 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
99                  cl::desc("Generate DWARF pubnames and pubtypes sections"),
100                  cl::values(clEnumVal(Default, "Default for platform"),
101                             clEnumVal(Enable, "Enabled"),
102                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
103                  cl::init(Default));
104
105 static const char *const DWARFGroupName = "DWARF Emission";
106 static const char *const DbgTimerName = "DWARF Debug Writer";
107
108 //===----------------------------------------------------------------------===//
109
110 /// resolve - Look in the DwarfDebug map for the MDNode that
111 /// corresponds to the reference.
112 template <typename T> T DbgVariable::resolve(DIRef<T> Ref) const {
113   return DD->resolve(Ref);
114 }
115
116 bool DbgVariable::isBlockByrefVariable() const {
117   assert(Var.isVariable() && "Invalid complex DbgVariable!");
118   return Var.isBlockByrefVariable(DD->getTypeIdentifierMap());
119 }
120
121 DIType DbgVariable::getType() const {
122   DIType Ty = Var.getType().resolve(DD->getTypeIdentifierMap());
123   // FIXME: isBlockByrefVariable should be reformulated in terms of complex
124   // addresses instead.
125   if (Var.isBlockByrefVariable(DD->getTypeIdentifierMap())) {
126     /* Byref variables, in Blocks, are declared by the programmer as
127        "SomeType VarName;", but the compiler creates a
128        __Block_byref_x_VarName struct, and gives the variable VarName
129        either the struct, or a pointer to the struct, as its type.  This
130        is necessary for various behind-the-scenes things the compiler
131        needs to do with by-reference variables in blocks.
132
133        However, as far as the original *programmer* is concerned, the
134        variable should still have type 'SomeType', as originally declared.
135
136        The following function dives into the __Block_byref_x_VarName
137        struct to find the original type of the variable.  This will be
138        passed back to the code generating the type for the Debug
139        Information Entry for the variable 'VarName'.  'VarName' will then
140        have the original type 'SomeType' in its debug information.
141
142        The original type 'SomeType' will be the type of the field named
143        'VarName' inside the __Block_byref_x_VarName struct.
144
145        NOTE: In order for this to not completely fail on the debugger
146        side, the Debug Information Entry for the variable VarName needs to
147        have a DW_AT_location that tells the debugger how to unwind through
148        the pointers and __Block_byref_x_VarName struct to find the actual
149        value of the variable.  The function addBlockByrefType does this.  */
150     DIType subType = Ty;
151     uint16_t tag = Ty.getTag();
152
153     if (tag == dwarf::DW_TAG_pointer_type)
154       subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
155
156     DIArray Elements = DICompositeType(subType).getElements();
157     for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
158       DIDerivedType DT(Elements.getElement(i));
159       if (getName() == DT.getName())
160         return (resolve(DT.getTypeDerivedFrom()));
161     }
162   }
163   return Ty;
164 }
165
166 static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
167     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
168     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
169     DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
170
171 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
172     : Asm(A), MMI(Asm->MMI), PrevLabel(nullptr), GlobalRangeCount(0),
173       InfoHolder(A, *this, "info_string", DIEValueAllocator),
174       UsedNonDefaultText(false),
175       SkeletonHolder(A, *this, "skel_string", DIEValueAllocator),
176       IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
177       AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
178                                        dwarf::DW_FORM_data4)),
179       AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
180                                       dwarf::DW_FORM_data4)),
181       AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
182                                            dwarf::DW_FORM_data4)),
183       AccelTypes(TypeAtoms) {
184
185   DwarfInfoSectionSym = DwarfAbbrevSectionSym = DwarfStrSectionSym = nullptr;
186   DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = nullptr;
187   DwarfLineSectionSym = nullptr;
188   DwarfAddrSectionSym = nullptr;
189   DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = nullptr;
190   FunctionBeginSym = FunctionEndSym = nullptr;
191   CurFn = nullptr;
192   CurMI = nullptr;
193
194   // Turn on accelerator tables for Darwin by default, pubnames by
195   // default for non-Darwin, and handle split dwarf.
196   if (DwarfAccelTables == Default)
197     HasDwarfAccelTables = IsDarwin;
198   else
199     HasDwarfAccelTables = DwarfAccelTables == Enable;
200
201   if (SplitDwarf == Default)
202     HasSplitDwarf = false;
203   else
204     HasSplitDwarf = SplitDwarf == Enable;
205
206   if (DwarfPubSections == Default)
207     HasDwarfPubSections = !IsDarwin;
208   else
209     HasDwarfPubSections = DwarfPubSections == Enable;
210
211   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
212   DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
213                                     : MMI->getModule()->getDwarfVersion();
214
215   Asm->OutStreamer.getContext().setDwarfVersion(DwarfVersion);
216
217   {
218     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
219     beginModule();
220   }
221 }
222
223 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
224 DwarfDebug::~DwarfDebug() { }
225
226 // Switch to the specified MCSection and emit an assembler
227 // temporary label to it if SymbolStem is specified.
228 static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section,
229                                 const char *SymbolStem = nullptr) {
230   Asm->OutStreamer.SwitchSection(Section);
231   if (!SymbolStem)
232     return nullptr;
233
234   MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem);
235   Asm->OutStreamer.EmitLabel(TmpSym);
236   return TmpSym;
237 }
238
239 static bool isObjCClass(StringRef Name) {
240   return Name.startswith("+") || Name.startswith("-");
241 }
242
243 static bool hasObjCCategory(StringRef Name) {
244   if (!isObjCClass(Name))
245     return false;
246
247   return Name.find(") ") != StringRef::npos;
248 }
249
250 static void getObjCClassCategory(StringRef In, StringRef &Class,
251                                  StringRef &Category) {
252   if (!hasObjCCategory(In)) {
253     Class = In.slice(In.find('[') + 1, In.find(' '));
254     Category = "";
255     return;
256   }
257
258   Class = In.slice(In.find('[') + 1, In.find('('));
259   Category = In.slice(In.find('[') + 1, In.find(' '));
260   return;
261 }
262
263 static StringRef getObjCMethodName(StringRef In) {
264   return In.slice(In.find(' ') + 1, In.find(']'));
265 }
266
267 // Helper for sorting sections into a stable output order.
268 static bool SectionSort(const MCSection *A, const MCSection *B) {
269   std::string LA = (A ? A->getLabelBeginName() : "");
270   std::string LB = (B ? B->getLabelBeginName() : "");
271   return LA < LB;
272 }
273
274 // Add the various names to the Dwarf accelerator table names.
275 // TODO: Determine whether or not we should add names for programs
276 // that do not have a DW_AT_name or DW_AT_linkage_name field - this
277 // is only slightly different than the lookup of non-standard ObjC names.
278 void DwarfDebug::addSubprogramNames(DISubprogram SP, DIE &Die) {
279   if (!SP.isDefinition())
280     return;
281   addAccelName(SP.getName(), Die);
282
283   // If the linkage name is different than the name, go ahead and output
284   // that as well into the name table.
285   if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName())
286     addAccelName(SP.getLinkageName(), Die);
287
288   // If this is an Objective-C selector name add it to the ObjC accelerator
289   // too.
290   if (isObjCClass(SP.getName())) {
291     StringRef Class, Category;
292     getObjCClassCategory(SP.getName(), Class, Category);
293     addAccelObjC(Class, Die);
294     if (Category != "")
295       addAccelObjC(Category, Die);
296     // Also add the base method name to the name table.
297     addAccelName(getObjCMethodName(SP.getName()), Die);
298   }
299 }
300
301 /// isSubprogramContext - Return true if Context is either a subprogram
302 /// or another context nested inside a subprogram.
303 bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
304   if (!Context)
305     return false;
306   DIDescriptor D(Context);
307   if (D.isSubprogram())
308     return true;
309   if (D.isType())
310     return isSubprogramContext(resolve(DIType(Context).getContext()));
311   return false;
312 }
313
314 /// Check whether we should create a DIE for the given Scope, return true
315 /// if we don't create a DIE (the corresponding DIE is null).
316 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
317   if (Scope->isAbstractScope())
318     return false;
319
320   // We don't create a DIE if there is no Range.
321   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
322   if (Ranges.empty())
323     return true;
324
325   if (Ranges.size() > 1)
326     return false;
327
328   // We don't create a DIE if we have a single Range and the end label
329   // is null.
330   return !getLabelAfterInsn(Ranges.front().second);
331 }
332
333 template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) {
334   F(CU);
335   if (auto *SkelCU = CU.getSkeleton())
336     F(*SkelCU);
337 }
338
339 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
340   assert(Scope && Scope->getScopeNode());
341   assert(Scope->isAbstractScope());
342   assert(!Scope->getInlinedAt());
343
344   const MDNode *SP = Scope->getScopeNode();
345
346   ProcessedSPNodes.insert(SP);
347
348   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
349   // was inlined from another compile unit.
350   auto &CU = SPMap[SP];
351   forBothCUs(*CU, [&](DwarfCompileUnit &CU) {
352     CU.constructAbstractSubprogramScopeDIE(Scope);
353   });
354 }
355
356 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
357   if (!GenerateGnuPubSections)
358     return;
359
360   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
361 }
362
363 // Create new DwarfCompileUnit for the given metadata node with tag
364 // DW_TAG_compile_unit.
365 DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
366   StringRef FN = DIUnit.getFilename();
367   CompilationDir = DIUnit.getDirectory();
368
369   auto OwnedUnit = make_unique<DwarfCompileUnit>(
370       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
371   DwarfCompileUnit &NewCU = *OwnedUnit;
372   DIE &Die = NewCU.getUnitDie();
373   InfoHolder.addUnit(std::move(OwnedUnit));
374   if (useSplitDwarf())
375     NewCU.setSkeleton(constructSkeletonCU(NewCU));
376
377   // LTO with assembly output shares a single line table amongst multiple CUs.
378   // To avoid the compilation directory being ambiguous, let the line table
379   // explicitly describe the directory of all files, never relying on the
380   // compilation directory.
381   if (!Asm->OutStreamer.hasRawTextSupport() || SingleCU)
382     Asm->OutStreamer.getContext().setMCLineTableCompilationDir(
383         NewCU.getUniqueID(), CompilationDir);
384
385   NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer());
386   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
387                 DIUnit.getLanguage());
388   NewCU.addString(Die, dwarf::DW_AT_name, FN);
389
390   if (!useSplitDwarf()) {
391     NewCU.initStmtList(DwarfLineSectionSym);
392
393     // If we're using split dwarf the compilation dir is going to be in the
394     // skeleton CU and so we don't need to duplicate it here.
395     if (!CompilationDir.empty())
396       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
397
398     addGnuPubAttributes(NewCU, Die);
399   }
400
401   if (DIUnit.isOptimized())
402     NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
403
404   StringRef Flags = DIUnit.getFlags();
405   if (!Flags.empty())
406     NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
407
408   if (unsigned RVer = DIUnit.getRunTimeVersion())
409     NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
410                   dwarf::DW_FORM_data1, RVer);
411
412   if (useSplitDwarf())
413     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(),
414                       DwarfInfoDWOSectionSym);
415   else
416     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
417                       DwarfInfoSectionSym);
418
419   CUMap.insert(std::make_pair(DIUnit, &NewCU));
420   CUDieMap.insert(std::make_pair(&Die, &NewCU));
421   return NewCU;
422 }
423
424 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
425                                                   const MDNode *N) {
426   DIImportedEntity Module(N);
427   assert(Module.Verify());
428   if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext()))
429     D->addChild(TheCU.constructImportedEntityDIE(Module));
430 }
431
432 // Emit all Dwarf sections that should come prior to the content. Create
433 // global DIEs and emit initial debug info sections. This is invoked by
434 // the target AsmPrinter.
435 void DwarfDebug::beginModule() {
436   if (DisableDebugInfoPrinting)
437     return;
438
439   const Module *M = MMI->getModule();
440
441   FunctionDIs = makeSubprogramMap(*M);
442
443   NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
444   if (!CU_Nodes)
445     return;
446   TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
447
448   // Emit initial sections so we can reference labels later.
449   emitSectionLabels();
450
451   SingleCU = CU_Nodes->getNumOperands() == 1;
452
453   for (MDNode *N : CU_Nodes->operands()) {
454     DICompileUnit CUNode(N);
455     DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
456     DIArray ImportedEntities = CUNode.getImportedEntities();
457     for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
458       ScopesWithImportedEntities.push_back(std::make_pair(
459           DIImportedEntity(ImportedEntities.getElement(i)).getContext(),
460           ImportedEntities.getElement(i)));
461     std::sort(ScopesWithImportedEntities.begin(),
462               ScopesWithImportedEntities.end(), less_first());
463     DIArray GVs = CUNode.getGlobalVariables();
464     for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
465       CU.getOrCreateGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
466     DIArray SPs = CUNode.getSubprograms();
467     for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
468       SPMap.insert(std::make_pair(SPs.getElement(i), &CU));
469     DIArray EnumTypes = CUNode.getEnumTypes();
470     for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) {
471       DIType Ty(EnumTypes.getElement(i));
472       // The enum types array by design contains pointers to
473       // MDNodes rather than DIRefs. Unique them here.
474       DIType UniqueTy(resolve(Ty.getRef()));
475       CU.getOrCreateTypeDIE(UniqueTy);
476     }
477     DIArray RetainedTypes = CUNode.getRetainedTypes();
478     for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) {
479       DIType Ty(RetainedTypes.getElement(i));
480       // The retained types array by design contains pointers to
481       // MDNodes rather than DIRefs. Unique them here.
482       DIType UniqueTy(resolve(Ty.getRef()));
483       CU.getOrCreateTypeDIE(UniqueTy);
484     }
485     // Emit imported_modules last so that the relevant context is already
486     // available.
487     for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
488       constructAndAddImportedEntityDIE(CU, ImportedEntities.getElement(i));
489   }
490
491   // Tell MMI that we have debug info.
492   MMI->setDebugInfoAvailability(true);
493
494   // Prime section data.
495   SectionMap[Asm->getObjFileLowering().getTextSection()];
496 }
497
498 void DwarfDebug::finishVariableDefinitions() {
499   for (const auto &Var : ConcreteVariables) {
500     DIE *VariableDie = Var->getDIE();
501     assert(VariableDie);
502     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
503     // in the ConcreteVariables list, rather than looking it up again here.
504     // DIE::getUnit isn't simple - it walks parent pointers, etc.
505     DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit());
506     assert(Unit);
507     DbgVariable *AbsVar = getExistingAbstractVariable(Var->getVariable());
508     if (AbsVar && AbsVar->getDIE()) {
509       Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin,
510                         *AbsVar->getDIE());
511     } else
512       Unit->applyVariableAttributes(*Var, *VariableDie);
513   }
514 }
515
516 void DwarfDebug::finishSubprogramDefinitions() {
517   for (const auto &P : SPMap)
518     forBothCUs(*P.second, [&](DwarfCompileUnit &CU) {
519       CU.finishSubprogramDefinition(DISubprogram(P.first));
520     });
521 }
522
523
524 // Collect info for variables that were optimized out.
525 void DwarfDebug::collectDeadVariables() {
526   const Module *M = MMI->getModule();
527
528   if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) {
529     for (MDNode *N : CU_Nodes->operands()) {
530       DICompileUnit TheCU(N);
531       // Construct subprogram DIE and add variables DIEs.
532       DwarfCompileUnit *SPCU =
533           static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU));
534       assert(SPCU && "Unable to find Compile Unit!");
535       DIArray Subprograms = TheCU.getSubprograms();
536       for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
537         DISubprogram SP(Subprograms.getElement(i));
538         if (ProcessedSPNodes.count(SP) != 0)
539           continue;
540         SPCU->collectDeadVariables(SP);
541       }
542     }
543   }
544 }
545
546 void DwarfDebug::finalizeModuleInfo() {
547   finishSubprogramDefinitions();
548
549   finishVariableDefinitions();
550
551   // Collect info for variables that were optimized out.
552   collectDeadVariables();
553
554   // Handle anything that needs to be done on a per-unit basis after
555   // all other generation.
556   for (const auto &P : CUMap) {
557     auto &TheCU = *P.second;
558     // Emit DW_AT_containing_type attribute to connect types with their
559     // vtable holding type.
560     TheCU.constructContainingTypeDIEs();
561
562     // Add CU specific attributes if we need to add any.
563     // If we're splitting the dwarf out now that we've got the entire
564     // CU then add the dwo id to it.
565     auto *SkCU = TheCU.getSkeleton();
566     if (useSplitDwarf()) {
567       // Emit a unique identifier for this CU.
568       uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie());
569       TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
570                     dwarf::DW_FORM_data8, ID);
571       SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
572                     dwarf::DW_FORM_data8, ID);
573
574       // We don't keep track of which addresses are used in which CU so this
575       // is a bit pessimistic under LTO.
576       if (!AddrPool.isEmpty())
577         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
578                               DwarfAddrSectionSym, DwarfAddrSectionSym);
579       if (!SkCU->getRangeLists().empty())
580         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
581                               DwarfDebugRangeSectionSym,
582                               DwarfDebugRangeSectionSym);
583     }
584
585     // If we have code split among multiple sections or non-contiguous
586     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
587     // remain in the .o file, otherwise add a DW_AT_low_pc.
588     // FIXME: We should use ranges allow reordering of code ala
589     // .subsections_via_symbols in mach-o. This would mean turning on
590     // ranges for all subprogram DIEs for mach-o.
591     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
592     if (unsigned NumRanges = TheCU.getRanges().size()) {
593       if (NumRanges > 1)
594         // A DW_AT_low_pc attribute may also be specified in combination with
595         // DW_AT_ranges to specify the default base address for use in
596         // location lists (see Section 2.6.2) and range lists (see Section
597         // 2.17.3).
598         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
599       else
600         TheCU.setBaseAddress(TheCU.getRanges().front().getStart());
601       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
602     }
603   }
604
605   // Compute DIE offsets and sizes.
606   InfoHolder.computeSizeAndOffsets();
607   if (useSplitDwarf())
608     SkeletonHolder.computeSizeAndOffsets();
609 }
610
611 void DwarfDebug::endSections() {
612   // Filter labels by section.
613   for (const SymbolCU &SCU : ArangeLabels) {
614     if (SCU.Sym->isInSection()) {
615       // Make a note of this symbol and it's section.
616       const MCSection *Section = &SCU.Sym->getSection();
617       if (!Section->getKind().isMetadata())
618         SectionMap[Section].push_back(SCU);
619     } else {
620       // Some symbols (e.g. common/bss on mach-o) can have no section but still
621       // appear in the output. This sucks as we rely on sections to build
622       // arange spans. We can do it without, but it's icky.
623       SectionMap[nullptr].push_back(SCU);
624     }
625   }
626
627   // Build a list of sections used.
628   std::vector<const MCSection *> Sections;
629   for (const auto &it : SectionMap) {
630     const MCSection *Section = it.first;
631     Sections.push_back(Section);
632   }
633
634   // Sort the sections into order.
635   // This is only done to ensure consistent output order across different runs.
636   std::sort(Sections.begin(), Sections.end(), SectionSort);
637
638   // Add terminating symbols for each section.
639   for (unsigned ID = 0, E = Sections.size(); ID != E; ID++) {
640     const MCSection *Section = Sections[ID];
641     MCSymbol *Sym = nullptr;
642
643     if (Section) {
644       // We can't call MCSection::getLabelEndName, as it's only safe to do so
645       // if we know the section name up-front. For user-created sections, the
646       // resulting label may not be valid to use as a label. (section names can
647       // use a greater set of characters on some systems)
648       Sym = Asm->GetTempSymbol("debug_end", ID);
649       Asm->OutStreamer.SwitchSection(Section);
650       Asm->OutStreamer.EmitLabel(Sym);
651     }
652
653     // Insert a final terminator.
654     SectionMap[Section].push_back(SymbolCU(nullptr, Sym));
655   }
656 }
657
658 // Emit all Dwarf sections that should come after the content.
659 void DwarfDebug::endModule() {
660   assert(CurFn == nullptr);
661   assert(CurMI == nullptr);
662
663   // If we aren't actually generating debug info (check beginModule -
664   // conditionalized on !DisableDebugInfoPrinting and the presence of the
665   // llvm.dbg.cu metadata node)
666   if (!DwarfInfoSectionSym)
667     return;
668
669   // End any existing sections.
670   // TODO: Does this need to happen?
671   endSections();
672
673   // Finalize the debug info for the module.
674   finalizeModuleInfo();
675
676   emitDebugStr();
677
678   // Emit all the DIEs into a debug info section.
679   emitDebugInfo();
680
681   // Corresponding abbreviations into a abbrev section.
682   emitAbbreviations();
683
684   // Emit info into a debug aranges section.
685   if (GenerateARangeSection)
686     emitDebugARanges();
687
688   // Emit info into a debug ranges section.
689   emitDebugRanges();
690
691   if (useSplitDwarf()) {
692     emitDebugStrDWO();
693     emitDebugInfoDWO();
694     emitDebugAbbrevDWO();
695     emitDebugLineDWO();
696     emitDebugLocDWO();
697     // Emit DWO addresses.
698     AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
699   } else
700     // Emit info into a debug loc section.
701     emitDebugLoc();
702
703   // Emit info into the dwarf accelerator table sections.
704   if (useDwarfAccelTables()) {
705     emitAccelNames();
706     emitAccelObjC();
707     emitAccelNamespaces();
708     emitAccelTypes();
709   }
710
711   // Emit the pubnames and pubtypes sections if requested.
712   if (HasDwarfPubSections) {
713     emitDebugPubNames(GenerateGnuPubSections);
714     emitDebugPubTypes(GenerateGnuPubSections);
715   }
716
717   // clean up.
718   SPMap.clear();
719   AbstractVariables.clear();
720 }
721
722 // Find abstract variable, if any, associated with Var.
723 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV,
724                                                      DIVariable &Cleansed) {
725   LLVMContext &Ctx = DV->getContext();
726   // More then one inlined variable corresponds to one abstract variable.
727   // FIXME: This duplication of variables when inlining should probably be
728   // removed. It's done to allow each DIVariable to describe its location
729   // because the DebugLoc on the dbg.value/declare isn't accurate. We should
730   // make it accurate then remove this duplication/cleansing stuff.
731   Cleansed = cleanseInlinedVariable(DV, Ctx);
732   auto I = AbstractVariables.find(Cleansed);
733   if (I != AbstractVariables.end())
734     return I->second.get();
735   return nullptr;
736 }
737
738 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV) {
739   DIVariable Cleansed;
740   return getExistingAbstractVariable(DV, Cleansed);
741 }
742
743 void DwarfDebug::createAbstractVariable(const DIVariable &Var,
744                                         LexicalScope *Scope) {
745   auto AbsDbgVariable = make_unique<DbgVariable>(Var, DIExpression(), this);
746   InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get());
747   AbstractVariables[Var] = std::move(AbsDbgVariable);
748 }
749
750 void DwarfDebug::ensureAbstractVariableIsCreated(const DIVariable &DV,
751                                                  const MDNode *ScopeNode) {
752   DIVariable Cleansed = DV;
753   if (getExistingAbstractVariable(DV, Cleansed))
754     return;
755
756   createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(ScopeNode));
757 }
758
759 void
760 DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(const DIVariable &DV,
761                                                     const MDNode *ScopeNode) {
762   DIVariable Cleansed = DV;
763   if (getExistingAbstractVariable(DV, Cleansed))
764     return;
765
766   if (LexicalScope *Scope = LScopes.findAbstractScope(ScopeNode))
767     createAbstractVariable(Cleansed, Scope);
768 }
769
770 // Collect variable information from side table maintained by MMI.
771 void DwarfDebug::collectVariableInfoFromMMITable(
772     SmallPtrSetImpl<const MDNode *> &Processed) {
773   for (const auto &VI : MMI->getVariableDbgInfo()) {
774     if (!VI.Var)
775       continue;
776     Processed.insert(VI.Var);
777     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
778
779     // If variable scope is not found then skip this variable.
780     if (!Scope)
781       continue;
782
783     DIVariable DV(VI.Var);
784     DIExpression Expr(VI.Expr);
785     ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
786     ConcreteVariables.push_back(make_unique<DbgVariable>(DV, Expr, this));
787     DbgVariable *RegVar = ConcreteVariables.back().get();
788     RegVar->setFrameIndex(VI.Slot);
789     InfoHolder.addScopeVariable(Scope, RegVar);
790   }
791 }
792
793 // Get .debug_loc entry for the instruction range starting at MI.
794 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
795   const MDNode *Expr = MI->getDebugExpression();
796   const MDNode *Var = MI->getDebugVariable();
797
798   assert(MI->getNumOperands() == 4);
799   if (MI->getOperand(0).isReg()) {
800     MachineLocation MLoc;
801     // If the second operand is an immediate, this is a
802     // register-indirect address.
803     if (!MI->getOperand(1).isImm())
804       MLoc.set(MI->getOperand(0).getReg());
805     else
806       MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
807     return DebugLocEntry::Value(Var, Expr, MLoc);
808   }
809   if (MI->getOperand(0).isImm())
810     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getImm());
811   if (MI->getOperand(0).isFPImm())
812     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getFPImm());
813   if (MI->getOperand(0).isCImm())
814     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getCImm());
815
816   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
817 }
818
819 /// Determine whether two variable pieces overlap.
820 static bool piecesOverlap(DIExpression P1, DIExpression P2) {
821   if (!P1.isVariablePiece() || !P2.isVariablePiece())
822     return true;
823   unsigned l1 = P1.getPieceOffset();
824   unsigned l2 = P2.getPieceOffset();
825   unsigned r1 = l1 + P1.getPieceSize();
826   unsigned r2 = l2 + P2.getPieceSize();
827   // True where [l1,r1[ and [r1,r2[ overlap.
828   return (l1 < r2) && (l2 < r1);
829 }
830
831 /// Build the location list for all DBG_VALUEs in the function that
832 /// describe the same variable.  If the ranges of several independent
833 /// pieces of the same variable overlap partially, split them up and
834 /// combine the ranges. The resulting DebugLocEntries are will have
835 /// strict monotonically increasing begin addresses and will never
836 /// overlap.
837 //
838 // Input:
839 //
840 //   Ranges History [var, loc, piece ofs size]
841 // 0 |      [x, (reg0, piece 0, 32)]
842 // 1 | |    [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
843 // 2 | |    ...
844 // 3   |    [clobber reg0]
845 // 4        [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of x.
846 //
847 // Output:
848 //
849 // [0-1]    [x, (reg0, piece  0, 32)]
850 // [1-3]    [x, (reg0, piece  0, 32), (reg1, piece 32, 32)]
851 // [3-4]    [x, (reg1, piece 32, 32)]
852 // [4- ]    [x, (mem,  piece  0, 64)]
853 void
854 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
855                               const DbgValueHistoryMap::InstrRanges &Ranges) {
856   SmallVector<DebugLocEntry::Value, 4> OpenRanges;
857
858   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
859     const MachineInstr *Begin = I->first;
860     const MachineInstr *End = I->second;
861     assert(Begin->isDebugValue() && "Invalid History entry");
862
863     // Check if a variable is inaccessible in this range.
864     if (Begin->getNumOperands() > 1 &&
865         Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
866       OpenRanges.clear();
867       continue;
868     }
869
870     // If this piece overlaps with any open ranges, truncate them.
871     DIExpression DIExpr = Begin->getDebugExpression();
872     auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(),
873                                [&](DebugLocEntry::Value R) {
874       return piecesOverlap(DIExpr, R.getExpression());
875     });
876     OpenRanges.erase(Last, OpenRanges.end());
877
878     const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
879     assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
880
881     const MCSymbol *EndLabel;
882     if (End != nullptr)
883       EndLabel = getLabelAfterInsn(End);
884     else if (std::next(I) == Ranges.end())
885       EndLabel = FunctionEndSym;
886     else
887       EndLabel = getLabelBeforeInsn(std::next(I)->first);
888     assert(EndLabel && "Forgot label after instruction ending a range!");
889
890     DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
891
892     auto Value = getDebugLocValue(Begin);
893     DebugLocEntry Loc(StartLabel, EndLabel, Value);
894     bool couldMerge = false;
895
896     // If this is a piece, it may belong to the current DebugLocEntry.
897     if (DIExpr.isVariablePiece()) {
898       // Add this value to the list of open ranges.
899       OpenRanges.push_back(Value);
900
901       // Attempt to add the piece to the last entry.
902       if (!DebugLoc.empty())
903         if (DebugLoc.back().MergeValues(Loc))
904           couldMerge = true;
905     }
906
907     if (!couldMerge) {
908       // Need to add a new DebugLocEntry. Add all values from still
909       // valid non-overlapping pieces.
910       if (OpenRanges.size())
911         Loc.addValues(OpenRanges);
912
913       DebugLoc.push_back(std::move(Loc));
914     }
915
916     // Attempt to coalesce the ranges of two otherwise identical
917     // DebugLocEntries.
918     auto CurEntry = DebugLoc.rbegin();
919     auto PrevEntry = std::next(CurEntry);
920     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
921       DebugLoc.pop_back();
922
923     DEBUG({
924       dbgs() << CurEntry->getValues().size() << " Values:\n";
925       for (auto Value : CurEntry->getValues()) {
926         Value.getVariable()->dump();
927         Value.getExpression()->dump();
928       }
929       dbgs() << "-----\n";
930     });
931   }
932 }
933
934
935 // Find variables for each lexical scope.
936 void
937 DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP,
938                                 SmallPtrSetImpl<const MDNode *> &Processed) {
939   // Grab the variable info that was squirreled away in the MMI side-table.
940   collectVariableInfoFromMMITable(Processed);
941
942   for (const auto &I : DbgValues) {
943     DIVariable DV(I.first);
944     if (Processed.count(DV))
945       continue;
946
947     // Instruction ranges, specifying where DV is accessible.
948     const auto &Ranges = I.second;
949     if (Ranges.empty())
950       continue;
951
952     LexicalScope *Scope = nullptr;
953     if (MDNode *IA = DV.getInlinedAt()) {
954       DebugLoc DL = DebugLoc::getFromDILocation(IA);
955       Scope = LScopes.findInlinedScope(DebugLoc::get(
956           DL.getLine(), DL.getCol(), DV.getContext(), IA));
957     } else
958       Scope = LScopes.findLexicalScope(DV.getContext());
959     // If variable scope is not found then skip this variable.
960     if (!Scope)
961       continue;
962
963     Processed.insert(DV);
964     const MachineInstr *MInsn = Ranges.front().first;
965     assert(MInsn->isDebugValue() && "History must begin with debug value");
966     ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
967     ConcreteVariables.push_back(make_unique<DbgVariable>(MInsn, this));
968     DbgVariable *RegVar = ConcreteVariables.back().get();
969     InfoHolder.addScopeVariable(Scope, RegVar);
970
971     // Check if the first DBG_VALUE is valid for the rest of the function.
972     if (Ranges.size() == 1 && Ranges.front().second == nullptr)
973       continue;
974
975     // Handle multiple DBG_VALUE instructions describing one variable.
976     RegVar->setDotDebugLocOffset(DotDebugLocEntries.size());
977
978     DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1);
979     DebugLocList &LocList = DotDebugLocEntries.back();
980     LocList.CU = &TheCU;
981     LocList.Label =
982         Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1);
983
984     // Build the location list for this variable.
985     buildLocationList(LocList.List, Ranges);
986   }
987
988   // Collect info for variables that were optimized out.
989   DIArray Variables = SP.getVariables();
990   for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
991     DIVariable DV(Variables.getElement(i));
992     assert(DV.isVariable());
993     if (!Processed.insert(DV).second)
994       continue;
995     if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) {
996       ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
997       DIExpression NoExpr;
998       ConcreteVariables.push_back(make_unique<DbgVariable>(DV, NoExpr, this));
999       InfoHolder.addScopeVariable(Scope, ConcreteVariables.back().get());
1000     }
1001   }
1002 }
1003
1004 // Return Label preceding the instruction.
1005 MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) {
1006   MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
1007   assert(Label && "Didn't insert label before instruction");
1008   return Label;
1009 }
1010
1011 // Return Label immediately following the instruction.
1012 MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) {
1013   return LabelsAfterInsn.lookup(MI);
1014 }
1015
1016 // Process beginning of an instruction.
1017 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1018   assert(CurMI == nullptr);
1019   CurMI = MI;
1020   // Check if source location changes, but ignore DBG_VALUE locations.
1021   if (!MI->isDebugValue()) {
1022     DebugLoc DL = MI->getDebugLoc();
1023     if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) {
1024       unsigned Flags = 0;
1025       PrevInstLoc = DL;
1026       if (DL == PrologEndLoc) {
1027         Flags |= DWARF2_FLAG_PROLOGUE_END;
1028         PrologEndLoc = DebugLoc();
1029         Flags |= DWARF2_FLAG_IS_STMT;
1030       }
1031       if (DL.getLine() !=
1032           Asm->OutStreamer.getContext().getCurrentDwarfLoc().getLine())
1033         Flags |= DWARF2_FLAG_IS_STMT;
1034
1035       if (!DL.isUnknown()) {
1036         const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext());
1037         recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1038       } else
1039         recordSourceLine(0, 0, nullptr, 0);
1040     }
1041   }
1042
1043   // Insert labels where requested.
1044   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
1045       LabelsBeforeInsn.find(MI);
1046
1047   // No label needed.
1048   if (I == LabelsBeforeInsn.end())
1049     return;
1050
1051   // Label already assigned.
1052   if (I->second)
1053     return;
1054
1055   if (!PrevLabel) {
1056     PrevLabel = MMI->getContext().CreateTempSymbol();
1057     Asm->OutStreamer.EmitLabel(PrevLabel);
1058   }
1059   I->second = PrevLabel;
1060 }
1061
1062 // Process end of an instruction.
1063 void DwarfDebug::endInstruction() {
1064   assert(CurMI != nullptr);
1065   // Don't create a new label after DBG_VALUE instructions.
1066   // They don't generate code.
1067   if (!CurMI->isDebugValue())
1068     PrevLabel = nullptr;
1069
1070   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
1071       LabelsAfterInsn.find(CurMI);
1072   CurMI = nullptr;
1073
1074   // No label needed.
1075   if (I == LabelsAfterInsn.end())
1076     return;
1077
1078   // Label already assigned.
1079   if (I->second)
1080     return;
1081
1082   // We need a label after this instruction.
1083   if (!PrevLabel) {
1084     PrevLabel = MMI->getContext().CreateTempSymbol();
1085     Asm->OutStreamer.EmitLabel(PrevLabel);
1086   }
1087   I->second = PrevLabel;
1088 }
1089
1090 // Each LexicalScope has first instruction and last instruction to mark
1091 // beginning and end of a scope respectively. Create an inverse map that list
1092 // scopes starts (and ends) with an instruction. One instruction may start (or
1093 // end) multiple scopes. Ignore scopes that are not reachable.
1094 void DwarfDebug::identifyScopeMarkers() {
1095   SmallVector<LexicalScope *, 4> WorkList;
1096   WorkList.push_back(LScopes.getCurrentFunctionScope());
1097   while (!WorkList.empty()) {
1098     LexicalScope *S = WorkList.pop_back_val();
1099
1100     const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
1101     if (!Children.empty())
1102       WorkList.append(Children.begin(), Children.end());
1103
1104     if (S->isAbstractScope())
1105       continue;
1106
1107     for (const InsnRange &R : S->getRanges()) {
1108       assert(R.first && "InsnRange does not have first instruction!");
1109       assert(R.second && "InsnRange does not have second instruction!");
1110       requestLabelBeforeInsn(R.first);
1111       requestLabelAfterInsn(R.second);
1112     }
1113   }
1114 }
1115
1116 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1117   // First known non-DBG_VALUE and non-frame setup location marks
1118   // the beginning of the function body.
1119   for (const auto &MBB : *MF)
1120     for (const auto &MI : MBB)
1121       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1122         !MI.getDebugLoc().isUnknown()) {
1123         // Did the target forget to set the FrameSetup flag for CFI insns?
1124         assert(!MI.isCFIInstruction() &&
1125                "First non-frame-setup instruction is a CFI instruction.");
1126         return MI.getDebugLoc();
1127       }
1128   return DebugLoc();
1129 }
1130
1131 // Gather pre-function debug information.  Assumes being called immediately
1132 // after the function entry point has been emitted.
1133 void DwarfDebug::beginFunction(const MachineFunction *MF) {
1134   CurFn = MF;
1135
1136   // If there's no debug info for the function we're not going to do anything.
1137   if (!MMI->hasDebugInfo())
1138     return;
1139
1140   auto DI = FunctionDIs.find(MF->getFunction());
1141   if (DI == FunctionDIs.end())
1142     return;
1143
1144   // Grab the lexical scopes for the function, if we don't have any of those
1145   // then we're not going to be able to do anything.
1146   LScopes.initialize(*MF);
1147   if (LScopes.empty())
1148     return;
1149
1150   assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
1151
1152   // Make sure that each lexical scope will have a begin/end label.
1153   identifyScopeMarkers();
1154
1155   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1156   // belongs to so that we add to the correct per-cu line table in the
1157   // non-asm case.
1158   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1159   // FnScope->getScopeNode() and DI->second should represent the same function,
1160   // though they may not be the same MDNode due to inline functions merged in
1161   // LTO where the debug info metadata still differs (either due to distinct
1162   // written differences - two versions of a linkonce_odr function
1163   // written/copied into two separate files, or some sub-optimal metadata that
1164   // isn't structurally identical (see: file path/name info from clang, which
1165   // includes the directory of the cpp file being built, even when the file name
1166   // is absolute (such as an <> lookup header)))
1167   DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
1168   assert(TheCU && "Unable to find compile unit!");
1169   if (Asm->OutStreamer.hasRawTextSupport())
1170     // Use a single line table if we are generating assembly.
1171     Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
1172   else
1173     Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
1174
1175   // Emit a label for the function so that we have a beginning address.
1176   FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber());
1177   // Assumes in correct section after the entry point.
1178   Asm->OutStreamer.EmitLabel(FunctionBeginSym);
1179
1180   // Calculate history for local variables.
1181   calculateDbgValueHistory(MF, Asm->TM.getSubtargetImpl()->getRegisterInfo(),
1182                            DbgValues);
1183
1184   // Request labels for the full history.
1185   for (const auto &I : DbgValues) {
1186     const auto &Ranges = I.second;
1187     if (Ranges.empty())
1188       continue;
1189
1190     // The first mention of a function argument gets the FunctionBeginSym
1191     // label, so arguments are visible when breaking at function entry.
1192     DIVariable DIVar(Ranges.front().first->getDebugVariable());
1193     if (DIVar.isVariable() && DIVar.getTag() == dwarf::DW_TAG_arg_variable &&
1194         getDISubprogram(DIVar.getContext()).describes(MF->getFunction())) {
1195       LabelsBeforeInsn[Ranges.front().first] = FunctionBeginSym;
1196       if (Ranges.front().first->getDebugExpression().isVariablePiece()) {
1197         // Mark all non-overlapping initial pieces.
1198         for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
1199           DIExpression Piece = I->first->getDebugExpression();
1200           if (std::all_of(Ranges.begin(), I,
1201                           [&](DbgValueHistoryMap::InstrRange Pred) {
1202                 return !piecesOverlap(Piece, Pred.first->getDebugExpression());
1203               }))
1204             LabelsBeforeInsn[I->first] = FunctionBeginSym;
1205           else
1206             break;
1207         }
1208       }
1209     }
1210
1211     for (const auto &Range : Ranges) {
1212       requestLabelBeforeInsn(Range.first);
1213       if (Range.second)
1214         requestLabelAfterInsn(Range.second);
1215     }
1216   }
1217
1218   PrevInstLoc = DebugLoc();
1219   PrevLabel = FunctionBeginSym;
1220
1221   // Record beginning of function.
1222   PrologEndLoc = findPrologueEndLoc(MF);
1223   if (!PrologEndLoc.isUnknown()) {
1224     DebugLoc FnStartDL =
1225         PrologEndLoc.getFnDebugLoc(MF->getFunction()->getContext());
1226     recordSourceLine(
1227         FnStartDL.getLine(), FnStartDL.getCol(),
1228         FnStartDL.getScope(MF->getFunction()->getContext()),
1229         // We'd like to list the prologue as "not statements" but GDB behaves
1230         // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1231         DWARF2_FLAG_IS_STMT);
1232   }
1233 }
1234
1235 // Gather and emit post-function debug information.
1236 void DwarfDebug::endFunction(const MachineFunction *MF) {
1237   assert(CurFn == MF &&
1238       "endFunction should be called with the same function as beginFunction");
1239
1240   if (!MMI->hasDebugInfo() || LScopes.empty() ||
1241       !FunctionDIs.count(MF->getFunction())) {
1242     // If we don't have a lexical scope for this function then there will
1243     // be a hole in the range information. Keep note of this by setting the
1244     // previously used section to nullptr.
1245     PrevCU = nullptr;
1246     CurFn = nullptr;
1247     return;
1248   }
1249
1250   // Define end label for subprogram.
1251   FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber());
1252   // Assumes in correct section after the entry point.
1253   Asm->OutStreamer.EmitLabel(FunctionEndSym);
1254
1255   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1256   Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
1257
1258   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1259   DISubprogram SP(FnScope->getScopeNode());
1260   DwarfCompileUnit &TheCU = *SPMap.lookup(SP);
1261
1262   SmallPtrSet<const MDNode *, 16> ProcessedVars;
1263   collectVariableInfo(TheCU, SP, ProcessedVars);
1264
1265   // Add the range of this function to the list of ranges for the CU.
1266   TheCU.addRange(RangeSpan(FunctionBeginSym, FunctionEndSym));
1267
1268   // Under -gmlt, skip building the subprogram if there are no inlined
1269   // subroutines inside it.
1270   if (TheCU.getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly &&
1271       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1272     assert(InfoHolder.getScopeVariables().empty());
1273     assert(DbgValues.empty());
1274     // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed
1275     // by a -gmlt CU. Add a test and remove this assertion.
1276     assert(AbstractVariables.empty());
1277     LabelsBeforeInsn.clear();
1278     LabelsAfterInsn.clear();
1279     PrevLabel = nullptr;
1280     CurFn = nullptr;
1281     return;
1282   }
1283
1284 #ifndef NDEBUG
1285   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1286 #endif
1287   // Construct abstract scopes.
1288   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1289     DISubprogram SP(AScope->getScopeNode());
1290     assert(SP.isSubprogram());
1291     // Collect info for variables that were optimized out.
1292     DIArray Variables = SP.getVariables();
1293     for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
1294       DIVariable DV(Variables.getElement(i));
1295       assert(DV && DV.isVariable());
1296       if (!ProcessedVars.insert(DV).second)
1297         continue;
1298       ensureAbstractVariableIsCreated(DV, DV.getContext());
1299       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1300              && "ensureAbstractVariableIsCreated inserted abstract scopes");
1301     }
1302     constructAbstractSubprogramScopeDIE(AScope);
1303   }
1304
1305   TheCU.constructSubprogramScopeDIE(FnScope);
1306   if (auto *SkelCU = TheCU.getSkeleton())
1307     if (!LScopes.getAbstractScopesList().empty())
1308       SkelCU->constructSubprogramScopeDIE(FnScope);
1309
1310   // Clear debug info
1311   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1312   // DbgVariables except those that are also in AbstractVariables (since they
1313   // can be used cross-function)
1314   InfoHolder.getScopeVariables().clear();
1315   DbgValues.clear();
1316   LabelsBeforeInsn.clear();
1317   LabelsAfterInsn.clear();
1318   PrevLabel = nullptr;
1319   CurFn = nullptr;
1320 }
1321
1322 // Register a source line with debug info. Returns the  unique label that was
1323 // emitted and which provides correspondence to the source line list.
1324 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1325                                   unsigned Flags) {
1326   StringRef Fn;
1327   StringRef Dir;
1328   unsigned Src = 1;
1329   unsigned Discriminator = 0;
1330   if (DIScope Scope = DIScope(S)) {
1331     assert(Scope.isScope());
1332     Fn = Scope.getFilename();
1333     Dir = Scope.getDirectory();
1334     if (Scope.isLexicalBlockFile())
1335       Discriminator = DILexicalBlockFile(S).getDiscriminator();
1336
1337     unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID();
1338     Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
1339               .getOrCreateSourceID(Fn, Dir);
1340   }
1341   Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
1342                                          Discriminator, Fn);
1343 }
1344
1345 //===----------------------------------------------------------------------===//
1346 // Emit Methods
1347 //===----------------------------------------------------------------------===//
1348
1349 // Emit initial Dwarf sections with a label at the start of each one.
1350 void DwarfDebug::emitSectionLabels() {
1351   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1352
1353   // Dwarf sections base addresses.
1354   DwarfInfoSectionSym =
1355       emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
1356   if (useSplitDwarf()) {
1357     DwarfInfoDWOSectionSym =
1358         emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo");
1359     DwarfTypesDWOSectionSym =
1360         emitSectionSym(Asm, TLOF.getDwarfTypesDWOSection(), "section_types_dwo");
1361   }
1362   DwarfAbbrevSectionSym =
1363       emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
1364   if (useSplitDwarf())
1365     DwarfAbbrevDWOSectionSym = emitSectionSym(
1366         Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo");
1367   if (GenerateARangeSection)
1368     emitSectionSym(Asm, TLOF.getDwarfARangesSection());
1369
1370   DwarfLineSectionSym =
1371       emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
1372   if (GenerateGnuPubSections) {
1373     DwarfGnuPubNamesSectionSym =
1374         emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection());
1375     DwarfGnuPubTypesSectionSym =
1376         emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection());
1377   } else if (HasDwarfPubSections) {
1378     emitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
1379     emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
1380   }
1381
1382   DwarfStrSectionSym =
1383       emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string");
1384   if (useSplitDwarf()) {
1385     DwarfStrDWOSectionSym =
1386         emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string");
1387     DwarfAddrSectionSym =
1388         emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec");
1389     DwarfDebugLocSectionSym =
1390         emitSectionSym(Asm, TLOF.getDwarfLocDWOSection(), "skel_loc");
1391   } else
1392     DwarfDebugLocSectionSym =
1393         emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc");
1394   DwarfDebugRangeSectionSym =
1395       emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range");
1396 }
1397
1398 // Recursively emits a debug information entry.
1399 void DwarfDebug::emitDIE(DIE &Die) {
1400   // Get the abbreviation for this DIE.
1401   const DIEAbbrev &Abbrev = Die.getAbbrev();
1402
1403   // Emit the code (index) for the abbreviation.
1404   if (Asm->isVerbose())
1405     Asm->OutStreamer.AddComment("Abbrev [" + Twine(Abbrev.getNumber()) +
1406                                 "] 0x" + Twine::utohexstr(Die.getOffset()) +
1407                                 ":0x" + Twine::utohexstr(Die.getSize()) + " " +
1408                                 dwarf::TagString(Abbrev.getTag()));
1409   Asm->EmitULEB128(Abbrev.getNumber());
1410
1411   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
1412   const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev.getData();
1413
1414   // Emit the DIE attribute values.
1415   for (unsigned i = 0, N = Values.size(); i < N; ++i) {
1416     dwarf::Attribute Attr = AbbrevData[i].getAttribute();
1417     dwarf::Form Form = AbbrevData[i].getForm();
1418     assert(Form && "Too many attributes for DIE (check abbreviation)");
1419
1420     if (Asm->isVerbose()) {
1421       Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr));
1422       if (Attr == dwarf::DW_AT_accessibility)
1423         Asm->OutStreamer.AddComment(dwarf::AccessibilityString(
1424             cast<DIEInteger>(Values[i])->getValue()));
1425     }
1426
1427     // Emit an attribute using the defined form.
1428     Values[i]->EmitValue(Asm, Form);
1429   }
1430
1431   // Emit the DIE children if any.
1432   if (Abbrev.hasChildren()) {
1433     for (auto &Child : Die.getChildren())
1434       emitDIE(*Child);
1435
1436     Asm->OutStreamer.AddComment("End Of Children Mark");
1437     Asm->EmitInt8(0);
1438   }
1439 }
1440
1441 // Emit the debug info section.
1442 void DwarfDebug::emitDebugInfo() {
1443   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1444
1445   Holder.emitUnits(DwarfAbbrevSectionSym);
1446 }
1447
1448 // Emit the abbreviation section.
1449 void DwarfDebug::emitAbbreviations() {
1450   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1451
1452   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1453 }
1454
1455 // Emit the last address of the section and the end of the line matrix.
1456 void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
1457   // Define last address of section.
1458   Asm->OutStreamer.AddComment("Extended Op");
1459   Asm->EmitInt8(0);
1460
1461   Asm->OutStreamer.AddComment("Op size");
1462   Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1);
1463   Asm->OutStreamer.AddComment("DW_LNE_set_address");
1464   Asm->EmitInt8(dwarf::DW_LNE_set_address);
1465
1466   Asm->OutStreamer.AddComment("Section end label");
1467
1468   Asm->OutStreamer.EmitSymbolValue(
1469       Asm->GetTempSymbol("section_end", SectionEnd),
1470       Asm->getDataLayout().getPointerSize());
1471
1472   // Mark end of matrix.
1473   Asm->OutStreamer.AddComment("DW_LNE_end_sequence");
1474   Asm->EmitInt8(0);
1475   Asm->EmitInt8(1);
1476   Asm->EmitInt8(1);
1477 }
1478
1479 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, const MCSection *Section,
1480                            StringRef TableName, StringRef SymName) {
1481   Accel.FinalizeTable(Asm, TableName);
1482   Asm->OutStreamer.SwitchSection(Section);
1483   auto *SectionBegin = Asm->GetTempSymbol(SymName);
1484   Asm->OutStreamer.EmitLabel(SectionBegin);
1485
1486   // Emit the full data.
1487   Accel.Emit(Asm, SectionBegin, this, DwarfStrSectionSym);
1488 }
1489
1490 // Emit visible names into a hashed accelerator table section.
1491 void DwarfDebug::emitAccelNames() {
1492   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1493             "Names", "names_begin");
1494 }
1495
1496 // Emit objective C classes and categories into a hashed accelerator table
1497 // section.
1498 void DwarfDebug::emitAccelObjC() {
1499   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1500             "ObjC", "objc_begin");
1501 }
1502
1503 // Emit namespace dies into a hashed accelerator table.
1504 void DwarfDebug::emitAccelNamespaces() {
1505   emitAccel(AccelNamespace,
1506             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1507             "namespac", "namespac_begin");
1508 }
1509
1510 // Emit type dies into a hashed accelerator table.
1511 void DwarfDebug::emitAccelTypes() {
1512   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1513             "types", "types_begin");
1514 }
1515
1516 // Public name handling.
1517 // The format for the various pubnames:
1518 //
1519 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1520 // for the DIE that is named.
1521 //
1522 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1523 // into the CU and the index value is computed according to the type of value
1524 // for the DIE that is named.
1525 //
1526 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1527 // it's the offset within the debug_info/debug_types dwo section, however, the
1528 // reference in the pubname header doesn't change.
1529
1530 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1531 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1532                                                         const DIE *Die) {
1533   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
1534
1535   // We could have a specification DIE that has our most of our knowledge,
1536   // look for that now.
1537   DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification);
1538   if (SpecVal) {
1539     DIE &SpecDIE = cast<DIEEntry>(SpecVal)->getEntry();
1540     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
1541       Linkage = dwarf::GIEL_EXTERNAL;
1542   } else if (Die->findAttribute(dwarf::DW_AT_external))
1543     Linkage = dwarf::GIEL_EXTERNAL;
1544
1545   switch (Die->getTag()) {
1546   case dwarf::DW_TAG_class_type:
1547   case dwarf::DW_TAG_structure_type:
1548   case dwarf::DW_TAG_union_type:
1549   case dwarf::DW_TAG_enumeration_type:
1550     return dwarf::PubIndexEntryDescriptor(
1551         dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
1552                               ? dwarf::GIEL_STATIC
1553                               : dwarf::GIEL_EXTERNAL);
1554   case dwarf::DW_TAG_typedef:
1555   case dwarf::DW_TAG_base_type:
1556   case dwarf::DW_TAG_subrange_type:
1557     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
1558   case dwarf::DW_TAG_namespace:
1559     return dwarf::GIEK_TYPE;
1560   case dwarf::DW_TAG_subprogram:
1561     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
1562   case dwarf::DW_TAG_constant:
1563   case dwarf::DW_TAG_variable:
1564     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
1565   case dwarf::DW_TAG_enumerator:
1566     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
1567                                           dwarf::GIEL_STATIC);
1568   default:
1569     return dwarf::GIEK_NONE;
1570   }
1571 }
1572
1573 /// emitDebugPubNames - Emit visible names into a debug pubnames section.
1574 ///
1575 void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
1576   const MCSection *PSec =
1577       GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
1578                : Asm->getObjFileLowering().getDwarfPubNamesSection();
1579
1580   emitDebugPubSection(GnuStyle, PSec, "Names",
1581                       &DwarfCompileUnit::getGlobalNames);
1582 }
1583
1584 void DwarfDebug::emitDebugPubSection(
1585     bool GnuStyle, const MCSection *PSec, StringRef Name,
1586     const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) {
1587   for (const auto &NU : CUMap) {
1588     DwarfCompileUnit *TheU = NU.second;
1589
1590     const auto &Globals = (TheU->*Accessor)();
1591
1592     if (Globals.empty())
1593       continue;
1594
1595     if (auto *Skeleton = TheU->getSkeleton())
1596       TheU = Skeleton;
1597     unsigned ID = TheU->getUniqueID();
1598
1599     // Start the dwarf pubnames section.
1600     Asm->OutStreamer.SwitchSection(PSec);
1601
1602     // Emit the header.
1603     Asm->OutStreamer.AddComment("Length of Public " + Name + " Info");
1604     MCSymbol *BeginLabel = Asm->GetTempSymbol("pub" + Name + "_begin", ID);
1605     MCSymbol *EndLabel = Asm->GetTempSymbol("pub" + Name + "_end", ID);
1606     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
1607
1608     Asm->OutStreamer.EmitLabel(BeginLabel);
1609
1610     Asm->OutStreamer.AddComment("DWARF Version");
1611     Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
1612
1613     Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
1614     Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym());
1615
1616     Asm->OutStreamer.AddComment("Compilation Unit Length");
1617     Asm->EmitInt32(TheU->getLength());
1618
1619     // Emit the pubnames for this compilation unit.
1620     for (const auto &GI : Globals) {
1621       const char *Name = GI.getKeyData();
1622       const DIE *Entity = GI.second;
1623
1624       Asm->OutStreamer.AddComment("DIE offset");
1625       Asm->EmitInt32(Entity->getOffset());
1626
1627       if (GnuStyle) {
1628         dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
1629         Asm->OutStreamer.AddComment(
1630             Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
1631             dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
1632         Asm->EmitInt8(Desc.toBits());
1633       }
1634
1635       Asm->OutStreamer.AddComment("External Name");
1636       Asm->OutStreamer.EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
1637     }
1638
1639     Asm->OutStreamer.AddComment("End Mark");
1640     Asm->EmitInt32(0);
1641     Asm->OutStreamer.EmitLabel(EndLabel);
1642   }
1643 }
1644
1645 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
1646   const MCSection *PSec =
1647       GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
1648                : Asm->getObjFileLowering().getDwarfPubTypesSection();
1649
1650   emitDebugPubSection(GnuStyle, PSec, "Types",
1651                       &DwarfCompileUnit::getGlobalTypes);
1652 }
1653
1654 // Emit visible names into a debug str section.
1655 void DwarfDebug::emitDebugStr() {
1656   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1657   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
1658 }
1659
1660 /// Emits an optimal (=sorted) sequence of DW_OP_pieces.
1661 void DwarfDebug::emitLocPieces(ByteStreamer &Streamer,
1662                                const DITypeIdentifierMap &Map,
1663                                ArrayRef<DebugLocEntry::Value> Values) {
1664   assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) {
1665         return P.isVariablePiece();
1666       }) && "all values are expected to be pieces");
1667   assert(std::is_sorted(Values.begin(), Values.end()) &&
1668          "pieces are expected to be sorted");
1669
1670   unsigned Offset = 0;
1671   for (auto Piece : Values) {
1672     const unsigned SizeOfByte = 8;
1673     DIExpression Expr = Piece.getExpression();
1674     unsigned PieceOffset = Expr.getPieceOffset();
1675     unsigned PieceSize = Expr.getPieceSize();
1676     assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
1677     if (Offset < PieceOffset) {
1678       // The DWARF spec seriously mandates pieces with no locations for gaps.
1679       Asm->EmitDwarfOpPiece(Streamer, (PieceOffset-Offset)*SizeOfByte);
1680       Offset += PieceOffset-Offset;
1681     }
1682     Offset += PieceSize;
1683
1684 #ifndef NDEBUG
1685     DIVariable Var = Piece.getVariable();
1686     assert(!Var.isIndirect() && "indirect address for piece");
1687     unsigned VarSize = Var.getSizeInBits(Map);
1688     assert(PieceSize+PieceOffset <= VarSize/SizeOfByte
1689            && "piece is larger than or outside of variable");
1690     assert(PieceSize*SizeOfByte != VarSize
1691            && "piece covers entire variable");
1692 #endif
1693
1694     emitDebugLocValue(Streamer, Piece, PieceOffset*SizeOfByte);
1695   }
1696 }
1697
1698
1699 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
1700                                    const DebugLocEntry &Entry) {
1701   const DebugLocEntry::Value Value = Entry.getValues()[0];
1702   if (Value.isVariablePiece())
1703     // Emit all pieces that belong to the same variable and range.
1704     return emitLocPieces(Streamer, TypeIdentifierMap, Entry.getValues());
1705
1706   assert(Entry.getValues().size() == 1 && "only pieces may have >1 value");
1707   emitDebugLocValue(Streamer, Value);
1708 }
1709
1710 void DwarfDebug::emitDebugLocValue(ByteStreamer &Streamer,
1711                                    const DebugLocEntry::Value &Value,
1712                                    unsigned PieceOffsetInBits) {
1713   DIVariable DV = Value.getVariable();
1714   DebugLocDwarfExpression DwarfExpr(*Asm, Streamer);
1715
1716   // Regular entry.
1717   if (Value.isInt()) {
1718     DIBasicType BTy(resolve(DV.getType()));
1719     if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed ||
1720                          BTy.getEncoding() == dwarf::DW_ATE_signed_char))
1721       DwarfExpr.AddSignedConstant(Value.getInt());
1722     else
1723       DwarfExpr.AddUnsignedConstant(Value.getInt());
1724   } else if (Value.isLocation()) {
1725     MachineLocation Loc = Value.getLoc();
1726     DIExpression Expr = Value.getExpression();
1727     if (!Expr || (Expr.getNumElements() == 0))
1728       // Regular entry.
1729       Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
1730     else {
1731       // Complex address entry.
1732       if (Loc.getOffset()) {
1733         DwarfExpr.AddMachineRegIndirect(Loc.getReg(), Loc.getOffset());
1734         DwarfExpr.AddExpression(Expr, PieceOffsetInBits);
1735       } else
1736         DwarfExpr.AddMachineRegExpression(Expr, Loc.getReg(),
1737                                           PieceOffsetInBits);
1738       if (DV.isIndirect())
1739         DwarfExpr.EmitOp(dwarf::DW_OP_deref);
1740     }
1741   }
1742   // else ... ignore constant fp. There is not any good way to
1743   // to represent them here in dwarf.
1744   // FIXME: ^
1745 }
1746
1747 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocEntry &Entry) {
1748   Asm->OutStreamer.AddComment("Loc expr size");
1749   MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol();
1750   MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol();
1751   Asm->EmitLabelDifference(end, begin, 2);
1752   Asm->OutStreamer.EmitLabel(begin);
1753   // Emit the entry.
1754   APByteStreamer Streamer(*Asm);
1755   emitDebugLocEntry(Streamer, Entry);
1756   // Close the range.
1757   Asm->OutStreamer.EmitLabel(end);
1758 }
1759
1760 // Emit locations into the debug loc section.
1761 void DwarfDebug::emitDebugLoc() {
1762   // Start the dwarf loc section.
1763   Asm->OutStreamer.SwitchSection(
1764       Asm->getObjFileLowering().getDwarfLocSection());
1765   unsigned char Size = Asm->getDataLayout().getPointerSize();
1766   for (const auto &DebugLoc : DotDebugLocEntries) {
1767     Asm->OutStreamer.EmitLabel(DebugLoc.Label);
1768     const DwarfCompileUnit *CU = DebugLoc.CU;
1769     for (const auto &Entry : DebugLoc.List) {
1770       // Set up the range. This range is relative to the entry point of the
1771       // compile unit. This is a hard coded 0 for low_pc when we're emitting
1772       // ranges, or the DW_AT_low_pc on the compile unit otherwise.
1773       if (auto *Base = CU->getBaseAddress()) {
1774         Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size);
1775         Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size);
1776       } else {
1777         Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size);
1778         Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size);
1779       }
1780
1781       emitDebugLocEntryLocation(Entry);
1782     }
1783     Asm->OutStreamer.EmitIntValue(0, Size);
1784     Asm->OutStreamer.EmitIntValue(0, Size);
1785   }
1786 }
1787
1788 void DwarfDebug::emitDebugLocDWO() {
1789   Asm->OutStreamer.SwitchSection(
1790       Asm->getObjFileLowering().getDwarfLocDWOSection());
1791   for (const auto &DebugLoc : DotDebugLocEntries) {
1792     Asm->OutStreamer.EmitLabel(DebugLoc.Label);
1793     for (const auto &Entry : DebugLoc.List) {
1794       // Just always use start_length for now - at least that's one address
1795       // rather than two. We could get fancier and try to, say, reuse an
1796       // address we know we've emitted elsewhere (the start of the function?
1797       // The start of the CU or CU subrange that encloses this range?)
1798       Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
1799       unsigned idx = AddrPool.getIndex(Entry.getBeginSym());
1800       Asm->EmitULEB128(idx);
1801       Asm->EmitLabelDifference(Entry.getEndSym(), Entry.getBeginSym(), 4);
1802
1803       emitDebugLocEntryLocation(Entry);
1804     }
1805     Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
1806   }
1807 }
1808
1809 struct ArangeSpan {
1810   const MCSymbol *Start, *End;
1811 };
1812
1813 // Emit a debug aranges section, containing a CU lookup for any
1814 // address we can tie back to a CU.
1815 void DwarfDebug::emitDebugARanges() {
1816   // Start the dwarf aranges section.
1817   Asm->OutStreamer.SwitchSection(
1818       Asm->getObjFileLowering().getDwarfARangesSection());
1819
1820   typedef DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> SpansType;
1821
1822   SpansType Spans;
1823
1824   // Build a list of sections used.
1825   std::vector<const MCSection *> Sections;
1826   for (const auto &it : SectionMap) {
1827     const MCSection *Section = it.first;
1828     Sections.push_back(Section);
1829   }
1830
1831   // Sort the sections into order.
1832   // This is only done to ensure consistent output order across different runs.
1833   std::sort(Sections.begin(), Sections.end(), SectionSort);
1834
1835   // Build a set of address spans, sorted by CU.
1836   for (const MCSection *Section : Sections) {
1837     SmallVector<SymbolCU, 8> &List = SectionMap[Section];
1838     if (List.size() < 2)
1839       continue;
1840
1841     // Sort the symbols by offset within the section.
1842     std::sort(List.begin(), List.end(),
1843               [&](const SymbolCU &A, const SymbolCU &B) {
1844       unsigned IA = A.Sym ? Asm->OutStreamer.GetSymbolOrder(A.Sym) : 0;
1845       unsigned IB = B.Sym ? Asm->OutStreamer.GetSymbolOrder(B.Sym) : 0;
1846
1847       // Symbols with no order assigned should be placed at the end.
1848       // (e.g. section end labels)
1849       if (IA == 0)
1850         return false;
1851       if (IB == 0)
1852         return true;
1853       return IA < IB;
1854     });
1855
1856     // If we have no section (e.g. common), just write out
1857     // individual spans for each symbol.
1858     if (!Section) {
1859       for (const SymbolCU &Cur : List) {
1860         ArangeSpan Span;
1861         Span.Start = Cur.Sym;
1862         Span.End = nullptr;
1863         if (Cur.CU)
1864           Spans[Cur.CU].push_back(Span);
1865       }
1866     } else {
1867       // Build spans between each label.
1868       const MCSymbol *StartSym = List[0].Sym;
1869       for (size_t n = 1, e = List.size(); n < e; n++) {
1870         const SymbolCU &Prev = List[n - 1];
1871         const SymbolCU &Cur = List[n];
1872
1873         // Try and build the longest span we can within the same CU.
1874         if (Cur.CU != Prev.CU) {
1875           ArangeSpan Span;
1876           Span.Start = StartSym;
1877           Span.End = Cur.Sym;
1878           Spans[Prev.CU].push_back(Span);
1879           StartSym = Cur.Sym;
1880         }
1881       }
1882     }
1883   }
1884
1885   unsigned PtrSize = Asm->getDataLayout().getPointerSize();
1886
1887   // Build a list of CUs used.
1888   std::vector<DwarfCompileUnit *> CUs;
1889   for (const auto &it : Spans) {
1890     DwarfCompileUnit *CU = it.first;
1891     CUs.push_back(CU);
1892   }
1893
1894   // Sort the CU list (again, to ensure consistent output order).
1895   std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) {
1896     return A->getUniqueID() < B->getUniqueID();
1897   });
1898
1899   // Emit an arange table for each CU we used.
1900   for (DwarfCompileUnit *CU : CUs) {
1901     std::vector<ArangeSpan> &List = Spans[CU];
1902
1903     // Describe the skeleton CU's offset and length, not the dwo file's.
1904     if (auto *Skel = CU->getSkeleton())
1905       CU = Skel;
1906
1907     // Emit size of content not including length itself.
1908     unsigned ContentSize =
1909         sizeof(int16_t) + // DWARF ARange version number
1910         sizeof(int32_t) + // Offset of CU in the .debug_info section
1911         sizeof(int8_t) +  // Pointer Size (in bytes)
1912         sizeof(int8_t);   // Segment Size (in bytes)
1913
1914     unsigned TupleSize = PtrSize * 2;
1915
1916     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
1917     unsigned Padding =
1918         OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
1919
1920     ContentSize += Padding;
1921     ContentSize += (List.size() + 1) * TupleSize;
1922
1923     // For each compile unit, write the list of spans it covers.
1924     Asm->OutStreamer.AddComment("Length of ARange Set");
1925     Asm->EmitInt32(ContentSize);
1926     Asm->OutStreamer.AddComment("DWARF Arange version number");
1927     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
1928     Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
1929     Asm->EmitSectionOffset(CU->getLabelBegin(), CU->getSectionSym());
1930     Asm->OutStreamer.AddComment("Address Size (in bytes)");
1931     Asm->EmitInt8(PtrSize);
1932     Asm->OutStreamer.AddComment("Segment Size (in bytes)");
1933     Asm->EmitInt8(0);
1934
1935     Asm->OutStreamer.EmitFill(Padding, 0xff);
1936
1937     for (const ArangeSpan &Span : List) {
1938       Asm->EmitLabelReference(Span.Start, PtrSize);
1939
1940       // Calculate the size as being from the span start to it's end.
1941       if (Span.End) {
1942         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
1943       } else {
1944         // For symbols without an end marker (e.g. common), we
1945         // write a single arange entry containing just that one symbol.
1946         uint64_t Size = SymSize[Span.Start];
1947         if (Size == 0)
1948           Size = 1;
1949
1950         Asm->OutStreamer.EmitIntValue(Size, PtrSize);
1951       }
1952     }
1953
1954     Asm->OutStreamer.AddComment("ARange terminator");
1955     Asm->OutStreamer.EmitIntValue(0, PtrSize);
1956     Asm->OutStreamer.EmitIntValue(0, PtrSize);
1957   }
1958 }
1959
1960 // Emit visible names into a debug ranges section.
1961 void DwarfDebug::emitDebugRanges() {
1962   // Start the dwarf ranges section.
1963   Asm->OutStreamer.SwitchSection(
1964       Asm->getObjFileLowering().getDwarfRangesSection());
1965
1966   // Size for our labels.
1967   unsigned char Size = Asm->getDataLayout().getPointerSize();
1968
1969   // Grab the specific ranges for the compile units in the module.
1970   for (const auto &I : CUMap) {
1971     DwarfCompileUnit *TheCU = I.second;
1972
1973     if (auto *Skel = TheCU->getSkeleton())
1974       TheCU = Skel;
1975
1976     // Iterate over the misc ranges for the compile units in the module.
1977     for (const RangeSpanList &List : TheCU->getRangeLists()) {
1978       // Emit our symbol so we can find the beginning of the range.
1979       Asm->OutStreamer.EmitLabel(List.getSym());
1980
1981       for (const RangeSpan &Range : List.getRanges()) {
1982         const MCSymbol *Begin = Range.getStart();
1983         const MCSymbol *End = Range.getEnd();
1984         assert(Begin && "Range without a begin symbol?");
1985         assert(End && "Range without an end symbol?");
1986         if (auto *Base = TheCU->getBaseAddress()) {
1987           Asm->EmitLabelDifference(Begin, Base, Size);
1988           Asm->EmitLabelDifference(End, Base, Size);
1989         } else {
1990           Asm->OutStreamer.EmitSymbolValue(Begin, Size);
1991           Asm->OutStreamer.EmitSymbolValue(End, Size);
1992         }
1993       }
1994
1995       // And terminate the list with two 0 values.
1996       Asm->OutStreamer.EmitIntValue(0, Size);
1997       Asm->OutStreamer.EmitIntValue(0, Size);
1998     }
1999   }
2000 }
2001
2002 // DWARF5 Experimental Separate Dwarf emitters.
2003
2004 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2005                                   std::unique_ptr<DwarfUnit> NewU) {
2006   NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
2007                   U.getCUNode().getSplitDebugFilename());
2008
2009   if (!CompilationDir.empty())
2010     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2011
2012   addGnuPubAttributes(*NewU, Die);
2013
2014   SkeletonHolder.addUnit(std::move(NewU));
2015 }
2016
2017 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
2018 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
2019 // DW_AT_addr_base, DW_AT_ranges_base.
2020 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2021
2022   auto OwnedUnit = make_unique<DwarfCompileUnit>(
2023       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
2024   DwarfCompileUnit &NewCU = *OwnedUnit;
2025   NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
2026                     DwarfInfoSectionSym);
2027
2028   NewCU.initStmtList(DwarfLineSectionSym);
2029
2030   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2031
2032   return NewCU;
2033 }
2034
2035 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2036 // compile units that would normally be in debug_info.
2037 void DwarfDebug::emitDebugInfoDWO() {
2038   assert(useSplitDwarf() && "No split dwarf debug info?");
2039   // Don't pass an abbrev symbol, using a constant zero instead so as not to
2040   // emit relocations into the dwo file.
2041   InfoHolder.emitUnits(/* AbbrevSymbol */ nullptr);
2042 }
2043
2044 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2045 // abbreviations for the .debug_info.dwo section.
2046 void DwarfDebug::emitDebugAbbrevDWO() {
2047   assert(useSplitDwarf() && "No split dwarf?");
2048   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2049 }
2050
2051 void DwarfDebug::emitDebugLineDWO() {
2052   assert(useSplitDwarf() && "No split dwarf?");
2053   Asm->OutStreamer.SwitchSection(
2054       Asm->getObjFileLowering().getDwarfLineDWOSection());
2055   SplitTypeUnitFileTable.Emit(Asm->OutStreamer);
2056 }
2057
2058 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2059 // string section and is identical in format to traditional .debug_str
2060 // sections.
2061 void DwarfDebug::emitDebugStrDWO() {
2062   assert(useSplitDwarf() && "No split dwarf?");
2063   const MCSection *OffSec =
2064       Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2065   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2066                          OffSec);
2067 }
2068
2069 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2070   if (!useSplitDwarf())
2071     return nullptr;
2072   if (SingleCU)
2073     SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode().getDirectory());
2074   return &SplitTypeUnitFileTable;
2075 }
2076
2077 static uint64_t makeTypeSignature(StringRef Identifier) {
2078   MD5 Hash;
2079   Hash.update(Identifier);
2080   // ... take the least significant 8 bytes and return those. Our MD5
2081   // implementation always returns its results in little endian, swap bytes
2082   // appropriately.
2083   MD5::MD5Result Result;
2084   Hash.final(Result);
2085   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
2086 }
2087
2088 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2089                                       StringRef Identifier, DIE &RefDie,
2090                                       DICompositeType CTy) {
2091   // Fast path if we're building some type units and one has already used the
2092   // address pool we know we're going to throw away all this work anyway, so
2093   // don't bother building dependent types.
2094   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2095     return;
2096
2097   const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy];
2098   if (TU) {
2099     CU.addDIETypeSignature(RefDie, *TU);
2100     return;
2101   }
2102
2103   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2104   AddrPool.resetUsedFlag();
2105
2106   auto OwnedUnit = make_unique<DwarfTypeUnit>(
2107       InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm,
2108       this, &InfoHolder, getDwoLineTable(CU));
2109   DwarfTypeUnit &NewTU = *OwnedUnit;
2110   DIE &UnitDie = NewTU.getUnitDie();
2111   TU = &NewTU;
2112   TypeUnitsUnderConstruction.push_back(
2113       std::make_pair(std::move(OwnedUnit), CTy));
2114
2115   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2116                 CU.getLanguage());
2117
2118   uint64_t Signature = makeTypeSignature(Identifier);
2119   NewTU.setTypeSignature(Signature);
2120
2121   if (useSplitDwarf())
2122     NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
2123   else {
2124     CU.applyStmtList(UnitDie);
2125     NewTU.initSection(
2126         Asm->getObjFileLowering().getDwarfTypesSection(Signature));
2127   }
2128
2129   NewTU.setType(NewTU.createTypeDIE(CTy));
2130
2131   if (TopLevelType) {
2132     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2133     TypeUnitsUnderConstruction.clear();
2134
2135     // Types referencing entries in the address table cannot be placed in type
2136     // units.
2137     if (AddrPool.hasBeenUsed()) {
2138
2139       // Remove all the types built while building this type.
2140       // This is pessimistic as some of these types might not be dependent on
2141       // the type that used an address.
2142       for (const auto &TU : TypeUnitsToAdd)
2143         DwarfTypeUnits.erase(TU.second);
2144
2145       // Construct this type in the CU directly.
2146       // This is inefficient because all the dependent types will be rebuilt
2147       // from scratch, including building them in type units, discovering that
2148       // they depend on addresses, throwing them out and rebuilding them.
2149       CU.constructTypeDIE(RefDie, CTy);
2150       return;
2151     }
2152
2153     // If the type wasn't dependent on fission addresses, finish adding the type
2154     // and all its dependent types.
2155     for (auto &TU : TypeUnitsToAdd)
2156       InfoHolder.addUnit(std::move(TU.first));
2157   }
2158   CU.addDIETypeSignature(RefDie, NewTU);
2159 }
2160
2161 // Accelerator table mutators - add each name along with its companion
2162 // DIE to the proper table while ensuring that the name that we're going
2163 // to reference is in the string table. We do this since the names we
2164 // add may not only be identical to the names in the DIE.
2165 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
2166   if (!useDwarfAccelTables())
2167     return;
2168   AccelNames.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2169                      &Die);
2170 }
2171
2172 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
2173   if (!useDwarfAccelTables())
2174     return;
2175   AccelObjC.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2176                     &Die);
2177 }
2178
2179 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
2180   if (!useDwarfAccelTables())
2181     return;
2182   AccelNamespace.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2183                          &Die);
2184 }
2185
2186 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
2187   if (!useDwarfAccelTables())
2188     return;
2189   AccelTypes.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2190                      &Die);
2191 }