Add a TargetMachine hook that verifies DataLayout compatibility
[oota-llvm.git] / lib / CodeGen / AggressiveAntiDepBreaker.cpp
1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AggressiveAntiDepBreaker class, which
11 // implements register anti-dependence breaking during post-RA
12 // scheduling. It attempts to break all anti-dependencies within a
13 // block.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "AggressiveAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/RegisterClassInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 using namespace llvm;
29
30 #define DEBUG_TYPE "post-RA-sched"
31
32 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
33 static cl::opt<int>
34 DebugDiv("agg-antidep-debugdiv",
35          cl::desc("Debug control for aggressive anti-dep breaker"),
36          cl::init(0), cl::Hidden);
37 static cl::opt<int>
38 DebugMod("agg-antidep-debugmod",
39          cl::desc("Debug control for aggressive anti-dep breaker"),
40          cl::init(0), cl::Hidden);
41
42 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
43                                                MachineBasicBlock *BB) :
44   NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
45   GroupNodeIndices(TargetRegs, 0),
46   KillIndices(TargetRegs, 0),
47   DefIndices(TargetRegs, 0)
48 {
49   const unsigned BBSize = BB->size();
50   for (unsigned i = 0; i < NumTargetRegs; ++i) {
51     // Initialize all registers to be in their own group. Initially we
52     // assign the register to the same-indexed GroupNode.
53     GroupNodeIndices[i] = i;
54     // Initialize the indices to indicate that no registers are live.
55     KillIndices[i] = ~0u;
56     DefIndices[i] = BBSize;
57   }
58 }
59
60 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
61   unsigned Node = GroupNodeIndices[Reg];
62   while (GroupNodes[Node] != Node)
63     Node = GroupNodes[Node];
64
65   return Node;
66 }
67
68 void AggressiveAntiDepState::GetGroupRegs(
69   unsigned Group,
70   std::vector<unsigned> &Regs,
71   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
72 {
73   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
74     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
75       Regs.push_back(Reg);
76   }
77 }
78
79 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
80 {
81   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
82   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
83
84   // find group for each register
85   unsigned Group1 = GetGroup(Reg1);
86   unsigned Group2 = GetGroup(Reg2);
87
88   // if either group is 0, then that must become the parent
89   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
90   unsigned Other = (Parent == Group1) ? Group2 : Group1;
91   GroupNodes.at(Other) = Parent;
92   return Parent;
93 }
94
95 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
96 {
97   // Create a new GroupNode for Reg. Reg's existing GroupNode must
98   // stay as is because there could be other GroupNodes referring to
99   // it.
100   unsigned idx = GroupNodes.size();
101   GroupNodes.push_back(idx);
102   GroupNodeIndices[Reg] = idx;
103   return idx;
104 }
105
106 bool AggressiveAntiDepState::IsLive(unsigned Reg)
107 {
108   // KillIndex must be defined and DefIndex not defined for a register
109   // to be live.
110   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
111 }
112
113 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
114     MachineFunction &MFi, const RegisterClassInfo &RCI,
115     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
116     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
117       TII(MF.getSubtarget().getInstrInfo()),
118       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
119       State(nullptr) {
120   /* Collect a bitset of all registers that are only broken if they
121      are on the critical path. */
122   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
123     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
124     if (CriticalPathSet.none())
125       CriticalPathSet = CPSet;
126     else
127       CriticalPathSet |= CPSet;
128    }
129
130   DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
131   DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
132              r = CriticalPathSet.find_next(r))
133           dbgs() << " " << TRI->getName(r));
134   DEBUG(dbgs() << '\n');
135 }
136
137 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
138   delete State;
139 }
140
141 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
142   assert(!State);
143   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
144
145   bool IsReturnBlock = (!BB->empty() && BB->back().isReturn());
146   std::vector<unsigned> &KillIndices = State->GetKillIndices();
147   std::vector<unsigned> &DefIndices = State->GetDefIndices();
148
149   // Examine the live-in regs of all successors.
150   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
151          SE = BB->succ_end(); SI != SE; ++SI)
152     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
153            E = (*SI)->livein_end(); I != E; ++I) {
154       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
155         unsigned Reg = *AI;
156         State->UnionGroups(Reg, 0);
157         KillIndices[Reg] = BB->size();
158         DefIndices[Reg] = ~0u;
159       }
160     }
161
162   // Mark live-out callee-saved registers. In a return block this is
163   // all callee-saved registers. In non-return this is any
164   // callee-saved register that is not saved in the prolog.
165   const MachineFrameInfo *MFI = MF.getFrameInfo();
166   BitVector Pristine = MFI->getPristineRegs(MF);
167   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
168     unsigned Reg = *I;
169     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
170     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
171       unsigned AliasReg = *AI;
172       State->UnionGroups(AliasReg, 0);
173       KillIndices[AliasReg] = BB->size();
174       DefIndices[AliasReg] = ~0u;
175     }
176   }
177 }
178
179 void AggressiveAntiDepBreaker::FinishBlock() {
180   delete State;
181   State = nullptr;
182 }
183
184 void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
185                                        unsigned InsertPosIndex) {
186   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
187
188   std::set<unsigned> PassthruRegs;
189   GetPassthruRegs(MI, PassthruRegs);
190   PrescanInstruction(MI, Count, PassthruRegs);
191   ScanInstruction(MI, Count);
192
193   DEBUG(dbgs() << "Observe: ");
194   DEBUG(MI->dump());
195   DEBUG(dbgs() << "\tRegs:");
196
197   std::vector<unsigned> &DefIndices = State->GetDefIndices();
198   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
199     // If Reg is current live, then mark that it can't be renamed as
200     // we don't know the extent of its live-range anymore (now that it
201     // has been scheduled). If it is not live but was defined in the
202     // previous schedule region, then set its def index to the most
203     // conservative location (i.e. the beginning of the previous
204     // schedule region).
205     if (State->IsLive(Reg)) {
206       DEBUG(if (State->GetGroup(Reg) != 0)
207               dbgs() << " " << TRI->getName(Reg) << "=g" <<
208                 State->GetGroup(Reg) << "->g0(region live-out)");
209       State->UnionGroups(Reg, 0);
210     } else if ((DefIndices[Reg] < InsertPosIndex)
211                && (DefIndices[Reg] >= Count)) {
212       DefIndices[Reg] = Count;
213     }
214   }
215   DEBUG(dbgs() << '\n');
216 }
217
218 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr *MI,
219                                                 MachineOperand& MO)
220 {
221   if (!MO.isReg() || !MO.isImplicit())
222     return false;
223
224   unsigned Reg = MO.getReg();
225   if (Reg == 0)
226     return false;
227
228   MachineOperand *Op = nullptr;
229   if (MO.isDef())
230     Op = MI->findRegisterUseOperand(Reg, true);
231   else
232     Op = MI->findRegisterDefOperand(Reg);
233
234   return(Op && Op->isImplicit());
235 }
236
237 void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI,
238                                            std::set<unsigned>& PassthruRegs) {
239   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
240     MachineOperand &MO = MI->getOperand(i);
241     if (!MO.isReg()) continue;
242     if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) ||
243         IsImplicitDefUse(MI, MO)) {
244       const unsigned Reg = MO.getReg();
245       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
246            SubRegs.isValid(); ++SubRegs)
247         PassthruRegs.insert(*SubRegs);
248     }
249   }
250 }
251
252 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
253 /// in SU that we want to consider for breaking.
254 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
255   SmallSet<unsigned, 4> RegSet;
256   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
257        P != PE; ++P) {
258     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
259       if (RegSet.insert(P->getReg()).second)
260         Edges.push_back(&*P);
261     }
262   }
263 }
264
265 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
266 /// critical path.
267 static const SUnit *CriticalPathStep(const SUnit *SU) {
268   const SDep *Next = nullptr;
269   unsigned NextDepth = 0;
270   // Find the predecessor edge with the greatest depth.
271   if (SU) {
272     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
273          P != PE; ++P) {
274       const SUnit *PredSU = P->getSUnit();
275       unsigned PredLatency = P->getLatency();
276       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
277       // In the case of a latency tie, prefer an anti-dependency edge over
278       // other types of edges.
279       if (NextDepth < PredTotalLatency ||
280           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
281         NextDepth = PredTotalLatency;
282         Next = &*P;
283       }
284     }
285   }
286
287   return (Next) ? Next->getSUnit() : nullptr;
288 }
289
290 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
291                                              const char *tag,
292                                              const char *header,
293                                              const char *footer) {
294   std::vector<unsigned> &KillIndices = State->GetKillIndices();
295   std::vector<unsigned> &DefIndices = State->GetDefIndices();
296   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
297     RegRefs = State->GetRegRefs();
298
299   // FIXME: We must leave subregisters of live super registers as live, so that
300   // we don't clear out the register tracking information for subregisters of
301   // super registers we're still tracking (and with which we're unioning
302   // subregister definitions).
303   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
304     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
305       DEBUG(if (!header && footer) dbgs() << footer);
306       return;
307     }
308
309   if (!State->IsLive(Reg)) {
310     KillIndices[Reg] = KillIdx;
311     DefIndices[Reg] = ~0u;
312     RegRefs.erase(Reg);
313     State->LeaveGroup(Reg);
314     DEBUG(if (header) {
315         dbgs() << header << TRI->getName(Reg); header = nullptr; });
316     DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
317   }
318   // Repeat for subregisters.
319   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
320     unsigned SubregReg = *SubRegs;
321     if (!State->IsLive(SubregReg)) {
322       KillIndices[SubregReg] = KillIdx;
323       DefIndices[SubregReg] = ~0u;
324       RegRefs.erase(SubregReg);
325       State->LeaveGroup(SubregReg);
326       DEBUG(if (header) {
327           dbgs() << header << TRI->getName(Reg); header = nullptr; });
328       DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
329             State->GetGroup(SubregReg) << tag);
330     }
331   }
332
333   DEBUG(if (!header && footer) dbgs() << footer);
334 }
335
336 void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI,
337                                                   unsigned Count,
338                                              std::set<unsigned>& PassthruRegs) {
339   std::vector<unsigned> &DefIndices = State->GetDefIndices();
340   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
341     RegRefs = State->GetRegRefs();
342
343   // Handle dead defs by simulating a last-use of the register just
344   // after the def. A dead def can occur because the def is truly
345   // dead, or because only a subregister is live at the def. If we
346   // don't do this the dead def will be incorrectly merged into the
347   // previous def.
348   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
349     MachineOperand &MO = MI->getOperand(i);
350     if (!MO.isReg() || !MO.isDef()) continue;
351     unsigned Reg = MO.getReg();
352     if (Reg == 0) continue;
353
354     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
355   }
356
357   DEBUG(dbgs() << "\tDef Groups:");
358   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
359     MachineOperand &MO = MI->getOperand(i);
360     if (!MO.isReg() || !MO.isDef()) continue;
361     unsigned Reg = MO.getReg();
362     if (Reg == 0) continue;
363
364     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
365
366     // If MI's defs have a special allocation requirement, don't allow
367     // any def registers to be changed. Also assume all registers
368     // defined in a call must not be changed (ABI).
369     if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
370         TII->isPredicated(MI)) {
371       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
372       State->UnionGroups(Reg, 0);
373     }
374
375     // Any aliased that are live at this point are completely or
376     // partially defined here, so group those aliases with Reg.
377     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
378       unsigned AliasReg = *AI;
379       if (State->IsLive(AliasReg)) {
380         State->UnionGroups(Reg, AliasReg);
381         DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
382               TRI->getName(AliasReg) << ")");
383       }
384     }
385
386     // Note register reference...
387     const TargetRegisterClass *RC = nullptr;
388     if (i < MI->getDesc().getNumOperands())
389       RC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
390     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
391     RegRefs.insert(std::make_pair(Reg, RR));
392   }
393
394   DEBUG(dbgs() << '\n');
395
396   // Scan the register defs for this instruction and update
397   // live-ranges.
398   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
399     MachineOperand &MO = MI->getOperand(i);
400     if (!MO.isReg() || !MO.isDef()) continue;
401     unsigned Reg = MO.getReg();
402     if (Reg == 0) continue;
403     // Ignore KILLs and passthru registers for liveness...
404     if (MI->isKill() || (PassthruRegs.count(Reg) != 0))
405       continue;
406
407     // Update def for Reg and aliases.
408     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
409       // We need to be careful here not to define already-live super registers.
410       // If the super register is already live, then this definition is not
411       // a definition of the whole super register (just a partial insertion
412       // into it). Earlier subregister definitions (which we've not yet visited
413       // because we're iterating bottom-up) need to be linked to the same group
414       // as this definition.
415       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
416         continue;
417
418       DefIndices[*AI] = Count;
419     }
420   }
421 }
422
423 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
424                                                unsigned Count) {
425   DEBUG(dbgs() << "\tUse Groups:");
426   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
427     RegRefs = State->GetRegRefs();
428
429   // If MI's uses have special allocation requirement, don't allow
430   // any use registers to be changed. Also assume all registers
431   // used in a call must not be changed (ABI).
432   // FIXME: The issue with predicated instruction is more complex. We are being
433   // conservatively here because the kill markers cannot be trusted after
434   // if-conversion:
435   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
436   // ...
437   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
438   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
439   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
440   //
441   // The first R6 kill is not really a kill since it's killed by a predicated
442   // instruction which may not be executed. The second R6 def may or may not
443   // re-define R6 so it's not safe to change it since the last R6 use cannot be
444   // changed.
445   bool Special = MI->isCall() ||
446     MI->hasExtraSrcRegAllocReq() ||
447     TII->isPredicated(MI);
448
449   // Scan the register uses for this instruction and update
450   // live-ranges, groups and RegRefs.
451   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
452     MachineOperand &MO = MI->getOperand(i);
453     if (!MO.isReg() || !MO.isUse()) continue;
454     unsigned Reg = MO.getReg();
455     if (Reg == 0) continue;
456
457     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
458           State->GetGroup(Reg));
459
460     // It wasn't previously live but now it is, this is a kill. Forget
461     // the previous live-range information and start a new live-range
462     // for the register.
463     HandleLastUse(Reg, Count, "(last-use)");
464
465     if (Special) {
466       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
467       State->UnionGroups(Reg, 0);
468     }
469
470     // Note register reference...
471     const TargetRegisterClass *RC = nullptr;
472     if (i < MI->getDesc().getNumOperands())
473       RC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
474     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
475     RegRefs.insert(std::make_pair(Reg, RR));
476   }
477
478   DEBUG(dbgs() << '\n');
479
480   // Form a group of all defs and uses of a KILL instruction to ensure
481   // that all registers are renamed as a group.
482   if (MI->isKill()) {
483     DEBUG(dbgs() << "\tKill Group:");
484
485     unsigned FirstReg = 0;
486     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
487       MachineOperand &MO = MI->getOperand(i);
488       if (!MO.isReg()) continue;
489       unsigned Reg = MO.getReg();
490       if (Reg == 0) continue;
491
492       if (FirstReg != 0) {
493         DEBUG(dbgs() << "=" << TRI->getName(Reg));
494         State->UnionGroups(FirstReg, Reg);
495       } else {
496         DEBUG(dbgs() << " " << TRI->getName(Reg));
497         FirstReg = Reg;
498       }
499     }
500
501     DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
502   }
503 }
504
505 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
506   BitVector BV(TRI->getNumRegs(), false);
507   bool first = true;
508
509   // Check all references that need rewriting for Reg. For each, use
510   // the corresponding register class to narrow the set of registers
511   // that are appropriate for renaming.
512   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
513     const TargetRegisterClass *RC = Q.second.RC;
514     if (!RC) continue;
515
516     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
517     if (first) {
518       BV |= RCBV;
519       first = false;
520     } else {
521       BV &= RCBV;
522     }
523
524     DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
525   }
526
527   return BV;
528 }
529
530 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
531                                 unsigned AntiDepGroupIndex,
532                                 RenameOrderType& RenameOrder,
533                                 std::map<unsigned, unsigned> &RenameMap) {
534   std::vector<unsigned> &KillIndices = State->GetKillIndices();
535   std::vector<unsigned> &DefIndices = State->GetDefIndices();
536   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
537     RegRefs = State->GetRegRefs();
538
539   // Collect all referenced registers in the same group as
540   // AntiDepReg. These all need to be renamed together if we are to
541   // break the anti-dependence.
542   std::vector<unsigned> Regs;
543   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
544   assert(Regs.size() > 0 && "Empty register group!");
545   if (Regs.size() == 0)
546     return false;
547
548   // Find the "superest" register in the group. At the same time,
549   // collect the BitVector of registers that can be used to rename
550   // each register.
551   DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
552         << ":\n");
553   std::map<unsigned, BitVector> RenameRegisterMap;
554   unsigned SuperReg = 0;
555   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
556     unsigned Reg = Regs[i];
557     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
558       SuperReg = Reg;
559
560     // If Reg has any references, then collect possible rename regs
561     if (RegRefs.count(Reg) > 0) {
562       DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
563
564       BitVector BV = GetRenameRegisters(Reg);
565       RenameRegisterMap.insert(std::pair<unsigned, BitVector>(Reg, BV));
566
567       DEBUG(dbgs() << " ::");
568       DEBUG(for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
569               dbgs() << " " << TRI->getName(r));
570       DEBUG(dbgs() << "\n");
571     }
572   }
573
574   // All group registers should be a subreg of SuperReg.
575   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
576     unsigned Reg = Regs[i];
577     if (Reg == SuperReg) continue;
578     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
579     // FIXME: remove this once PR18663 has been properly fixed. For now,
580     // return a conservative answer:
581     // assert(IsSub && "Expecting group subregister");
582     if (!IsSub)
583       return false;
584   }
585
586 #ifndef NDEBUG
587   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
588   if (DebugDiv > 0) {
589     static int renamecnt = 0;
590     if (renamecnt++ % DebugDiv != DebugMod)
591       return false;
592
593     dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
594       " for debug ***\n";
595   }
596 #endif
597
598   // Check each possible rename register for SuperReg in round-robin
599   // order. If that register is available, and the corresponding
600   // registers are available for the other group subregisters, then we
601   // can use those registers to rename.
602
603   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
604   // check every use of the register and find the largest register class
605   // that can be used in all of them.
606   const TargetRegisterClass *SuperRC =
607     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
608
609   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
610   if (Order.empty()) {
611     DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
612     return false;
613   }
614
615   DEBUG(dbgs() << "\tFind Registers:");
616
617   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
618
619   unsigned OrigR = RenameOrder[SuperRC];
620   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
621   unsigned R = OrigR;
622   do {
623     if (R == 0) R = Order.size();
624     --R;
625     const unsigned NewSuperReg = Order[R];
626     // Don't consider non-allocatable registers
627     if (!MRI.isAllocatable(NewSuperReg)) continue;
628     // Don't replace a register with itself.
629     if (NewSuperReg == SuperReg) continue;
630
631     DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
632     RenameMap.clear();
633
634     // For each referenced group register (which must be a SuperReg or
635     // a subregister of SuperReg), find the corresponding subregister
636     // of NewSuperReg and make sure it is free to be renamed.
637     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
638       unsigned Reg = Regs[i];
639       unsigned NewReg = 0;
640       if (Reg == SuperReg) {
641         NewReg = NewSuperReg;
642       } else {
643         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
644         if (NewSubRegIdx != 0)
645           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
646       }
647
648       DEBUG(dbgs() << " " << TRI->getName(NewReg));
649
650       // Check if Reg can be renamed to NewReg.
651       BitVector BV = RenameRegisterMap[Reg];
652       if (!BV.test(NewReg)) {
653         DEBUG(dbgs() << "(no rename)");
654         goto next_super_reg;
655       }
656
657       // If NewReg is dead and NewReg's most recent def is not before
658       // Regs's kill, it's safe to replace Reg with NewReg. We
659       // must also check all aliases of NewReg, because we can't define a
660       // register when any sub or super is already live.
661       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
662         DEBUG(dbgs() << "(live)");
663         goto next_super_reg;
664       } else {
665         bool found = false;
666         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
667           unsigned AliasReg = *AI;
668           if (State->IsLive(AliasReg) ||
669               (KillIndices[Reg] > DefIndices[AliasReg])) {
670             DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
671             found = true;
672             break;
673           }
674         }
675         if (found)
676           goto next_super_reg;
677       }
678
679       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
680       // defines 'NewReg' via an early-clobber operand.
681       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
682         MachineInstr *UseMI = Q.second.Operand->getParent();
683         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
684         if (Idx == -1)
685           continue;
686
687         if (UseMI->getOperand(Idx).isEarlyClobber()) {
688           DEBUG(dbgs() << "(ec)");
689           goto next_super_reg;
690         }
691       }
692
693       // Record that 'Reg' can be renamed to 'NewReg'.
694       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
695     }
696
697     // If we fall-out here, then every register in the group can be
698     // renamed, as recorded in RenameMap.
699     RenameOrder.erase(SuperRC);
700     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
701     DEBUG(dbgs() << "]\n");
702     return true;
703
704   next_super_reg:
705     DEBUG(dbgs() << ']');
706   } while (R != EndR);
707
708   DEBUG(dbgs() << '\n');
709
710   // No registers are free and available!
711   return false;
712 }
713
714 /// BreakAntiDependencies - Identifiy anti-dependencies within the
715 /// ScheduleDAG and break them by renaming registers.
716 ///
717 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
718                               const std::vector<SUnit>& SUnits,
719                               MachineBasicBlock::iterator Begin,
720                               MachineBasicBlock::iterator End,
721                               unsigned InsertPosIndex,
722                               DbgValueVector &DbgValues) {
723
724   std::vector<unsigned> &KillIndices = State->GetKillIndices();
725   std::vector<unsigned> &DefIndices = State->GetDefIndices();
726   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
727     RegRefs = State->GetRegRefs();
728
729   // The code below assumes that there is at least one instruction,
730   // so just duck out immediately if the block is empty.
731   if (SUnits.empty()) return 0;
732
733   // For each regclass the next register to use for renaming.
734   RenameOrderType RenameOrder;
735
736   // ...need a map from MI to SUnit.
737   std::map<MachineInstr *, const SUnit *> MISUnitMap;
738   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
739     const SUnit *SU = &SUnits[i];
740     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
741                                                                SU));
742   }
743
744   // Track progress along the critical path through the SUnit graph as
745   // we walk the instructions. This is needed for regclasses that only
746   // break critical-path anti-dependencies.
747   const SUnit *CriticalPathSU = nullptr;
748   MachineInstr *CriticalPathMI = nullptr;
749   if (CriticalPathSet.any()) {
750     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
751       const SUnit *SU = &SUnits[i];
752       if (!CriticalPathSU ||
753           ((SU->getDepth() + SU->Latency) >
754            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
755         CriticalPathSU = SU;
756       }
757     }
758
759     CriticalPathMI = CriticalPathSU->getInstr();
760   }
761
762 #ifndef NDEBUG
763   DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
764   DEBUG(dbgs() << "Available regs:");
765   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
766     if (!State->IsLive(Reg))
767       DEBUG(dbgs() << " " << TRI->getName(Reg));
768   }
769   DEBUG(dbgs() << '\n');
770 #endif
771
772   // Attempt to break anti-dependence edges. Walk the instructions
773   // from the bottom up, tracking information about liveness as we go
774   // to help determine which registers are available.
775   unsigned Broken = 0;
776   unsigned Count = InsertPosIndex - 1;
777   for (MachineBasicBlock::iterator I = End, E = Begin;
778        I != E; --Count) {
779     MachineInstr *MI = --I;
780
781     if (MI->isDebugValue())
782       continue;
783
784     DEBUG(dbgs() << "Anti: ");
785     DEBUG(MI->dump());
786
787     std::set<unsigned> PassthruRegs;
788     GetPassthruRegs(MI, PassthruRegs);
789
790     // Process the defs in MI...
791     PrescanInstruction(MI, Count, PassthruRegs);
792
793     // The dependence edges that represent anti- and output-
794     // dependencies that are candidates for breaking.
795     std::vector<const SDep *> Edges;
796     const SUnit *PathSU = MISUnitMap[MI];
797     AntiDepEdges(PathSU, Edges);
798
799     // If MI is not on the critical path, then we don't rename
800     // registers in the CriticalPathSet.
801     BitVector *ExcludeRegs = nullptr;
802     if (MI == CriticalPathMI) {
803       CriticalPathSU = CriticalPathStep(CriticalPathSU);
804       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
805     } else if (CriticalPathSet.any()) {
806       ExcludeRegs = &CriticalPathSet;
807     }
808
809     // Ignore KILL instructions (they form a group in ScanInstruction
810     // but don't cause any anti-dependence breaking themselves)
811     if (!MI->isKill()) {
812       // Attempt to break each anti-dependency...
813       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
814         const SDep *Edge = Edges[i];
815         SUnit *NextSU = Edge->getSUnit();
816
817         if ((Edge->getKind() != SDep::Anti) &&
818             (Edge->getKind() != SDep::Output)) continue;
819
820         unsigned AntiDepReg = Edge->getReg();
821         DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
822         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
823
824         if (!MRI.isAllocatable(AntiDepReg)) {
825           // Don't break anti-dependencies on non-allocatable registers.
826           DEBUG(dbgs() << " (non-allocatable)\n");
827           continue;
828         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
829           // Don't break anti-dependencies for critical path registers
830           // if not on the critical path
831           DEBUG(dbgs() << " (not critical-path)\n");
832           continue;
833         } else if (PassthruRegs.count(AntiDepReg) != 0) {
834           // If the anti-dep register liveness "passes-thru", then
835           // don't try to change it. It will be changed along with
836           // the use if required to break an earlier antidep.
837           DEBUG(dbgs() << " (passthru)\n");
838           continue;
839         } else {
840           // No anti-dep breaking for implicit deps
841           MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg);
842           assert(AntiDepOp && "Can't find index for defined register operand");
843           if (!AntiDepOp || AntiDepOp->isImplicit()) {
844             DEBUG(dbgs() << " (implicit)\n");
845             continue;
846           }
847
848           // If the SUnit has other dependencies on the SUnit that
849           // it anti-depends on, don't bother breaking the
850           // anti-dependency since those edges would prevent such
851           // units from being scheduled past each other
852           // regardless.
853           //
854           // Also, if there are dependencies on other SUnits with the
855           // same register as the anti-dependency, don't attempt to
856           // break it.
857           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
858                  PE = PathSU->Preds.end(); P != PE; ++P) {
859             if (P->getSUnit() == NextSU ?
860                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
861                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
862               AntiDepReg = 0;
863               break;
864             }
865           }
866           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
867                  PE = PathSU->Preds.end(); P != PE; ++P) {
868             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
869                 (P->getKind() != SDep::Output)) {
870               DEBUG(dbgs() << " (real dependency)\n");
871               AntiDepReg = 0;
872               break;
873             } else if ((P->getSUnit() != NextSU) &&
874                        (P->getKind() == SDep::Data) &&
875                        (P->getReg() == AntiDepReg)) {
876               DEBUG(dbgs() << " (other dependency)\n");
877               AntiDepReg = 0;
878               break;
879             }
880           }
881
882           if (AntiDepReg == 0) continue;
883         }
884
885         assert(AntiDepReg != 0);
886         if (AntiDepReg == 0) continue;
887
888         // Determine AntiDepReg's register group.
889         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
890         if (GroupIndex == 0) {
891           DEBUG(dbgs() << " (zero group)\n");
892           continue;
893         }
894
895         DEBUG(dbgs() << '\n');
896
897         // Look for a suitable register to use to break the anti-dependence.
898         std::map<unsigned, unsigned> RenameMap;
899         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
900           DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
901                 << TRI->getName(AntiDepReg) << ":");
902
903           // Handle each group register...
904           for (std::map<unsigned, unsigned>::iterator
905                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
906             unsigned CurrReg = S->first;
907             unsigned NewReg = S->second;
908
909             DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
910                   TRI->getName(NewReg) << "(" <<
911                   RegRefs.count(CurrReg) << " refs)");
912
913             // Update the references to the old register CurrReg to
914             // refer to the new register NewReg.
915             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
916               Q.second.Operand->setReg(NewReg);
917               // If the SU for the instruction being updated has debug
918               // information related to the anti-dependency register, make
919               // sure to update that as well.
920               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
921               if (!SU) continue;
922               for (DbgValueVector::iterator DVI = DbgValues.begin(),
923                      DVE = DbgValues.end(); DVI != DVE; ++DVI)
924                 if (DVI->second == Q.second.Operand->getParent())
925                   UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
926             }
927
928             // We just went back in time and modified history; the
929             // liveness information for CurrReg is now inconsistent. Set
930             // the state as if it were dead.
931             State->UnionGroups(NewReg, 0);
932             RegRefs.erase(NewReg);
933             DefIndices[NewReg] = DefIndices[CurrReg];
934             KillIndices[NewReg] = KillIndices[CurrReg];
935
936             State->UnionGroups(CurrReg, 0);
937             RegRefs.erase(CurrReg);
938             DefIndices[CurrReg] = KillIndices[CurrReg];
939             KillIndices[CurrReg] = ~0u;
940             assert(((KillIndices[CurrReg] == ~0u) !=
941                     (DefIndices[CurrReg] == ~0u)) &&
942                    "Kill and Def maps aren't consistent for AntiDepReg!");
943           }
944
945           ++Broken;
946           DEBUG(dbgs() << '\n');
947         }
948       }
949     }
950
951     ScanInstruction(MI, Count);
952   }
953
954   return Broken;
955 }