implement the 'string constant' optimization. This shrinks kc.bit from
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ParameterAttributes.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 /// These are manifest constants used by the bitcode writer. They do not need to
29 /// be kept in sync with the reader, but need to be consistent within this file.
30 enum {
31   CurVersion = 0,
32   
33   // VALUE_SYMTAB_BLOCK abbrev id's.
34   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
35   VST_ENTRY_7_ABBREV,
36   VST_ENTRY_6_ABBREV,
37   VST_BBENTRY_6_ABBREV,
38   
39   // CONSTANTS_BLOCK abbrev id's.
40   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   CONSTANTS_INTEGER_ABBREV,
42   CONSTANTS_CE_CAST_Abbrev,
43   CONSTANTS_NULL_Abbrev,
44   
45   // FUNCTION_BLOCK abbrev id's.
46   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV
47 };
48
49
50 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
51   switch (Opcode) {
52   default: assert(0 && "Unknown cast instruction!");
53   case Instruction::Trunc   : return bitc::CAST_TRUNC;
54   case Instruction::ZExt    : return bitc::CAST_ZEXT;
55   case Instruction::SExt    : return bitc::CAST_SEXT;
56   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
57   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
58   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
59   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
60   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
61   case Instruction::FPExt   : return bitc::CAST_FPEXT;
62   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
63   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
64   case Instruction::BitCast : return bitc::CAST_BITCAST;
65   }
66 }
67
68 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
69   switch (Opcode) {
70   default: assert(0 && "Unknown binary instruction!");
71   case Instruction::Add:  return bitc::BINOP_ADD;
72   case Instruction::Sub:  return bitc::BINOP_SUB;
73   case Instruction::Mul:  return bitc::BINOP_MUL;
74   case Instruction::UDiv: return bitc::BINOP_UDIV;
75   case Instruction::FDiv:
76   case Instruction::SDiv: return bitc::BINOP_SDIV;
77   case Instruction::URem: return bitc::BINOP_UREM;
78   case Instruction::FRem:
79   case Instruction::SRem: return bitc::BINOP_SREM;
80   case Instruction::Shl:  return bitc::BINOP_SHL;
81   case Instruction::LShr: return bitc::BINOP_LSHR;
82   case Instruction::AShr: return bitc::BINOP_ASHR;
83   case Instruction::And:  return bitc::BINOP_AND;
84   case Instruction::Or:   return bitc::BINOP_OR;
85   case Instruction::Xor:  return bitc::BINOP_XOR;
86   }
87 }
88
89
90
91 static void WriteStringRecord(unsigned Code, const std::string &Str, 
92                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
93   SmallVector<unsigned, 64> Vals;
94   
95   // Code: [strchar x N]
96   for (unsigned i = 0, e = Str.size(); i != e; ++i)
97     Vals.push_back(Str[i]);
98     
99   // Emit the finished record.
100   Stream.EmitRecord(Code, Vals, AbbrevToUse);
101 }
102
103 // Emit information about parameter attributes.
104 static void WriteParamAttrTable(const ValueEnumerator &VE, 
105                                 BitstreamWriter &Stream) {
106   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
107   if (Attrs.empty()) return;
108   
109   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
110
111   SmallVector<uint64_t, 64> Record;
112   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
113     const ParamAttrsList *A = Attrs[i];
114     for (unsigned op = 0, e = A->size(); op != e; ++op) {
115       Record.push_back(A->getParamIndex(op));
116       Record.push_back(A->getParamAttrsAtIndex(op));
117     }
118     
119     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
120     Record.clear();
121   }
122   
123   Stream.ExitBlock();
124 }
125
126 /// WriteTypeTable - Write out the type table for a module.
127 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
128   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
129   
130   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
131   SmallVector<uint64_t, 64> TypeVals;
132   
133   // Abbrev for TYPE_CODE_POINTER.
134   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
135   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
136   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
137                             Log2_32_Ceil(VE.getTypes().size()+1)));
138   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
139   
140   // Abbrev for TYPE_CODE_FUNCTION.
141   Abbv = new BitCodeAbbrev();
142   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
143   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
144   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
145                             Log2_32_Ceil(VE.getParamAttrs().size()+1)));
146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
147   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
148                             Log2_32_Ceil(VE.getTypes().size()+1)));
149   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
150   
151   // Abbrev for TYPE_CODE_STRUCT.
152   Abbv = new BitCodeAbbrev();
153   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
156   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
157                             Log2_32_Ceil(VE.getTypes().size()+1)));
158   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
159  
160   // Abbrev for TYPE_CODE_ARRAY.
161   Abbv = new BitCodeAbbrev();
162   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
164   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
165                             Log2_32_Ceil(VE.getTypes().size()+1)));
166   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
167   
168   // Emit an entry count so the reader can reserve space.
169   TypeVals.push_back(TypeList.size());
170   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
171   TypeVals.clear();
172   
173   // Loop over all of the types, emitting each in turn.
174   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
175     const Type *T = TypeList[i].first;
176     int AbbrevToUse = 0;
177     unsigned Code = 0;
178     
179     switch (T->getTypeID()) {
180     case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
181     default: assert(0 && "Unknown type!");
182     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
183     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
184     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
185     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
186     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
187     case Type::IntegerTyID:
188       // INTEGER: [width]
189       Code = bitc::TYPE_CODE_INTEGER;
190       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
191       break;
192     case Type::PointerTyID:
193       // POINTER: [pointee type]
194       Code = bitc::TYPE_CODE_POINTER;
195       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
196       AbbrevToUse = PtrAbbrev;
197       break;
198
199     case Type::FunctionTyID: {
200       const FunctionType *FT = cast<FunctionType>(T);
201       // FUNCTION: [isvararg, attrid, retty, paramty x N]
202       Code = bitc::TYPE_CODE_FUNCTION;
203       TypeVals.push_back(FT->isVarArg());
204       TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
205       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
206       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
207         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
208       AbbrevToUse = FunctionAbbrev;
209       break;
210     }
211     case Type::StructTyID: {
212       const StructType *ST = cast<StructType>(T);
213       // STRUCT: [ispacked, eltty x N]
214       Code = bitc::TYPE_CODE_STRUCT;
215       TypeVals.push_back(ST->isPacked());
216       // Output all of the element types.
217       for (StructType::element_iterator I = ST->element_begin(),
218            E = ST->element_end(); I != E; ++I)
219         TypeVals.push_back(VE.getTypeID(*I));
220       AbbrevToUse = StructAbbrev;
221       break;
222     }
223     case Type::ArrayTyID: {
224       const ArrayType *AT = cast<ArrayType>(T);
225       // ARRAY: [numelts, eltty]
226       Code = bitc::TYPE_CODE_ARRAY;
227       TypeVals.push_back(AT->getNumElements());
228       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
229       AbbrevToUse = ArrayAbbrev;
230       break;
231     }
232     case Type::VectorTyID: {
233       const VectorType *VT = cast<VectorType>(T);
234       // VECTOR [numelts, eltty]
235       Code = bitc::TYPE_CODE_VECTOR;
236       TypeVals.push_back(VT->getNumElements());
237       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
238       break;
239     }
240     }
241
242     // Emit the finished record.
243     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
244     TypeVals.clear();
245   }
246   
247   Stream.ExitBlock();
248 }
249
250 static unsigned getEncodedLinkage(const GlobalValue *GV) {
251   switch (GV->getLinkage()) {
252   default: assert(0 && "Invalid linkage!");
253   case GlobalValue::ExternalLinkage:     return 0;
254   case GlobalValue::WeakLinkage:         return 1;
255   case GlobalValue::AppendingLinkage:    return 2;
256   case GlobalValue::InternalLinkage:     return 3;
257   case GlobalValue::LinkOnceLinkage:     return 4;
258   case GlobalValue::DLLImportLinkage:    return 5;
259   case GlobalValue::DLLExportLinkage:    return 6;
260   case GlobalValue::ExternalWeakLinkage: return 7;
261   }
262 }
263
264 static unsigned getEncodedVisibility(const GlobalValue *GV) {
265   switch (GV->getVisibility()) {
266   default: assert(0 && "Invalid visibility!");
267   case GlobalValue::DefaultVisibility:   return 0;
268   case GlobalValue::HiddenVisibility:    return 1;
269   case GlobalValue::ProtectedVisibility: return 2;
270   }
271 }
272
273 // Emit top-level description of module, including target triple, inline asm,
274 // descriptors for global variables, and function prototype info.
275 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
276                             BitstreamWriter &Stream) {
277   // Emit the list of dependent libraries for the Module.
278   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
279     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
280
281   // Emit various pieces of data attached to a module.
282   if (!M->getTargetTriple().empty())
283     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
284                       0/*TODO*/, Stream);
285   if (!M->getDataLayout().empty())
286     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
287                       0/*TODO*/, Stream);
288   if (!M->getModuleInlineAsm().empty())
289     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
290                       0/*TODO*/, Stream);
291
292   // Emit information about sections, computing how many there are.  Also
293   // compute the maximum alignment value.
294   std::map<std::string, unsigned> SectionMap;
295   unsigned MaxAlignment = 0;
296   unsigned MaxGlobalType = 0;
297   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
298        GV != E; ++GV) {
299     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
300     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
301     
302     if (!GV->hasSection()) continue;
303     // Give section names unique ID's.
304     unsigned &Entry = SectionMap[GV->getSection()];
305     if (Entry != 0) continue;
306     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
307                       0/*TODO*/, Stream);
308     Entry = SectionMap.size();
309   }
310   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
311     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
312     if (!F->hasSection()) continue;
313     // Give section names unique ID's.
314     unsigned &Entry = SectionMap[F->getSection()];
315     if (Entry != 0) continue;
316     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
317                       0/*TODO*/, Stream);
318     Entry = SectionMap.size();
319   }
320   
321   // Emit abbrev for globals, now that we know # sections and max alignment.
322   unsigned SimpleGVarAbbrev = 0;
323   if (!M->global_empty()) { 
324     // Add an abbrev for common globals with no visibility or thread localness.
325     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
326     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
327     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
328                               Log2_32_Ceil(MaxGlobalType+1)));
329     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
330     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
332     if (MaxAlignment == 0)                                      // Alignment.
333       Abbv->Add(BitCodeAbbrevOp(0));
334     else {
335       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
336       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
337                                Log2_32_Ceil(MaxEncAlignment+1)));
338     }
339     if (SectionMap.empty())                                    // Section.
340       Abbv->Add(BitCodeAbbrevOp(0));
341     else
342       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343                                Log2_32_Ceil(SectionMap.size()+1)));
344     // Don't bother emitting vis + thread local.
345     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
346   }
347   
348   // Emit the global variable information.
349   SmallVector<unsigned, 64> Vals;
350   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
351        GV != E; ++GV) {
352     unsigned AbbrevToUse = 0;
353
354     // GLOBALVAR: [type, isconst, initid, 
355     //             linkage, alignment, section, visibility, threadlocal]
356     Vals.push_back(VE.getTypeID(GV->getType()));
357     Vals.push_back(GV->isConstant());
358     Vals.push_back(GV->isDeclaration() ? 0 :
359                    (VE.getValueID(GV->getInitializer()) + 1));
360     Vals.push_back(getEncodedLinkage(GV));
361     Vals.push_back(Log2_32(GV->getAlignment())+1);
362     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
363     if (GV->isThreadLocal() || 
364         GV->getVisibility() != GlobalValue::DefaultVisibility) {
365       Vals.push_back(getEncodedVisibility(GV));
366       Vals.push_back(GV->isThreadLocal());
367     } else {
368       AbbrevToUse = SimpleGVarAbbrev;
369     }
370     
371     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
372     Vals.clear();
373   }
374
375   // Emit the function proto information.
376   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
377     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
378     //             visibility]
379     Vals.push_back(VE.getTypeID(F->getType()));
380     Vals.push_back(F->getCallingConv());
381     Vals.push_back(F->isDeclaration());
382     Vals.push_back(getEncodedLinkage(F));
383     Vals.push_back(Log2_32(F->getAlignment())+1);
384     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
385     Vals.push_back(getEncodedVisibility(F));
386     
387     unsigned AbbrevToUse = 0;
388     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
389     Vals.clear();
390   }
391   
392   
393   // Emit the alias information.
394   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
395        AI != E; ++AI) {
396     Vals.push_back(VE.getTypeID(AI->getType()));
397     Vals.push_back(VE.getValueID(AI->getAliasee()));
398     Vals.push_back(getEncodedLinkage(AI));
399     unsigned AbbrevToUse = 0;
400     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
401     Vals.clear();
402   }
403 }
404
405
406 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
407                            const ValueEnumerator &VE,
408                            BitstreamWriter &Stream, bool isGlobal) {
409   if (FirstVal == LastVal) return;
410   
411   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
412
413   unsigned AggregateAbbrev = 0;
414   unsigned GEPAbbrev = 0;
415   // If this is a constant pool for the module, emit module-specific abbrevs.
416   if (isGlobal) {
417     // Abbrev for CST_CODE_AGGREGATE.
418     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
419     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
420     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
421     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
422     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
423   }  
424   
425   // FIXME: Install and use abbrevs to reduce size.  Install them globally so
426   // they don't need to be reemitted for each function body.
427   
428   SmallVector<uint64_t, 64> Record;
429
430   const ValueEnumerator::ValueList &Vals = VE.getValues();
431   const Type *LastTy = 0;
432   for (unsigned i = FirstVal; i != LastVal; ++i) {
433     const Value *V = Vals[i].first;
434     // If we need to switch types, do so now.
435     if (V->getType() != LastTy) {
436       LastTy = V->getType();
437       Record.push_back(VE.getTypeID(LastTy));
438       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
439                         CONSTANTS_SETTYPE_ABBREV);
440       Record.clear();
441     }
442     
443     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
444       assert(0 && IA && "FIXME: Inline asm writing unimp!");
445       continue;
446     }
447     const Constant *C = cast<Constant>(V);
448     unsigned Code = -1U;
449     unsigned AbbrevToUse = 0;
450     if (C->isNullValue()) {
451       Code = bitc::CST_CODE_NULL;
452     } else if (isa<UndefValue>(C)) {
453       Code = bitc::CST_CODE_UNDEF;
454     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
455       if (IV->getBitWidth() <= 64) {
456         int64_t V = IV->getSExtValue();
457         if (V >= 0)
458           Record.push_back(V << 1);
459         else
460           Record.push_back((-V << 1) | 1);
461         Code = bitc::CST_CODE_INTEGER;
462         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
463       } else {                             // Wide integers, > 64 bits in size.
464         // We have an arbitrary precision integer value to write whose 
465         // bit width is > 64. However, in canonical unsigned integer 
466         // format it is likely that the high bits are going to be zero.
467         // So, we only write the number of active words.
468         unsigned NWords = IV->getValue().getActiveWords(); 
469         const uint64_t *RawWords = IV->getValue().getRawData();
470         for (unsigned i = 0; i != NWords; ++i) {
471           int64_t V = RawWords[i];
472           if (V >= 0)
473             Record.push_back(V << 1);
474           else
475             Record.push_back((-V << 1) | 1);
476         }
477         Code = bitc::CST_CODE_WIDE_INTEGER;
478       }
479     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
480       Code = bitc::CST_CODE_FLOAT;
481       if (CFP->getType() == Type::FloatTy) {
482         Record.push_back(FloatToBits((float)CFP->getValue()));
483       } else {
484         assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
485         Record.push_back(DoubleToBits((double)CFP->getValue()));
486       }
487     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
488       // Emit constant strings specially.
489       Code = bitc::CST_CODE_STRING;
490       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
491         Record.push_back(cast<ConstantInt>(C->getOperand(i))->getZExtValue());
492       
493     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
494                isa<ConstantVector>(V)) {
495       Code = bitc::CST_CODE_AGGREGATE;
496       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
497         Record.push_back(VE.getValueID(C->getOperand(i)));
498       AbbrevToUse = AggregateAbbrev;
499     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
500       switch (CE->getOpcode()) {
501       default:
502         if (Instruction::isCast(CE->getOpcode())) {
503           Code = bitc::CST_CODE_CE_CAST;
504           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
505           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
506           Record.push_back(VE.getValueID(C->getOperand(0)));
507           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
508         } else {
509           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
510           Code = bitc::CST_CODE_CE_BINOP;
511           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
512           Record.push_back(VE.getValueID(C->getOperand(0)));
513           Record.push_back(VE.getValueID(C->getOperand(1)));
514         }
515         break;
516       case Instruction::GetElementPtr:
517         Code = bitc::CST_CODE_CE_GEP;
518         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
519           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
520           Record.push_back(VE.getValueID(C->getOperand(i)));
521         }
522         AbbrevToUse = GEPAbbrev;
523         break;
524       case Instruction::Select:
525         Code = bitc::CST_CODE_CE_SELECT;
526         Record.push_back(VE.getValueID(C->getOperand(0)));
527         Record.push_back(VE.getValueID(C->getOperand(1)));
528         Record.push_back(VE.getValueID(C->getOperand(2)));
529         break;
530       case Instruction::ExtractElement:
531         Code = bitc::CST_CODE_CE_EXTRACTELT;
532         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
533         Record.push_back(VE.getValueID(C->getOperand(0)));
534         Record.push_back(VE.getValueID(C->getOperand(1)));
535         break;
536       case Instruction::InsertElement:
537         Code = bitc::CST_CODE_CE_INSERTELT;
538         Record.push_back(VE.getValueID(C->getOperand(0)));
539         Record.push_back(VE.getValueID(C->getOperand(1)));
540         Record.push_back(VE.getValueID(C->getOperand(2)));
541         break;
542       case Instruction::ShuffleVector:
543         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
544         Record.push_back(VE.getValueID(C->getOperand(0)));
545         Record.push_back(VE.getValueID(C->getOperand(1)));
546         Record.push_back(VE.getValueID(C->getOperand(2)));
547         break;
548       case Instruction::ICmp:
549       case Instruction::FCmp:
550         Code = bitc::CST_CODE_CE_CMP;
551         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
552         Record.push_back(VE.getValueID(C->getOperand(0)));
553         Record.push_back(VE.getValueID(C->getOperand(1)));
554         Record.push_back(CE->getPredicate());
555         break;
556       }
557     } else {
558       assert(0 && "Unknown constant!");
559     }
560     Stream.EmitRecord(Code, Record, AbbrevToUse);
561     Record.clear();
562   }
563
564   Stream.ExitBlock();
565 }
566
567 static void WriteModuleConstants(const ValueEnumerator &VE,
568                                  BitstreamWriter &Stream) {
569   const ValueEnumerator::ValueList &Vals = VE.getValues();
570   
571   // Find the first constant to emit, which is the first non-globalvalue value.
572   // We know globalvalues have been emitted by WriteModuleInfo.
573   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
574     if (!isa<GlobalValue>(Vals[i].first)) {
575       WriteConstants(i, Vals.size(), VE, Stream, true);
576       return;
577     }
578   }
579 }
580
581 /// PushValueAndType - The file has to encode both the value and type id for
582 /// many values, because we need to know what type to create for forward
583 /// references.  However, most operands are not forward references, so this type
584 /// field is not needed.
585 ///
586 /// This function adds V's value ID to Vals.  If the value ID is higher than the
587 /// instruction ID, then it is a forward reference, and it also includes the
588 /// type ID.
589 static bool PushValueAndType(Value *V, unsigned InstID,
590                              SmallVector<unsigned, 64> &Vals, 
591                              ValueEnumerator &VE) {
592   unsigned ValID = VE.getValueID(V);
593   Vals.push_back(ValID);
594   if (ValID >= InstID) {
595     Vals.push_back(VE.getTypeID(V->getType()));
596     return true;
597   }
598   return false;
599 }
600
601 /// WriteInstruction - Emit an instruction to the specified stream.
602 static void WriteInstruction(const Instruction &I, unsigned InstID,
603                              ValueEnumerator &VE, BitstreamWriter &Stream,
604                              SmallVector<unsigned, 64> &Vals) {
605   unsigned Code = 0;
606   unsigned AbbrevToUse = 0;
607   switch (I.getOpcode()) {
608   default:
609     if (Instruction::isCast(I.getOpcode())) {
610       Code = bitc::FUNC_CODE_INST_CAST;
611       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
612       Vals.push_back(VE.getTypeID(I.getType()));
613       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
614     } else {
615       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
616       Code = bitc::FUNC_CODE_INST_BINOP;
617       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
618       Vals.push_back(VE.getValueID(I.getOperand(1)));
619       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
620     }
621     break;
622
623   case Instruction::GetElementPtr:
624     Code = bitc::FUNC_CODE_INST_GEP;
625     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
626       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
627     break;
628   case Instruction::Select:
629     Code = bitc::FUNC_CODE_INST_SELECT;
630     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
631     Vals.push_back(VE.getValueID(I.getOperand(2)));
632     Vals.push_back(VE.getValueID(I.getOperand(0)));
633     break;
634   case Instruction::ExtractElement:
635     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
636     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
637     Vals.push_back(VE.getValueID(I.getOperand(1)));
638     break;
639   case Instruction::InsertElement:
640     Code = bitc::FUNC_CODE_INST_INSERTELT;
641     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
642     Vals.push_back(VE.getValueID(I.getOperand(1)));
643     Vals.push_back(VE.getValueID(I.getOperand(2)));
644     break;
645   case Instruction::ShuffleVector:
646     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
647     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
648     Vals.push_back(VE.getValueID(I.getOperand(1)));
649     Vals.push_back(VE.getValueID(I.getOperand(2)));
650     break;
651   case Instruction::ICmp:
652   case Instruction::FCmp:
653     Code = bitc::FUNC_CODE_INST_CMP;
654     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
655     Vals.push_back(VE.getValueID(I.getOperand(1)));
656     Vals.push_back(cast<CmpInst>(I).getPredicate());
657     break;
658
659   case Instruction::Ret:
660     Code = bitc::FUNC_CODE_INST_RET;
661     if (I.getNumOperands())
662       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
663     break;
664   case Instruction::Br:
665     Code = bitc::FUNC_CODE_INST_BR;
666     Vals.push_back(VE.getValueID(I.getOperand(0)));
667     if (cast<BranchInst>(I).isConditional()) {
668       Vals.push_back(VE.getValueID(I.getOperand(1)));
669       Vals.push_back(VE.getValueID(I.getOperand(2)));
670     }
671     break;
672   case Instruction::Switch:
673     Code = bitc::FUNC_CODE_INST_SWITCH;
674     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
675     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
676       Vals.push_back(VE.getValueID(I.getOperand(i)));
677     break;
678   case Instruction::Invoke: {
679     Code = bitc::FUNC_CODE_INST_INVOKE;
680     Vals.push_back(cast<InvokeInst>(I).getCallingConv());
681     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
682     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
683     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
684     
685     // Emit value #'s for the fixed parameters.
686     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
687     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
688     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
689       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
690
691     // Emit type/value pairs for varargs params.
692     if (FTy->isVarArg()) {
693       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
694            i != e; ++i)
695         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
696     }
697     break;
698   }
699   case Instruction::Unwind:
700     Code = bitc::FUNC_CODE_INST_UNWIND;
701     break;
702   case Instruction::Unreachable:
703     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
704     break;
705   
706   case Instruction::PHI:
707     Code = bitc::FUNC_CODE_INST_PHI;
708     Vals.push_back(VE.getTypeID(I.getType()));
709     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
710       Vals.push_back(VE.getValueID(I.getOperand(i)));
711     break;
712     
713   case Instruction::Malloc:
714     Code = bitc::FUNC_CODE_INST_MALLOC;
715     Vals.push_back(VE.getTypeID(I.getType()));
716     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
717     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
718     break;
719     
720   case Instruction::Free:
721     Code = bitc::FUNC_CODE_INST_FREE;
722     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
723     break;
724     
725   case Instruction::Alloca:
726     Code = bitc::FUNC_CODE_INST_ALLOCA;
727     Vals.push_back(VE.getTypeID(I.getType()));
728     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
729     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
730     break;
731     
732   case Instruction::Load:
733     Code = bitc::FUNC_CODE_INST_LOAD;
734     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
735       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
736       
737     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
738     Vals.push_back(cast<LoadInst>(I).isVolatile());
739     break;
740   case Instruction::Store:
741     Code = bitc::FUNC_CODE_INST_STORE;
742     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
743     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
744     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
745     Vals.push_back(cast<StoreInst>(I).isVolatile());
746     break;
747   case Instruction::Call: {
748     Code = bitc::FUNC_CODE_INST_CALL;
749     Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
750                    cast<CallInst>(I).isTailCall());
751     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // Callee
752     
753     // Emit value #'s for the fixed parameters.
754     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
755     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
756     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
757       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
758       
759     // Emit type/value pairs for varargs params.
760     if (FTy->isVarArg()) {
761       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
762       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
763            i != e; ++i)
764         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
765     }
766     break;
767   }
768   case Instruction::VAArg:
769     Code = bitc::FUNC_CODE_INST_VAARG;
770     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
771     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
772     Vals.push_back(VE.getTypeID(I.getType())); // restype.
773     break;
774   }
775   
776   Stream.EmitRecord(Code, Vals, AbbrevToUse);
777   Vals.clear();
778 }
779
780 // Emit names for globals/functions etc.
781 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
782                                   const ValueEnumerator &VE,
783                                   BitstreamWriter &Stream) {
784   if (VST.empty()) return;
785   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
786
787   // FIXME: Set up the abbrev, we know how many values there are!
788   // FIXME: We know if the type names can use 7-bit ascii.
789   SmallVector<unsigned, 64> NameVals;
790   
791   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
792        SI != SE; ++SI) {
793     
794     const ValueName &Name = *SI;
795     
796     // Figure out the encoding to use for the name.
797     bool is7Bit = true;
798     bool isChar6 = true;
799     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
800          C != E; ++C) {
801       if (isChar6) 
802         isChar6 = BitCodeAbbrevOp::isChar6(*C);
803       if ((unsigned char)*C & 128) {
804         is7Bit = false;
805         break;  // don't bother scanning the rest.
806       }
807     }
808     
809     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
810     
811     // VST_ENTRY:   [valueid, namechar x N]
812     // VST_BBENTRY: [bbid, namechar x N]
813     unsigned Code;
814     if (isa<BasicBlock>(SI->getValue())) {
815       Code = bitc::VST_CODE_BBENTRY;
816       if (isChar6)
817         AbbrevToUse = VST_BBENTRY_6_ABBREV;
818     } else {
819       Code = bitc::VST_CODE_ENTRY;
820       if (isChar6)
821         AbbrevToUse = VST_ENTRY_6_ABBREV;
822       else if (is7Bit)
823         AbbrevToUse = VST_ENTRY_7_ABBREV;
824     }
825     
826     NameVals.push_back(VE.getValueID(SI->getValue()));
827     for (const char *P = Name.getKeyData(),
828          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
829       NameVals.push_back((unsigned char)*P);
830     
831     // Emit the finished record.
832     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
833     NameVals.clear();
834   }
835   Stream.ExitBlock();
836 }
837
838 /// WriteFunction - Emit a function body to the module stream.
839 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
840                           BitstreamWriter &Stream) {
841   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3);
842   VE.incorporateFunction(F);
843
844   SmallVector<unsigned, 64> Vals;
845   
846   // Emit the number of basic blocks, so the reader can create them ahead of
847   // time.
848   Vals.push_back(VE.getBasicBlocks().size());
849   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
850   Vals.clear();
851   
852   // FIXME: Function attributes?
853   
854   // If there are function-local constants, emit them now.
855   unsigned CstStart, CstEnd;
856   VE.getFunctionConstantRange(CstStart, CstEnd);
857   WriteConstants(CstStart, CstEnd, VE, Stream, false);
858   
859   // Keep a running idea of what the instruction ID is. 
860   unsigned InstID = CstEnd;
861   
862   // Finally, emit all the instructions, in order.
863   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
864     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
865          I != E; ++I) {
866       WriteInstruction(*I, InstID, VE, Stream, Vals);
867       if (I->getType() != Type::VoidTy)
868         ++InstID;
869     }
870   
871   // Emit names for all the instructions etc.
872   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
873     
874   VE.purgeFunction();
875   Stream.ExitBlock();
876 }
877
878 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
879 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
880                                  const ValueEnumerator &VE,
881                                  BitstreamWriter &Stream) {
882   if (TST.empty()) return;
883   
884   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
885   
886   // 7-bit fixed width VST_CODE_ENTRY strings.
887   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
888   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
889   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
890                             Log2_32_Ceil(VE.getTypes().size()+1)));
891   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
892   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
893   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
894   
895   SmallVector<unsigned, 64> NameVals;
896   
897   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
898        TI != TE; ++TI) {
899     // TST_ENTRY: [typeid, namechar x N]
900     NameVals.push_back(VE.getTypeID(TI->second));
901     
902     const std::string &Str = TI->first;
903     bool is7Bit = true;
904     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
905       NameVals.push_back((unsigned char)Str[i]);
906       if (Str[i] & 128)
907         is7Bit = false;
908     }
909     
910     // Emit the finished record.
911     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
912     NameVals.clear();
913   }
914   
915   Stream.ExitBlock();
916 }
917
918 // Emit blockinfo, which defines the standard abbreviations etc.
919 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
920   // We only want to emit block info records for blocks that have multiple
921   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
922   // blocks can defined their abbrevs inline.
923   Stream.EnterBlockInfoBlock(2);
924   
925   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
926     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
927     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
928     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
929     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
930     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
931     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
932                                    Abbv) != VST_ENTRY_8_ABBREV)
933       assert(0 && "Unexpected abbrev ordering!");
934   }
935   
936   { // 7-bit fixed width VST_ENTRY strings.
937     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
938     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
939     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
940     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
941     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
942     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
943                                    Abbv) != VST_ENTRY_7_ABBREV)
944       assert(0 && "Unexpected abbrev ordering!");
945   }
946   { // 6-bit char6 VST_ENTRY strings.
947     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
948     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
949     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
950     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
951     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
952     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
953                                    Abbv) != VST_ENTRY_6_ABBREV)
954       assert(0 && "Unexpected abbrev ordering!");
955   }
956   { // 6-bit char6 VST_BBENTRY strings.
957     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
958     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
959     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
960     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
961     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
962     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
963                                    Abbv) != VST_BBENTRY_6_ABBREV)
964       assert(0 && "Unexpected abbrev ordering!");
965   }
966   
967   
968   
969   { // SETTYPE abbrev for CONSTANTS_BLOCK.
970     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
971     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
972     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
973                               Log2_32_Ceil(VE.getTypes().size()+1)));
974     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
975                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
976       assert(0 && "Unexpected abbrev ordering!");
977   }
978   
979   { // INTEGER abbrev for CONSTANTS_BLOCK.
980     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
981     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
982     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
983     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
984                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
985       assert(0 && "Unexpected abbrev ordering!");
986   }
987   
988   { // CE_CAST abbrev for CONSTANTS_BLOCK.
989     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
990     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
991     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
992     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
993                               Log2_32_Ceil(VE.getTypes().size()+1)));
994     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
995
996     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
997                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
998       assert(0 && "Unexpected abbrev ordering!");
999   }
1000   { // NULL abbrev for CONSTANTS_BLOCK.
1001     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1002     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1003     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1004                                    Abbv) != CONSTANTS_NULL_Abbrev)
1005       assert(0 && "Unexpected abbrev ordering!");
1006   }
1007   
1008   // FIXME: This should only use space for first class types!
1009  
1010   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1011     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1012     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1013     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1014     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1015     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1016     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1017                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1018       assert(0 && "Unexpected abbrev ordering!");
1019   }
1020   
1021   Stream.ExitBlock();
1022 }
1023
1024
1025 /// WriteModule - Emit the specified module to the bitstream.
1026 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1027   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1028   
1029   // Emit the version number if it is non-zero.
1030   if (CurVersion) {
1031     SmallVector<unsigned, 1> Vals;
1032     Vals.push_back(CurVersion);
1033     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1034   }
1035   
1036   // Analyze the module, enumerating globals, functions, etc.
1037   ValueEnumerator VE(M);
1038
1039   // Emit blockinfo, which defines the standard abbreviations etc.
1040   WriteBlockInfo(VE, Stream);
1041   
1042   // Emit information about parameter attributes.
1043   WriteParamAttrTable(VE, Stream);
1044   
1045   // Emit information describing all of the types in the module.
1046   WriteTypeTable(VE, Stream);
1047   
1048   // Emit top-level description of module, including target triple, inline asm,
1049   // descriptors for global variables, and function prototype info.
1050   WriteModuleInfo(M, VE, Stream);
1051   
1052   // Emit constants.
1053   WriteModuleConstants(VE, Stream);
1054   
1055   // If we have any aggregate values in the value table, purge them - these can
1056   // only be used to initialize global variables.  Doing so makes the value
1057   // namespace smaller for code in functions.
1058   int NumNonAggregates = VE.PurgeAggregateValues();
1059   if (NumNonAggregates != -1) {
1060     SmallVector<unsigned, 1> Vals;
1061     Vals.push_back(NumNonAggregates);
1062     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1063   }
1064   
1065   // Emit function bodies.
1066   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1067     if (!I->isDeclaration())
1068       WriteFunction(*I, VE, Stream);
1069   
1070   // Emit the type symbol table information.
1071   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1072   
1073   // Emit names for globals/functions etc.
1074   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1075   
1076   Stream.ExitBlock();
1077 }
1078
1079
1080 /// WriteBitcodeToFile - Write the specified module to the specified output
1081 /// stream.
1082 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1083   std::vector<unsigned char> Buffer;
1084   BitstreamWriter Stream(Buffer);
1085   
1086   Buffer.reserve(256*1024);
1087   
1088   // Emit the file header.
1089   Stream.Emit((unsigned)'B', 8);
1090   Stream.Emit((unsigned)'C', 8);
1091   Stream.Emit(0x0, 4);
1092   Stream.Emit(0xC, 4);
1093   Stream.Emit(0xE, 4);
1094   Stream.Emit(0xD, 4);
1095
1096   // Emit the module.
1097   WriteModule(M, Stream);
1098   
1099   // Write the generated bitstream to "Out".
1100   Out.write((char*)&Buffer.front(), Buffer.size());
1101 }