[IR] Move optional data in llvm::Function into a hungoff uselist
[oota-llvm.git] / lib / Bitcode / Writer / ValueEnumerator.cpp
1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/UseListOrder.h"
23 #include "llvm/IR/ValueSymbolTable.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 using namespace llvm;
28
29 namespace {
30 struct OrderMap {
31   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
32   unsigned LastGlobalConstantID;
33   unsigned LastGlobalValueID;
34
35   OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
36
37   bool isGlobalConstant(unsigned ID) const {
38     return ID <= LastGlobalConstantID;
39   }
40   bool isGlobalValue(unsigned ID) const {
41     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
42   }
43
44   unsigned size() const { return IDs.size(); }
45   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
46   std::pair<unsigned, bool> lookup(const Value *V) const {
47     return IDs.lookup(V);
48   }
49   void index(const Value *V) {
50     // Explicitly sequence get-size and insert-value operations to avoid UB.
51     unsigned ID = IDs.size() + 1;
52     IDs[V].first = ID;
53   }
54 };
55 }
56
57 static void orderValue(const Value *V, OrderMap &OM) {
58   if (OM.lookup(V).first)
59     return;
60
61   if (const Constant *C = dyn_cast<Constant>(V))
62     if (C->getNumOperands() && !isa<GlobalValue>(C))
63       for (const Value *Op : C->operands())
64         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
65           orderValue(Op, OM);
66
67   // Note: we cannot cache this lookup above, since inserting into the map
68   // changes the map's size, and thus affects the other IDs.
69   OM.index(V);
70 }
71
72 static OrderMap orderModule(const Module &M) {
73   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
74   // and ValueEnumerator::incorporateFunction().
75   OrderMap OM;
76
77   // In the reader, initializers of GlobalValues are set *after* all the
78   // globals have been read.  Rather than awkwardly modeling this behaviour
79   // directly in predictValueUseListOrderImpl(), just assign IDs to
80   // initializers of GlobalValues before GlobalValues themselves to model this
81   // implicitly.
82   for (const GlobalVariable &G : M.globals())
83     if (G.hasInitializer())
84       if (!isa<GlobalValue>(G.getInitializer()))
85         orderValue(G.getInitializer(), OM);
86   for (const GlobalAlias &A : M.aliases())
87     if (!isa<GlobalValue>(A.getAliasee()))
88       orderValue(A.getAliasee(), OM);
89   for (const Function &F : M) {
90     for (const Use &U : F.operands())
91       if (!isa<GlobalValue>(U.get()))
92         orderValue(U.get(), OM);
93   }
94   OM.LastGlobalConstantID = OM.size();
95
96   // Initializers of GlobalValues are processed in
97   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
98   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
99   // by giving IDs in reverse order.
100   //
101   // Since GlobalValues never reference each other directly (just through
102   // initializers), their relative IDs only matter for determining order of
103   // uses in their initializers.
104   for (const Function &F : M)
105     orderValue(&F, OM);
106   for (const GlobalAlias &A : M.aliases())
107     orderValue(&A, OM);
108   for (const GlobalVariable &G : M.globals())
109     orderValue(&G, OM);
110   OM.LastGlobalValueID = OM.size();
111
112   for (const Function &F : M) {
113     if (F.isDeclaration())
114       continue;
115     // Here we need to match the union of ValueEnumerator::incorporateFunction()
116     // and WriteFunction().  Basic blocks are implicitly declared before
117     // anything else (by declaring their size).
118     for (const BasicBlock &BB : F)
119       orderValue(&BB, OM);
120     for (const Argument &A : F.args())
121       orderValue(&A, OM);
122     for (const BasicBlock &BB : F)
123       for (const Instruction &I : BB)
124         for (const Value *Op : I.operands())
125           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
126               isa<InlineAsm>(*Op))
127             orderValue(Op, OM);
128     for (const BasicBlock &BB : F)
129       for (const Instruction &I : BB)
130         orderValue(&I, OM);
131   }
132   return OM;
133 }
134
135 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
136                                          unsigned ID, const OrderMap &OM,
137                                          UseListOrderStack &Stack) {
138   // Predict use-list order for this one.
139   typedef std::pair<const Use *, unsigned> Entry;
140   SmallVector<Entry, 64> List;
141   for (const Use &U : V->uses())
142     // Check if this user will be serialized.
143     if (OM.lookup(U.getUser()).first)
144       List.push_back(std::make_pair(&U, List.size()));
145
146   if (List.size() < 2)
147     // We may have lost some users.
148     return;
149
150   bool IsGlobalValue = OM.isGlobalValue(ID);
151   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
152     const Use *LU = L.first;
153     const Use *RU = R.first;
154     if (LU == RU)
155       return false;
156
157     auto LID = OM.lookup(LU->getUser()).first;
158     auto RID = OM.lookup(RU->getUser()).first;
159
160     // Global values are processed in reverse order.
161     //
162     // Moreover, initializers of GlobalValues are set *after* all the globals
163     // have been read (despite having earlier IDs).  Rather than awkwardly
164     // modeling this behaviour here, orderModule() has assigned IDs to
165     // initializers of GlobalValues before GlobalValues themselves.
166     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
167       return LID < RID;
168
169     // If ID is 4, then expect: 7 6 5 1 2 3.
170     if (LID < RID) {
171       if (RID <= ID)
172         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
173           return true;
174       return false;
175     }
176     if (RID < LID) {
177       if (LID <= ID)
178         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
179           return false;
180       return true;
181     }
182
183     // LID and RID are equal, so we have different operands of the same user.
184     // Assume operands are added in order for all instructions.
185     if (LID <= ID)
186       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
187         return LU->getOperandNo() < RU->getOperandNo();
188     return LU->getOperandNo() > RU->getOperandNo();
189   });
190
191   if (std::is_sorted(
192           List.begin(), List.end(),
193           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
194     // Order is already correct.
195     return;
196
197   // Store the shuffle.
198   Stack.emplace_back(V, F, List.size());
199   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
200   for (size_t I = 0, E = List.size(); I != E; ++I)
201     Stack.back().Shuffle[I] = List[I].second;
202 }
203
204 static void predictValueUseListOrder(const Value *V, const Function *F,
205                                      OrderMap &OM, UseListOrderStack &Stack) {
206   auto &IDPair = OM[V];
207   assert(IDPair.first && "Unmapped value");
208   if (IDPair.second)
209     // Already predicted.
210     return;
211
212   // Do the actual prediction.
213   IDPair.second = true;
214   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
215     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
216
217   // Recursive descent into constants.
218   if (const Constant *C = dyn_cast<Constant>(V))
219     if (C->getNumOperands()) // Visit GlobalValues.
220       for (const Value *Op : C->operands())
221         if (isa<Constant>(Op)) // Visit GlobalValues.
222           predictValueUseListOrder(Op, F, OM, Stack);
223 }
224
225 static UseListOrderStack predictUseListOrder(const Module &M) {
226   OrderMap OM = orderModule(M);
227
228   // Use-list orders need to be serialized after all the users have been added
229   // to a value, or else the shuffles will be incomplete.  Store them per
230   // function in a stack.
231   //
232   // Aside from function order, the order of values doesn't matter much here.
233   UseListOrderStack Stack;
234
235   // We want to visit the functions backward now so we can list function-local
236   // constants in the last Function they're used in.  Module-level constants
237   // have already been visited above.
238   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
239     const Function &F = *I;
240     if (F.isDeclaration())
241       continue;
242     for (const BasicBlock &BB : F)
243       predictValueUseListOrder(&BB, &F, OM, Stack);
244     for (const Argument &A : F.args())
245       predictValueUseListOrder(&A, &F, OM, Stack);
246     for (const BasicBlock &BB : F)
247       for (const Instruction &I : BB)
248         for (const Value *Op : I.operands())
249           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
250             predictValueUseListOrder(Op, &F, OM, Stack);
251     for (const BasicBlock &BB : F)
252       for (const Instruction &I : BB)
253         predictValueUseListOrder(&I, &F, OM, Stack);
254   }
255
256   // Visit globals last, since the module-level use-list block will be seen
257   // before the function bodies are processed.
258   for (const GlobalVariable &G : M.globals())
259     predictValueUseListOrder(&G, nullptr, OM, Stack);
260   for (const Function &F : M)
261     predictValueUseListOrder(&F, nullptr, OM, Stack);
262   for (const GlobalAlias &A : M.aliases())
263     predictValueUseListOrder(&A, nullptr, OM, Stack);
264   for (const GlobalVariable &G : M.globals())
265     if (G.hasInitializer())
266       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
267   for (const GlobalAlias &A : M.aliases())
268     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
269   for (const Function &F : M) {
270     for (const Use &U : F.operands())
271       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
272   }
273
274   return Stack;
275 }
276
277 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
278   return V.first->getType()->isIntOrIntVectorTy();
279 }
280
281 ValueEnumerator::ValueEnumerator(const Module &M,
282                                  bool ShouldPreserveUseListOrder)
283     : HasMDString(false), HasDILocation(false), HasGenericDINode(false),
284       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
285   if (ShouldPreserveUseListOrder)
286     UseListOrders = predictUseListOrder(M);
287
288   // Enumerate the global variables.
289   for (const GlobalVariable &GV : M.globals())
290     EnumerateValue(&GV);
291
292   // Enumerate the functions.
293   for (const Function & F : M) {
294     EnumerateValue(&F);
295     EnumerateAttributes(F.getAttributes());
296   }
297
298   // Enumerate the aliases.
299   for (const GlobalAlias &GA : M.aliases())
300     EnumerateValue(&GA);
301
302   // Remember what is the cutoff between globalvalue's and other constants.
303   unsigned FirstConstant = Values.size();
304
305   // Enumerate the global variable initializers.
306   for (const GlobalVariable &GV : M.globals())
307     if (GV.hasInitializer())
308       EnumerateValue(GV.getInitializer());
309
310   // Enumerate the aliasees.
311   for (const GlobalAlias &GA : M.aliases())
312     EnumerateValue(GA.getAliasee());
313
314   // Enumerate any optional Function data.
315   for (const Function &F : M)
316     for (const Use &U : F.operands())
317       EnumerateValue(U.get());
318
319   // Enumerate the metadata type.
320   //
321   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
322   // only encodes the metadata type when it's used as a value.
323   EnumerateType(Type::getMetadataTy(M.getContext()));
324
325   // Insert constants and metadata that are named at module level into the slot
326   // pool so that the module symbol table can refer to them...
327   EnumerateValueSymbolTable(M.getValueSymbolTable());
328   EnumerateNamedMetadata(M);
329
330   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
331
332   // Enumerate types used by function bodies and argument lists.
333   for (const Function &F : M) {
334     for (const Argument &A : F.args())
335       EnumerateType(A.getType());
336
337     // Enumerate metadata attached to this function.
338     F.getAllMetadata(MDs);
339     for (const auto &I : MDs)
340       EnumerateMetadata(I.second);
341
342     for (const BasicBlock &BB : F)
343       for (const Instruction &I : BB) {
344         for (const Use &Op : I.operands()) {
345           auto *MD = dyn_cast<MetadataAsValue>(&Op);
346           if (!MD) {
347             EnumerateOperandType(Op);
348             continue;
349           }
350
351           // Local metadata is enumerated during function-incorporation.
352           if (isa<LocalAsMetadata>(MD->getMetadata()))
353             continue;
354
355           EnumerateMetadata(MD->getMetadata());
356         }
357         EnumerateType(I.getType());
358         if (const CallInst *CI = dyn_cast<CallInst>(&I))
359           EnumerateAttributes(CI->getAttributes());
360         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
361           EnumerateAttributes(II->getAttributes());
362
363         // Enumerate metadata attached with this instruction.
364         MDs.clear();
365         I.getAllMetadataOtherThanDebugLoc(MDs);
366         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
367           EnumerateMetadata(MDs[i].second);
368
369         // Don't enumerate the location directly -- it has a special record
370         // type -- but enumerate its operands.
371         if (DILocation *L = I.getDebugLoc())
372           EnumerateMDNodeOperands(L);
373       }
374   }
375
376   // Optimize constant ordering.
377   OptimizeConstants(FirstConstant, Values.size());
378 }
379
380 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
381   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
382   assert(I != InstructionMap.end() && "Instruction is not mapped!");
383   return I->second;
384 }
385
386 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
387   unsigned ComdatID = Comdats.idFor(C);
388   assert(ComdatID && "Comdat not found!");
389   return ComdatID;
390 }
391
392 void ValueEnumerator::setInstructionID(const Instruction *I) {
393   InstructionMap[I] = InstructionCount++;
394 }
395
396 unsigned ValueEnumerator::getValueID(const Value *V) const {
397   if (auto *MD = dyn_cast<MetadataAsValue>(V))
398     return getMetadataID(MD->getMetadata());
399
400   ValueMapType::const_iterator I = ValueMap.find(V);
401   assert(I != ValueMap.end() && "Value not in slotcalculator!");
402   return I->second-1;
403 }
404
405 void ValueEnumerator::dump() const {
406   print(dbgs(), ValueMap, "Default");
407   dbgs() << '\n';
408   print(dbgs(), MDValueMap, "MetaData");
409   dbgs() << '\n';
410 }
411
412 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
413                             const char *Name) const {
414
415   OS << "Map Name: " << Name << "\n";
416   OS << "Size: " << Map.size() << "\n";
417   for (ValueMapType::const_iterator I = Map.begin(),
418          E = Map.end(); I != E; ++I) {
419
420     const Value *V = I->first;
421     if (V->hasName())
422       OS << "Value: " << V->getName();
423     else
424       OS << "Value: [null]\n";
425     V->dump();
426
427     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
428     for (const Use &U : V->uses()) {
429       if (&U != &*V->use_begin())
430         OS << ",";
431       if(U->hasName())
432         OS << " " << U->getName();
433       else
434         OS << " [null]";
435
436     }
437     OS <<  "\n\n";
438   }
439 }
440
441 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
442                             const char *Name) const {
443
444   OS << "Map Name: " << Name << "\n";
445   OS << "Size: " << Map.size() << "\n";
446   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
447     const Metadata *MD = I->first;
448     OS << "Metadata: slot = " << I->second << "\n";
449     MD->print(OS);
450   }
451 }
452
453 /// OptimizeConstants - Reorder constant pool for denser encoding.
454 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
455   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
456
457   if (ShouldPreserveUseListOrder)
458     // Optimizing constants makes the use-list order difficult to predict.
459     // Disable it for now when trying to preserve the order.
460     return;
461
462   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
463                    [this](const std::pair<const Value *, unsigned> &LHS,
464                           const std::pair<const Value *, unsigned> &RHS) {
465     // Sort by plane.
466     if (LHS.first->getType() != RHS.first->getType())
467       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
468     // Then by frequency.
469     return LHS.second > RHS.second;
470   });
471
472   // Ensure that integer and vector of integer constants are at the start of the
473   // constant pool.  This is important so that GEP structure indices come before
474   // gep constant exprs.
475   std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
476                  isIntOrIntVectorValue);
477
478   // Rebuild the modified portion of ValueMap.
479   for (; CstStart != CstEnd; ++CstStart)
480     ValueMap[Values[CstStart].first] = CstStart+1;
481 }
482
483
484 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
485 /// table into the values table.
486 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
487   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
488        VI != VE; ++VI)
489     EnumerateValue(VI->getValue());
490 }
491
492 /// Insert all of the values referenced by named metadata in the specified
493 /// module.
494 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
495   for (const auto &I : M.named_metadata())
496     EnumerateNamedMDNode(&I);
497 }
498
499 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
500   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
501     EnumerateMetadata(MD->getOperand(i));
502 }
503
504 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
505 /// and types referenced by the given MDNode.
506 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
507   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
508     Metadata *MD = N->getOperand(i);
509     if (!MD)
510       continue;
511     assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local");
512     EnumerateMetadata(MD);
513   }
514 }
515
516 void ValueEnumerator::EnumerateMetadata(const Metadata *MD) {
517   assert(
518       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
519       "Invalid metadata kind");
520
521   // Insert a dummy ID to block the co-recursive call to
522   // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph.
523   //
524   // Return early if there's already an ID.
525   if (!MDValueMap.insert(std::make_pair(MD, 0)).second)
526     return;
527
528   // Visit operands first to minimize RAUW.
529   if (auto *N = dyn_cast<MDNode>(MD))
530     EnumerateMDNodeOperands(N);
531   else if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
532     EnumerateValue(C->getValue());
533
534   HasMDString |= isa<MDString>(MD);
535   HasDILocation |= isa<DILocation>(MD);
536   HasGenericDINode |= isa<GenericDINode>(MD);
537
538   // Replace the dummy ID inserted above with the correct one.  MDValueMap may
539   // have changed by inserting operands, so we need a fresh lookup here.
540   MDs.push_back(MD);
541   MDValueMap[MD] = MDs.size();
542 }
543
544 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
545 /// information reachable from the metadata.
546 void ValueEnumerator::EnumerateFunctionLocalMetadata(
547     const LocalAsMetadata *Local) {
548   // Check to see if it's already in!
549   unsigned &MDValueID = MDValueMap[Local];
550   if (MDValueID)
551     return;
552
553   MDs.push_back(Local);
554   MDValueID = MDs.size();
555
556   EnumerateValue(Local->getValue());
557
558   // Also, collect all function-local metadata for easy access.
559   FunctionLocalMDs.push_back(Local);
560 }
561
562 void ValueEnumerator::EnumerateValue(const Value *V) {
563   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
564   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
565
566   // Check to see if it's already in!
567   unsigned &ValueID = ValueMap[V];
568   if (ValueID) {
569     // Increment use count.
570     Values[ValueID-1].second++;
571     return;
572   }
573
574   if (auto *GO = dyn_cast<GlobalObject>(V))
575     if (const Comdat *C = GO->getComdat())
576       Comdats.insert(C);
577
578   // Enumerate the type of this value.
579   EnumerateType(V->getType());
580
581   if (const Constant *C = dyn_cast<Constant>(V)) {
582     if (isa<GlobalValue>(C)) {
583       // Initializers for globals are handled explicitly elsewhere.
584     } else if (C->getNumOperands()) {
585       // If a constant has operands, enumerate them.  This makes sure that if a
586       // constant has uses (for example an array of const ints), that they are
587       // inserted also.
588
589       // We prefer to enumerate them with values before we enumerate the user
590       // itself.  This makes it more likely that we can avoid forward references
591       // in the reader.  We know that there can be no cycles in the constants
592       // graph that don't go through a global variable.
593       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
594            I != E; ++I)
595         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
596           EnumerateValue(*I);
597
598       // Finally, add the value.  Doing this could make the ValueID reference be
599       // dangling, don't reuse it.
600       Values.push_back(std::make_pair(V, 1U));
601       ValueMap[V] = Values.size();
602       return;
603     }
604   }
605
606   // Add the value.
607   Values.push_back(std::make_pair(V, 1U));
608   ValueID = Values.size();
609 }
610
611
612 void ValueEnumerator::EnumerateType(Type *Ty) {
613   unsigned *TypeID = &TypeMap[Ty];
614
615   // We've already seen this type.
616   if (*TypeID)
617     return;
618
619   // If it is a non-anonymous struct, mark the type as being visited so that we
620   // don't recursively visit it.  This is safe because we allow forward
621   // references of these in the bitcode reader.
622   if (StructType *STy = dyn_cast<StructType>(Ty))
623     if (!STy->isLiteral())
624       *TypeID = ~0U;
625
626   // Enumerate all of the subtypes before we enumerate this type.  This ensures
627   // that the type will be enumerated in an order that can be directly built.
628   for (Type *SubTy : Ty->subtypes())
629     EnumerateType(SubTy);
630
631   // Refresh the TypeID pointer in case the table rehashed.
632   TypeID = &TypeMap[Ty];
633
634   // Check to see if we got the pointer another way.  This can happen when
635   // enumerating recursive types that hit the base case deeper than they start.
636   //
637   // If this is actually a struct that we are treating as forward ref'able,
638   // then emit the definition now that all of its contents are available.
639   if (*TypeID && *TypeID != ~0U)
640     return;
641
642   // Add this type now that its contents are all happily enumerated.
643   Types.push_back(Ty);
644
645   *TypeID = Types.size();
646 }
647
648 // Enumerate the types for the specified value.  If the value is a constant,
649 // walk through it, enumerating the types of the constant.
650 void ValueEnumerator::EnumerateOperandType(const Value *V) {
651   EnumerateType(V->getType());
652
653   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
654     assert(!isa<LocalAsMetadata>(MD->getMetadata()) &&
655            "Function-local metadata should be left for later");
656
657     EnumerateMetadata(MD->getMetadata());
658     return;
659   }
660
661   const Constant *C = dyn_cast<Constant>(V);
662   if (!C)
663     return;
664
665   // If this constant is already enumerated, ignore it, we know its type must
666   // be enumerated.
667   if (ValueMap.count(C))
668     return;
669
670   // This constant may have operands, make sure to enumerate the types in
671   // them.
672   for (const Value *Op : C->operands()) {
673     // Don't enumerate basic blocks here, this happens as operands to
674     // blockaddress.
675     if (isa<BasicBlock>(Op))
676       continue;
677
678     EnumerateOperandType(Op);
679   }
680 }
681
682 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
683   if (PAL.isEmpty()) return;  // null is always 0.
684
685   // Do a lookup.
686   unsigned &Entry = AttributeMap[PAL];
687   if (Entry == 0) {
688     // Never saw this before, add it.
689     Attribute.push_back(PAL);
690     Entry = Attribute.size();
691   }
692
693   // Do lookups for all attribute groups.
694   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
695     AttributeSet AS = PAL.getSlotAttributes(i);
696     unsigned &Entry = AttributeGroupMap[AS];
697     if (Entry == 0) {
698       AttributeGroups.push_back(AS);
699       Entry = AttributeGroups.size();
700     }
701   }
702 }
703
704 void ValueEnumerator::incorporateFunction(const Function &F) {
705   InstructionCount = 0;
706   NumModuleValues = Values.size();
707   NumModuleMDs = MDs.size();
708
709   // Adding function arguments to the value table.
710   for (const auto &I : F.args())
711     EnumerateValue(&I);
712
713   FirstFuncConstantID = Values.size();
714
715   // Add all function-level constants to the value table.
716   for (const BasicBlock &BB : F) {
717     for (const Instruction &I : BB)
718       for (const Use &OI : I.operands()) {
719         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
720           EnumerateValue(OI);
721       }
722     BasicBlocks.push_back(&BB);
723     ValueMap[&BB] = BasicBlocks.size();
724   }
725
726   // Optimize the constant layout.
727   OptimizeConstants(FirstFuncConstantID, Values.size());
728
729   // Add the function's parameter attributes so they are available for use in
730   // the function's instruction.
731   EnumerateAttributes(F.getAttributes());
732
733   FirstInstID = Values.size();
734
735   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
736   // Add all of the instructions.
737   for (const BasicBlock &BB : F) {
738     for (const Instruction &I : BB) {
739       for (const Use &OI : I.operands()) {
740         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
741           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
742             // Enumerate metadata after the instructions they might refer to.
743             FnLocalMDVector.push_back(Local);
744       }
745
746       if (!I.getType()->isVoidTy())
747         EnumerateValue(&I);
748     }
749   }
750
751   // Add all of the function-local metadata.
752   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
753     EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
754 }
755
756 void ValueEnumerator::purgeFunction() {
757   /// Remove purged values from the ValueMap.
758   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
759     ValueMap.erase(Values[i].first);
760   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
761     MDValueMap.erase(MDs[i]);
762   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
763     ValueMap.erase(BasicBlocks[i]);
764
765   Values.resize(NumModuleValues);
766   MDs.resize(NumModuleMDs);
767   BasicBlocks.clear();
768   FunctionLocalMDs.clear();
769 }
770
771 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
772                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
773   unsigned Counter = 0;
774   for (const BasicBlock &BB : *F)
775     IDMap[&BB] = ++Counter;
776 }
777
778 /// getGlobalBasicBlockID - This returns the function-specific ID for the
779 /// specified basic block.  This is relatively expensive information, so it
780 /// should only be used by rare constructs such as address-of-label.
781 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
782   unsigned &Idx = GlobalBasicBlockIDs[BB];
783   if (Idx != 0)
784     return Idx-1;
785
786   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
787   return getGlobalBasicBlockID(BB);
788 }
789
790 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
791   return Log2_32_Ceil(getTypes().size() + 1);
792 }