Bitcode: Range-based for, NFC
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/UseListOrder.h"
26 #include "llvm/IR/ValueSymbolTable.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Program.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cctype>
33 #include <map>
34 using namespace llvm;
35
36 /// These are manifest constants used by the bitcode writer. They do not need to
37 /// be kept in sync with the reader, but need to be consistent within this file.
38 enum {
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
105   switch (Op) {
106   default: llvm_unreachable("Unknown RMW operation!");
107   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
108   case AtomicRMWInst::Add: return bitc::RMW_ADD;
109   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
110   case AtomicRMWInst::And: return bitc::RMW_AND;
111   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
112   case AtomicRMWInst::Or: return bitc::RMW_OR;
113   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
114   case AtomicRMWInst::Max: return bitc::RMW_MAX;
115   case AtomicRMWInst::Min: return bitc::RMW_MIN;
116   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
117   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
118   }
119 }
120
121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
122   switch (Ordering) {
123   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
124   case Unordered: return bitc::ORDERING_UNORDERED;
125   case Monotonic: return bitc::ORDERING_MONOTONIC;
126   case Acquire: return bitc::ORDERING_ACQUIRE;
127   case Release: return bitc::ORDERING_RELEASE;
128   case AcquireRelease: return bitc::ORDERING_ACQREL;
129   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
130   }
131   llvm_unreachable("Invalid ordering");
132 }
133
134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
135   switch (SynchScope) {
136   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
137   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
138   }
139   llvm_unreachable("Invalid synch scope");
140 }
141
142 static void WriteStringRecord(unsigned Code, StringRef Str,
143                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
144   SmallVector<unsigned, 64> Vals;
145
146   // Code: [strchar x N]
147   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
148     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
149       AbbrevToUse = 0;
150     Vals.push_back(Str[i]);
151   }
152
153   // Emit the finished record.
154   Stream.EmitRecord(Code, Vals, AbbrevToUse);
155 }
156
157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
158   switch (Kind) {
159   case Attribute::Alignment:
160     return bitc::ATTR_KIND_ALIGNMENT;
161   case Attribute::AlwaysInline:
162     return bitc::ATTR_KIND_ALWAYS_INLINE;
163   case Attribute::Builtin:
164     return bitc::ATTR_KIND_BUILTIN;
165   case Attribute::ByVal:
166     return bitc::ATTR_KIND_BY_VAL;
167   case Attribute::InAlloca:
168     return bitc::ATTR_KIND_IN_ALLOCA;
169   case Attribute::Cold:
170     return bitc::ATTR_KIND_COLD;
171   case Attribute::InlineHint:
172     return bitc::ATTR_KIND_INLINE_HINT;
173   case Attribute::InReg:
174     return bitc::ATTR_KIND_IN_REG;
175   case Attribute::JumpTable:
176     return bitc::ATTR_KIND_JUMP_TABLE;
177   case Attribute::MinSize:
178     return bitc::ATTR_KIND_MIN_SIZE;
179   case Attribute::Naked:
180     return bitc::ATTR_KIND_NAKED;
181   case Attribute::Nest:
182     return bitc::ATTR_KIND_NEST;
183   case Attribute::NoAlias:
184     return bitc::ATTR_KIND_NO_ALIAS;
185   case Attribute::NoBuiltin:
186     return bitc::ATTR_KIND_NO_BUILTIN;
187   case Attribute::NoCapture:
188     return bitc::ATTR_KIND_NO_CAPTURE;
189   case Attribute::NoDuplicate:
190     return bitc::ATTR_KIND_NO_DUPLICATE;
191   case Attribute::NoImplicitFloat:
192     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
193   case Attribute::NoInline:
194     return bitc::ATTR_KIND_NO_INLINE;
195   case Attribute::NonLazyBind:
196     return bitc::ATTR_KIND_NON_LAZY_BIND;
197   case Attribute::NonNull:
198     return bitc::ATTR_KIND_NON_NULL;
199   case Attribute::Dereferenceable:
200     return bitc::ATTR_KIND_DEREFERENCEABLE;
201   case Attribute::NoRedZone:
202     return bitc::ATTR_KIND_NO_RED_ZONE;
203   case Attribute::NoReturn:
204     return bitc::ATTR_KIND_NO_RETURN;
205   case Attribute::NoUnwind:
206     return bitc::ATTR_KIND_NO_UNWIND;
207   case Attribute::OptimizeForSize:
208     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
209   case Attribute::OptimizeNone:
210     return bitc::ATTR_KIND_OPTIMIZE_NONE;
211   case Attribute::ReadNone:
212     return bitc::ATTR_KIND_READ_NONE;
213   case Attribute::ReadOnly:
214     return bitc::ATTR_KIND_READ_ONLY;
215   case Attribute::Returned:
216     return bitc::ATTR_KIND_RETURNED;
217   case Attribute::ReturnsTwice:
218     return bitc::ATTR_KIND_RETURNS_TWICE;
219   case Attribute::SExt:
220     return bitc::ATTR_KIND_S_EXT;
221   case Attribute::StackAlignment:
222     return bitc::ATTR_KIND_STACK_ALIGNMENT;
223   case Attribute::StackProtect:
224     return bitc::ATTR_KIND_STACK_PROTECT;
225   case Attribute::StackProtectReq:
226     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
227   case Attribute::StackProtectStrong:
228     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
229   case Attribute::StructRet:
230     return bitc::ATTR_KIND_STRUCT_RET;
231   case Attribute::SanitizeAddress:
232     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
233   case Attribute::SanitizeThread:
234     return bitc::ATTR_KIND_SANITIZE_THREAD;
235   case Attribute::SanitizeMemory:
236     return bitc::ATTR_KIND_SANITIZE_MEMORY;
237   case Attribute::UWTable:
238     return bitc::ATTR_KIND_UW_TABLE;
239   case Attribute::ZExt:
240     return bitc::ATTR_KIND_Z_EXT;
241   case Attribute::EndAttrKinds:
242     llvm_unreachable("Can not encode end-attribute kinds marker.");
243   case Attribute::None:
244     llvm_unreachable("Can not encode none-attribute.");
245   }
246
247   llvm_unreachable("Trying to encode unknown attribute");
248 }
249
250 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
251                                      BitstreamWriter &Stream) {
252   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
253   if (AttrGrps.empty()) return;
254
255   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
256
257   SmallVector<uint64_t, 64> Record;
258   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
259     AttributeSet AS = AttrGrps[i];
260     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
261       AttributeSet A = AS.getSlotAttributes(i);
262
263       Record.push_back(VE.getAttributeGroupID(A));
264       Record.push_back(AS.getSlotIndex(i));
265
266       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
267            I != E; ++I) {
268         Attribute Attr = *I;
269         if (Attr.isEnumAttribute()) {
270           Record.push_back(0);
271           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
272         } else if (Attr.isIntAttribute()) {
273           Record.push_back(1);
274           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
275           Record.push_back(Attr.getValueAsInt());
276         } else {
277           StringRef Kind = Attr.getKindAsString();
278           StringRef Val = Attr.getValueAsString();
279
280           Record.push_back(Val.empty() ? 3 : 4);
281           Record.append(Kind.begin(), Kind.end());
282           Record.push_back(0);
283           if (!Val.empty()) {
284             Record.append(Val.begin(), Val.end());
285             Record.push_back(0);
286           }
287         }
288       }
289
290       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
291       Record.clear();
292     }
293   }
294
295   Stream.ExitBlock();
296 }
297
298 static void WriteAttributeTable(const ValueEnumerator &VE,
299                                 BitstreamWriter &Stream) {
300   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
301   if (Attrs.empty()) return;
302
303   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
304
305   SmallVector<uint64_t, 64> Record;
306   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
307     const AttributeSet &A = Attrs[i];
308     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
309       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
310
311     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
312     Record.clear();
313   }
314
315   Stream.ExitBlock();
316 }
317
318 /// WriteTypeTable - Write out the type table for a module.
319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
320   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
321
322   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
323   SmallVector<uint64_t, 64> TypeVals;
324
325   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
326
327   // Abbrev for TYPE_CODE_POINTER.
328   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
329   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
331   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
332   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
333
334   // Abbrev for TYPE_CODE_FUNCTION.
335   Abbv = new BitCodeAbbrev();
336   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
340
341   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
342
343   // Abbrev for TYPE_CODE_STRUCT_ANON.
344   Abbv = new BitCodeAbbrev();
345   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
349
350   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
351
352   // Abbrev for TYPE_CODE_STRUCT_NAME.
353   Abbv = new BitCodeAbbrev();
354   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
357   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
358
359   // Abbrev for TYPE_CODE_STRUCT_NAMED.
360   Abbv = new BitCodeAbbrev();
361   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
365
366   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
367
368   // Abbrev for TYPE_CODE_ARRAY.
369   Abbv = new BitCodeAbbrev();
370   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
373
374   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
375
376   // Emit an entry count so the reader can reserve space.
377   TypeVals.push_back(TypeList.size());
378   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
379   TypeVals.clear();
380
381   // Loop over all of the types, emitting each in turn.
382   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
383     Type *T = TypeList[i];
384     int AbbrevToUse = 0;
385     unsigned Code = 0;
386
387     switch (T->getTypeID()) {
388     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
389     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
390     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
391     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
392     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
393     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
394     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
395     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
396     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
397     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
398     case Type::IntegerTyID:
399       // INTEGER: [width]
400       Code = bitc::TYPE_CODE_INTEGER;
401       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
402       break;
403     case Type::PointerTyID: {
404       PointerType *PTy = cast<PointerType>(T);
405       // POINTER: [pointee type, address space]
406       Code = bitc::TYPE_CODE_POINTER;
407       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
408       unsigned AddressSpace = PTy->getAddressSpace();
409       TypeVals.push_back(AddressSpace);
410       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
411       break;
412     }
413     case Type::FunctionTyID: {
414       FunctionType *FT = cast<FunctionType>(T);
415       // FUNCTION: [isvararg, retty, paramty x N]
416       Code = bitc::TYPE_CODE_FUNCTION;
417       TypeVals.push_back(FT->isVarArg());
418       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
419       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
420         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
421       AbbrevToUse = FunctionAbbrev;
422       break;
423     }
424     case Type::StructTyID: {
425       StructType *ST = cast<StructType>(T);
426       // STRUCT: [ispacked, eltty x N]
427       TypeVals.push_back(ST->isPacked());
428       // Output all of the element types.
429       for (StructType::element_iterator I = ST->element_begin(),
430            E = ST->element_end(); I != E; ++I)
431         TypeVals.push_back(VE.getTypeID(*I));
432
433       if (ST->isLiteral()) {
434         Code = bitc::TYPE_CODE_STRUCT_ANON;
435         AbbrevToUse = StructAnonAbbrev;
436       } else {
437         if (ST->isOpaque()) {
438           Code = bitc::TYPE_CODE_OPAQUE;
439         } else {
440           Code = bitc::TYPE_CODE_STRUCT_NAMED;
441           AbbrevToUse = StructNamedAbbrev;
442         }
443
444         // Emit the name if it is present.
445         if (!ST->getName().empty())
446           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
447                             StructNameAbbrev, Stream);
448       }
449       break;
450     }
451     case Type::ArrayTyID: {
452       ArrayType *AT = cast<ArrayType>(T);
453       // ARRAY: [numelts, eltty]
454       Code = bitc::TYPE_CODE_ARRAY;
455       TypeVals.push_back(AT->getNumElements());
456       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
457       AbbrevToUse = ArrayAbbrev;
458       break;
459     }
460     case Type::VectorTyID: {
461       VectorType *VT = cast<VectorType>(T);
462       // VECTOR [numelts, eltty]
463       Code = bitc::TYPE_CODE_VECTOR;
464       TypeVals.push_back(VT->getNumElements());
465       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
466       break;
467     }
468     }
469
470     // Emit the finished record.
471     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
472     TypeVals.clear();
473   }
474
475   Stream.ExitBlock();
476 }
477
478 static unsigned getEncodedLinkage(const GlobalValue &GV) {
479   switch (GV.getLinkage()) {
480   case GlobalValue::ExternalLinkage:
481     return 0;
482   case GlobalValue::WeakAnyLinkage:
483     return 1;
484   case GlobalValue::AppendingLinkage:
485     return 2;
486   case GlobalValue::InternalLinkage:
487     return 3;
488   case GlobalValue::LinkOnceAnyLinkage:
489     return 4;
490   case GlobalValue::ExternalWeakLinkage:
491     return 7;
492   case GlobalValue::CommonLinkage:
493     return 8;
494   case GlobalValue::PrivateLinkage:
495     return 9;
496   case GlobalValue::WeakODRLinkage:
497     return 10;
498   case GlobalValue::LinkOnceODRLinkage:
499     return 11;
500   case GlobalValue::AvailableExternallyLinkage:
501     return 12;
502   }
503   llvm_unreachable("Invalid linkage");
504 }
505
506 static unsigned getEncodedVisibility(const GlobalValue &GV) {
507   switch (GV.getVisibility()) {
508   case GlobalValue::DefaultVisibility:   return 0;
509   case GlobalValue::HiddenVisibility:    return 1;
510   case GlobalValue::ProtectedVisibility: return 2;
511   }
512   llvm_unreachable("Invalid visibility");
513 }
514
515 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
516   switch (GV.getDLLStorageClass()) {
517   case GlobalValue::DefaultStorageClass:   return 0;
518   case GlobalValue::DLLImportStorageClass: return 1;
519   case GlobalValue::DLLExportStorageClass: return 2;
520   }
521   llvm_unreachable("Invalid DLL storage class");
522 }
523
524 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
525   switch (GV.getThreadLocalMode()) {
526     case GlobalVariable::NotThreadLocal:         return 0;
527     case GlobalVariable::GeneralDynamicTLSModel: return 1;
528     case GlobalVariable::LocalDynamicTLSModel:   return 2;
529     case GlobalVariable::InitialExecTLSModel:    return 3;
530     case GlobalVariable::LocalExecTLSModel:      return 4;
531   }
532   llvm_unreachable("Invalid TLS model");
533 }
534
535 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
536   switch (C.getSelectionKind()) {
537   case Comdat::Any:
538     return bitc::COMDAT_SELECTION_KIND_ANY;
539   case Comdat::ExactMatch:
540     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
541   case Comdat::Largest:
542     return bitc::COMDAT_SELECTION_KIND_LARGEST;
543   case Comdat::NoDuplicates:
544     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
545   case Comdat::SameSize:
546     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
547   }
548   llvm_unreachable("Invalid selection kind");
549 }
550
551 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
552   SmallVector<uint8_t, 64> Vals;
553   for (const Comdat *C : VE.getComdats()) {
554     // COMDAT: [selection_kind, name]
555     Vals.push_back(getEncodedComdatSelectionKind(*C));
556     Vals.push_back(C->getName().size());
557     for (char Chr : C->getName())
558       Vals.push_back((unsigned char)Chr);
559     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
560     Vals.clear();
561   }
562 }
563
564 // Emit top-level description of module, including target triple, inline asm,
565 // descriptors for global variables, and function prototype info.
566 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
567                             BitstreamWriter &Stream) {
568   // Emit various pieces of data attached to a module.
569   if (!M->getTargetTriple().empty())
570     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
571                       0/*TODO*/, Stream);
572   const std::string &DL = M->getDataLayoutStr();
573   if (!DL.empty())
574     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
575   if (!M->getModuleInlineAsm().empty())
576     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
577                       0/*TODO*/, Stream);
578
579   // Emit information about sections and GC, computing how many there are. Also
580   // compute the maximum alignment value.
581   std::map<std::string, unsigned> SectionMap;
582   std::map<std::string, unsigned> GCMap;
583   unsigned MaxAlignment = 0;
584   unsigned MaxGlobalType = 0;
585   for (const GlobalValue &GV : M->globals()) {
586     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
587     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
588     if (GV.hasSection()) {
589       // Give section names unique ID's.
590       unsigned &Entry = SectionMap[GV.getSection()];
591       if (!Entry) {
592         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
593                           0/*TODO*/, Stream);
594         Entry = SectionMap.size();
595       }
596     }
597   }
598   for (const Function &F : *M) {
599     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
600     if (F.hasSection()) {
601       // Give section names unique ID's.
602       unsigned &Entry = SectionMap[F.getSection()];
603       if (!Entry) {
604         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
605                           0/*TODO*/, Stream);
606         Entry = SectionMap.size();
607       }
608     }
609     if (F.hasGC()) {
610       // Same for GC names.
611       unsigned &Entry = GCMap[F.getGC()];
612       if (!Entry) {
613         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
614                           0/*TODO*/, Stream);
615         Entry = GCMap.size();
616       }
617     }
618   }
619
620   // Emit abbrev for globals, now that we know # sections and max alignment.
621   unsigned SimpleGVarAbbrev = 0;
622   if (!M->global_empty()) {
623     // Add an abbrev for common globals with no visibility or thread localness.
624     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
625     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
626     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
627                               Log2_32_Ceil(MaxGlobalType+1)));
628     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
630     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
631     if (MaxAlignment == 0)                                      // Alignment.
632       Abbv->Add(BitCodeAbbrevOp(0));
633     else {
634       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
635       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
636                                Log2_32_Ceil(MaxEncAlignment+1)));
637     }
638     if (SectionMap.empty())                                    // Section.
639       Abbv->Add(BitCodeAbbrevOp(0));
640     else
641       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
642                                Log2_32_Ceil(SectionMap.size()+1)));
643     // Don't bother emitting vis + thread local.
644     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
645   }
646
647   // Emit the global variable information.
648   SmallVector<unsigned, 64> Vals;
649   for (const GlobalVariable &GV : M->globals()) {
650     unsigned AbbrevToUse = 0;
651
652     // GLOBALVAR: [type, isconst, initid,
653     //             linkage, alignment, section, visibility, threadlocal,
654     //             unnamed_addr, externally_initialized, dllstorageclass]
655     Vals.push_back(VE.getTypeID(GV.getType()));
656     Vals.push_back(GV.isConstant());
657     Vals.push_back(GV.isDeclaration() ? 0 :
658                    (VE.getValueID(GV.getInitializer()) + 1));
659     Vals.push_back(getEncodedLinkage(GV));
660     Vals.push_back(Log2_32(GV.getAlignment())+1);
661     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
662     if (GV.isThreadLocal() ||
663         GV.getVisibility() != GlobalValue::DefaultVisibility ||
664         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
665         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
666         GV.hasComdat()) {
667       Vals.push_back(getEncodedVisibility(GV));
668       Vals.push_back(getEncodedThreadLocalMode(GV));
669       Vals.push_back(GV.hasUnnamedAddr());
670       Vals.push_back(GV.isExternallyInitialized());
671       Vals.push_back(getEncodedDLLStorageClass(GV));
672       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
673     } else {
674       AbbrevToUse = SimpleGVarAbbrev;
675     }
676
677     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
678     Vals.clear();
679   }
680
681   // Emit the function proto information.
682   for (const Function &F : *M) {
683     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
684     //             section, visibility, gc, unnamed_addr, prologuedata,
685     //             dllstorageclass, comdat, prefixdata]
686     Vals.push_back(VE.getTypeID(F.getType()));
687     Vals.push_back(F.getCallingConv());
688     Vals.push_back(F.isDeclaration());
689     Vals.push_back(getEncodedLinkage(F));
690     Vals.push_back(VE.getAttributeID(F.getAttributes()));
691     Vals.push_back(Log2_32(F.getAlignment())+1);
692     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
693     Vals.push_back(getEncodedVisibility(F));
694     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
695     Vals.push_back(F.hasUnnamedAddr());
696     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
697                                        : 0);
698     Vals.push_back(getEncodedDLLStorageClass(F));
699     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
700     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
701                                      : 0);
702
703     unsigned AbbrevToUse = 0;
704     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
705     Vals.clear();
706   }
707
708   // Emit the alias information.
709   for (const GlobalAlias &A : M->aliases()) {
710     // ALIAS: [alias type, aliasee val#, linkage, visibility]
711     Vals.push_back(VE.getTypeID(A.getType()));
712     Vals.push_back(VE.getValueID(A.getAliasee()));
713     Vals.push_back(getEncodedLinkage(A));
714     Vals.push_back(getEncodedVisibility(A));
715     Vals.push_back(getEncodedDLLStorageClass(A));
716     Vals.push_back(getEncodedThreadLocalMode(A));
717     Vals.push_back(A.hasUnnamedAddr());
718     unsigned AbbrevToUse = 0;
719     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
720     Vals.clear();
721   }
722 }
723
724 static uint64_t GetOptimizationFlags(const Value *V) {
725   uint64_t Flags = 0;
726
727   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
728     if (OBO->hasNoSignedWrap())
729       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
730     if (OBO->hasNoUnsignedWrap())
731       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
732   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
733     if (PEO->isExact())
734       Flags |= 1 << bitc::PEO_EXACT;
735   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
736     if (FPMO->hasUnsafeAlgebra())
737       Flags |= FastMathFlags::UnsafeAlgebra;
738     if (FPMO->hasNoNaNs())
739       Flags |= FastMathFlags::NoNaNs;
740     if (FPMO->hasNoInfs())
741       Flags |= FastMathFlags::NoInfs;
742     if (FPMO->hasNoSignedZeros())
743       Flags |= FastMathFlags::NoSignedZeros;
744     if (FPMO->hasAllowReciprocal())
745       Flags |= FastMathFlags::AllowReciprocal;
746   }
747
748   return Flags;
749 }
750
751 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
752                                  const ValueEnumerator &VE,
753                                  BitstreamWriter &Stream,
754                                  SmallVectorImpl<uint64_t> &Record) {
755   // Mimic an MDNode with a value as one operand.
756   Value *V = MD->getValue();
757   Record.push_back(VE.getTypeID(V->getType()));
758   Record.push_back(VE.getValueID(V));
759   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
760   Record.clear();
761 }
762
763 static void WriteMDNode(const MDNode *N,
764                         const ValueEnumerator &VE,
765                         BitstreamWriter &Stream,
766                         SmallVectorImpl<uint64_t> &Record) {
767   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
768     Metadata *MD = N->getOperand(i);
769     if (!MD) {
770       Record.push_back(0);
771       continue;
772     }
773     assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata");
774     Record.push_back(VE.getMetadataID(MD) + 1);
775   }
776   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
777                                     : bitc::METADATA_NODE,
778                     Record);
779   Record.clear();
780 }
781
782 static void WriteModuleMetadata(const Module *M,
783                                 const ValueEnumerator &VE,
784                                 BitstreamWriter &Stream) {
785   const auto &MDs = VE.getMDs();
786   if (MDs.empty() && M->named_metadata_empty())
787     return;
788
789   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
790
791   unsigned MDSAbbrev = 0;
792   if (VE.hasMDString()) {
793     // Abbrev for METADATA_STRING.
794     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
795     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
796     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
797     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
798     MDSAbbrev = Stream.EmitAbbrev(Abbv);
799   }
800
801   SmallVector<uint64_t, 64> Record;
802   for (const Metadata *MD : MDs) {
803     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
804       WriteMDNode(N, VE, Stream, Record);
805       continue;
806     }
807     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
808       WriteValueAsMetadata(MDC, VE, Stream, Record);
809       continue;
810     }
811     const MDString *MDS = cast<MDString>(MD);
812     // Code: [strchar x N]
813     Record.append(MDS->bytes_begin(), MDS->bytes_end());
814
815     // Emit the finished record.
816     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
817     Record.clear();
818   }
819
820   // Write named metadata.
821   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
822        E = M->named_metadata_end(); I != E; ++I) {
823     const NamedMDNode *NMD = I;
824
825     // Write name.
826     StringRef Str = NMD->getName();
827     for (unsigned i = 0, e = Str.size(); i != e; ++i)
828       Record.push_back(Str[i]);
829     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
830     Record.clear();
831
832     // Write named metadata operands.
833     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
834       Record.push_back(VE.getMetadataID(NMD->getOperand(i)));
835     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
836     Record.clear();
837   }
838
839   Stream.ExitBlock();
840 }
841
842 static void WriteFunctionLocalMetadata(const Function &F,
843                                        const ValueEnumerator &VE,
844                                        BitstreamWriter &Stream) {
845   bool StartedMetadataBlock = false;
846   SmallVector<uint64_t, 64> Record;
847   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
848       VE.getFunctionLocalMDs();
849   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
850     assert(MDs[i] && "Expected valid function-local metadata");
851     if (!StartedMetadataBlock) {
852       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
853       StartedMetadataBlock = true;
854     }
855     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
856   }
857
858   if (StartedMetadataBlock)
859     Stream.ExitBlock();
860 }
861
862 static void WriteMetadataAttachment(const Function &F,
863                                     const ValueEnumerator &VE,
864                                     BitstreamWriter &Stream) {
865   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
866
867   SmallVector<uint64_t, 64> Record;
868
869   // Write metadata attachments
870   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
871   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
872
873   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
874     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
875          I != E; ++I) {
876       MDs.clear();
877       I->getAllMetadataOtherThanDebugLoc(MDs);
878
879       // If no metadata, ignore instruction.
880       if (MDs.empty()) continue;
881
882       Record.push_back(VE.getInstructionID(I));
883
884       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
885         Record.push_back(MDs[i].first);
886         Record.push_back(VE.getMetadataID(MDs[i].second));
887       }
888       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
889       Record.clear();
890     }
891
892   Stream.ExitBlock();
893 }
894
895 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
896   SmallVector<uint64_t, 64> Record;
897
898   // Write metadata kinds
899   // METADATA_KIND - [n x [id, name]]
900   SmallVector<StringRef, 8> Names;
901   M->getMDKindNames(Names);
902
903   if (Names.empty()) return;
904
905   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
906
907   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
908     Record.push_back(MDKindID);
909     StringRef KName = Names[MDKindID];
910     Record.append(KName.begin(), KName.end());
911
912     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
913     Record.clear();
914   }
915
916   Stream.ExitBlock();
917 }
918
919 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
920   if ((int64_t)V >= 0)
921     Vals.push_back(V << 1);
922   else
923     Vals.push_back((-V << 1) | 1);
924 }
925
926 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
927                            const ValueEnumerator &VE,
928                            BitstreamWriter &Stream, bool isGlobal) {
929   if (FirstVal == LastVal) return;
930
931   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
932
933   unsigned AggregateAbbrev = 0;
934   unsigned String8Abbrev = 0;
935   unsigned CString7Abbrev = 0;
936   unsigned CString6Abbrev = 0;
937   // If this is a constant pool for the module, emit module-specific abbrevs.
938   if (isGlobal) {
939     // Abbrev for CST_CODE_AGGREGATE.
940     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
941     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
942     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
943     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
944     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
945
946     // Abbrev for CST_CODE_STRING.
947     Abbv = new BitCodeAbbrev();
948     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
949     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
950     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
951     String8Abbrev = Stream.EmitAbbrev(Abbv);
952     // Abbrev for CST_CODE_CSTRING.
953     Abbv = new BitCodeAbbrev();
954     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
956     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
957     CString7Abbrev = Stream.EmitAbbrev(Abbv);
958     // Abbrev for CST_CODE_CSTRING.
959     Abbv = new BitCodeAbbrev();
960     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
961     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
962     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
963     CString6Abbrev = Stream.EmitAbbrev(Abbv);
964   }
965
966   SmallVector<uint64_t, 64> Record;
967
968   const ValueEnumerator::ValueList &Vals = VE.getValues();
969   Type *LastTy = nullptr;
970   for (unsigned i = FirstVal; i != LastVal; ++i) {
971     const Value *V = Vals[i].first;
972     // If we need to switch types, do so now.
973     if (V->getType() != LastTy) {
974       LastTy = V->getType();
975       Record.push_back(VE.getTypeID(LastTy));
976       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
977                         CONSTANTS_SETTYPE_ABBREV);
978       Record.clear();
979     }
980
981     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
982       Record.push_back(unsigned(IA->hasSideEffects()) |
983                        unsigned(IA->isAlignStack()) << 1 |
984                        unsigned(IA->getDialect()&1) << 2);
985
986       // Add the asm string.
987       const std::string &AsmStr = IA->getAsmString();
988       Record.push_back(AsmStr.size());
989       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
990         Record.push_back(AsmStr[i]);
991
992       // Add the constraint string.
993       const std::string &ConstraintStr = IA->getConstraintString();
994       Record.push_back(ConstraintStr.size());
995       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
996         Record.push_back(ConstraintStr[i]);
997       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
998       Record.clear();
999       continue;
1000     }
1001     const Constant *C = cast<Constant>(V);
1002     unsigned Code = -1U;
1003     unsigned AbbrevToUse = 0;
1004     if (C->isNullValue()) {
1005       Code = bitc::CST_CODE_NULL;
1006     } else if (isa<UndefValue>(C)) {
1007       Code = bitc::CST_CODE_UNDEF;
1008     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1009       if (IV->getBitWidth() <= 64) {
1010         uint64_t V = IV->getSExtValue();
1011         emitSignedInt64(Record, V);
1012         Code = bitc::CST_CODE_INTEGER;
1013         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1014       } else {                             // Wide integers, > 64 bits in size.
1015         // We have an arbitrary precision integer value to write whose
1016         // bit width is > 64. However, in canonical unsigned integer
1017         // format it is likely that the high bits are going to be zero.
1018         // So, we only write the number of active words.
1019         unsigned NWords = IV->getValue().getActiveWords();
1020         const uint64_t *RawWords = IV->getValue().getRawData();
1021         for (unsigned i = 0; i != NWords; ++i) {
1022           emitSignedInt64(Record, RawWords[i]);
1023         }
1024         Code = bitc::CST_CODE_WIDE_INTEGER;
1025       }
1026     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1027       Code = bitc::CST_CODE_FLOAT;
1028       Type *Ty = CFP->getType();
1029       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1030         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1031       } else if (Ty->isX86_FP80Ty()) {
1032         // api needed to prevent premature destruction
1033         // bits are not in the same order as a normal i80 APInt, compensate.
1034         APInt api = CFP->getValueAPF().bitcastToAPInt();
1035         const uint64_t *p = api.getRawData();
1036         Record.push_back((p[1] << 48) | (p[0] >> 16));
1037         Record.push_back(p[0] & 0xffffLL);
1038       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1039         APInt api = CFP->getValueAPF().bitcastToAPInt();
1040         const uint64_t *p = api.getRawData();
1041         Record.push_back(p[0]);
1042         Record.push_back(p[1]);
1043       } else {
1044         assert (0 && "Unknown FP type!");
1045       }
1046     } else if (isa<ConstantDataSequential>(C) &&
1047                cast<ConstantDataSequential>(C)->isString()) {
1048       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1049       // Emit constant strings specially.
1050       unsigned NumElts = Str->getNumElements();
1051       // If this is a null-terminated string, use the denser CSTRING encoding.
1052       if (Str->isCString()) {
1053         Code = bitc::CST_CODE_CSTRING;
1054         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1055       } else {
1056         Code = bitc::CST_CODE_STRING;
1057         AbbrevToUse = String8Abbrev;
1058       }
1059       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1060       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1061       for (unsigned i = 0; i != NumElts; ++i) {
1062         unsigned char V = Str->getElementAsInteger(i);
1063         Record.push_back(V);
1064         isCStr7 &= (V & 128) == 0;
1065         if (isCStrChar6)
1066           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1067       }
1068
1069       if (isCStrChar6)
1070         AbbrevToUse = CString6Abbrev;
1071       else if (isCStr7)
1072         AbbrevToUse = CString7Abbrev;
1073     } else if (const ConstantDataSequential *CDS =
1074                   dyn_cast<ConstantDataSequential>(C)) {
1075       Code = bitc::CST_CODE_DATA;
1076       Type *EltTy = CDS->getType()->getElementType();
1077       if (isa<IntegerType>(EltTy)) {
1078         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1079           Record.push_back(CDS->getElementAsInteger(i));
1080       } else if (EltTy->isFloatTy()) {
1081         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1082           union { float F; uint32_t I; };
1083           F = CDS->getElementAsFloat(i);
1084           Record.push_back(I);
1085         }
1086       } else {
1087         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1088         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1089           union { double F; uint64_t I; };
1090           F = CDS->getElementAsDouble(i);
1091           Record.push_back(I);
1092         }
1093       }
1094     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1095                isa<ConstantVector>(C)) {
1096       Code = bitc::CST_CODE_AGGREGATE;
1097       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1098         Record.push_back(VE.getValueID(C->getOperand(i)));
1099       AbbrevToUse = AggregateAbbrev;
1100     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1101       switch (CE->getOpcode()) {
1102       default:
1103         if (Instruction::isCast(CE->getOpcode())) {
1104           Code = bitc::CST_CODE_CE_CAST;
1105           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1106           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1107           Record.push_back(VE.getValueID(C->getOperand(0)));
1108           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1109         } else {
1110           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1111           Code = bitc::CST_CODE_CE_BINOP;
1112           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1113           Record.push_back(VE.getValueID(C->getOperand(0)));
1114           Record.push_back(VE.getValueID(C->getOperand(1)));
1115           uint64_t Flags = GetOptimizationFlags(CE);
1116           if (Flags != 0)
1117             Record.push_back(Flags);
1118         }
1119         break;
1120       case Instruction::GetElementPtr:
1121         Code = bitc::CST_CODE_CE_GEP;
1122         if (cast<GEPOperator>(C)->isInBounds())
1123           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1124         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1125           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1126           Record.push_back(VE.getValueID(C->getOperand(i)));
1127         }
1128         break;
1129       case Instruction::Select:
1130         Code = bitc::CST_CODE_CE_SELECT;
1131         Record.push_back(VE.getValueID(C->getOperand(0)));
1132         Record.push_back(VE.getValueID(C->getOperand(1)));
1133         Record.push_back(VE.getValueID(C->getOperand(2)));
1134         break;
1135       case Instruction::ExtractElement:
1136         Code = bitc::CST_CODE_CE_EXTRACTELT;
1137         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1138         Record.push_back(VE.getValueID(C->getOperand(0)));
1139         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1140         Record.push_back(VE.getValueID(C->getOperand(1)));
1141         break;
1142       case Instruction::InsertElement:
1143         Code = bitc::CST_CODE_CE_INSERTELT;
1144         Record.push_back(VE.getValueID(C->getOperand(0)));
1145         Record.push_back(VE.getValueID(C->getOperand(1)));
1146         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1147         Record.push_back(VE.getValueID(C->getOperand(2)));
1148         break;
1149       case Instruction::ShuffleVector:
1150         // If the return type and argument types are the same, this is a
1151         // standard shufflevector instruction.  If the types are different,
1152         // then the shuffle is widening or truncating the input vectors, and
1153         // the argument type must also be encoded.
1154         if (C->getType() == C->getOperand(0)->getType()) {
1155           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1156         } else {
1157           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1158           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1159         }
1160         Record.push_back(VE.getValueID(C->getOperand(0)));
1161         Record.push_back(VE.getValueID(C->getOperand(1)));
1162         Record.push_back(VE.getValueID(C->getOperand(2)));
1163         break;
1164       case Instruction::ICmp:
1165       case Instruction::FCmp:
1166         Code = bitc::CST_CODE_CE_CMP;
1167         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1168         Record.push_back(VE.getValueID(C->getOperand(0)));
1169         Record.push_back(VE.getValueID(C->getOperand(1)));
1170         Record.push_back(CE->getPredicate());
1171         break;
1172       }
1173     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1174       Code = bitc::CST_CODE_BLOCKADDRESS;
1175       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1176       Record.push_back(VE.getValueID(BA->getFunction()));
1177       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1178     } else {
1179 #ifndef NDEBUG
1180       C->dump();
1181 #endif
1182       llvm_unreachable("Unknown constant!");
1183     }
1184     Stream.EmitRecord(Code, Record, AbbrevToUse);
1185     Record.clear();
1186   }
1187
1188   Stream.ExitBlock();
1189 }
1190
1191 static void WriteModuleConstants(const ValueEnumerator &VE,
1192                                  BitstreamWriter &Stream) {
1193   const ValueEnumerator::ValueList &Vals = VE.getValues();
1194
1195   // Find the first constant to emit, which is the first non-globalvalue value.
1196   // We know globalvalues have been emitted by WriteModuleInfo.
1197   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1198     if (!isa<GlobalValue>(Vals[i].first)) {
1199       WriteConstants(i, Vals.size(), VE, Stream, true);
1200       return;
1201     }
1202   }
1203 }
1204
1205 /// PushValueAndType - The file has to encode both the value and type id for
1206 /// many values, because we need to know what type to create for forward
1207 /// references.  However, most operands are not forward references, so this type
1208 /// field is not needed.
1209 ///
1210 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1211 /// instruction ID, then it is a forward reference, and it also includes the
1212 /// type ID.  The value ID that is written is encoded relative to the InstID.
1213 static bool PushValueAndType(const Value *V, unsigned InstID,
1214                              SmallVectorImpl<unsigned> &Vals,
1215                              ValueEnumerator &VE) {
1216   unsigned ValID = VE.getValueID(V);
1217   // Make encoding relative to the InstID.
1218   Vals.push_back(InstID - ValID);
1219   if (ValID >= InstID) {
1220     Vals.push_back(VE.getTypeID(V->getType()));
1221     return true;
1222   }
1223   return false;
1224 }
1225
1226 /// pushValue - Like PushValueAndType, but where the type of the value is
1227 /// omitted (perhaps it was already encoded in an earlier operand).
1228 static void pushValue(const Value *V, unsigned InstID,
1229                       SmallVectorImpl<unsigned> &Vals,
1230                       ValueEnumerator &VE) {
1231   unsigned ValID = VE.getValueID(V);
1232   Vals.push_back(InstID - ValID);
1233 }
1234
1235 static void pushValueSigned(const Value *V, unsigned InstID,
1236                             SmallVectorImpl<uint64_t> &Vals,
1237                             ValueEnumerator &VE) {
1238   unsigned ValID = VE.getValueID(V);
1239   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1240   emitSignedInt64(Vals, diff);
1241 }
1242
1243 /// WriteInstruction - Emit an instruction to the specified stream.
1244 static void WriteInstruction(const Instruction &I, unsigned InstID,
1245                              ValueEnumerator &VE, BitstreamWriter &Stream,
1246                              SmallVectorImpl<unsigned> &Vals) {
1247   unsigned Code = 0;
1248   unsigned AbbrevToUse = 0;
1249   VE.setInstructionID(&I);
1250   switch (I.getOpcode()) {
1251   default:
1252     if (Instruction::isCast(I.getOpcode())) {
1253       Code = bitc::FUNC_CODE_INST_CAST;
1254       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1255         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1256       Vals.push_back(VE.getTypeID(I.getType()));
1257       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1258     } else {
1259       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1260       Code = bitc::FUNC_CODE_INST_BINOP;
1261       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1262         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1263       pushValue(I.getOperand(1), InstID, Vals, VE);
1264       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1265       uint64_t Flags = GetOptimizationFlags(&I);
1266       if (Flags != 0) {
1267         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1268           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1269         Vals.push_back(Flags);
1270       }
1271     }
1272     break;
1273
1274   case Instruction::GetElementPtr:
1275     Code = bitc::FUNC_CODE_INST_GEP;
1276     if (cast<GEPOperator>(&I)->isInBounds())
1277       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1278     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1279       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1280     break;
1281   case Instruction::ExtractValue: {
1282     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1283     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1284     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1285     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1286       Vals.push_back(*i);
1287     break;
1288   }
1289   case Instruction::InsertValue: {
1290     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1291     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1292     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1293     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1294     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1295       Vals.push_back(*i);
1296     break;
1297   }
1298   case Instruction::Select:
1299     Code = bitc::FUNC_CODE_INST_VSELECT;
1300     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1301     pushValue(I.getOperand(2), InstID, Vals, VE);
1302     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1303     break;
1304   case Instruction::ExtractElement:
1305     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1306     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1307     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1308     break;
1309   case Instruction::InsertElement:
1310     Code = bitc::FUNC_CODE_INST_INSERTELT;
1311     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1312     pushValue(I.getOperand(1), InstID, Vals, VE);
1313     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1314     break;
1315   case Instruction::ShuffleVector:
1316     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1317     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1318     pushValue(I.getOperand(1), InstID, Vals, VE);
1319     pushValue(I.getOperand(2), InstID, Vals, VE);
1320     break;
1321   case Instruction::ICmp:
1322   case Instruction::FCmp:
1323     // compare returning Int1Ty or vector of Int1Ty
1324     Code = bitc::FUNC_CODE_INST_CMP2;
1325     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1326     pushValue(I.getOperand(1), InstID, Vals, VE);
1327     Vals.push_back(cast<CmpInst>(I).getPredicate());
1328     break;
1329
1330   case Instruction::Ret:
1331     {
1332       Code = bitc::FUNC_CODE_INST_RET;
1333       unsigned NumOperands = I.getNumOperands();
1334       if (NumOperands == 0)
1335         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1336       else if (NumOperands == 1) {
1337         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1338           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1339       } else {
1340         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1341           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1342       }
1343     }
1344     break;
1345   case Instruction::Br:
1346     {
1347       Code = bitc::FUNC_CODE_INST_BR;
1348       const BranchInst &II = cast<BranchInst>(I);
1349       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1350       if (II.isConditional()) {
1351         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1352         pushValue(II.getCondition(), InstID, Vals, VE);
1353       }
1354     }
1355     break;
1356   case Instruction::Switch:
1357     {
1358       Code = bitc::FUNC_CODE_INST_SWITCH;
1359       const SwitchInst &SI = cast<SwitchInst>(I);
1360       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1361       pushValue(SI.getCondition(), InstID, Vals, VE);
1362       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1363       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1364            i != e; ++i) {
1365         Vals.push_back(VE.getValueID(i.getCaseValue()));
1366         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1367       }
1368     }
1369     break;
1370   case Instruction::IndirectBr:
1371     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1372     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1373     // Encode the address operand as relative, but not the basic blocks.
1374     pushValue(I.getOperand(0), InstID, Vals, VE);
1375     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1376       Vals.push_back(VE.getValueID(I.getOperand(i)));
1377     break;
1378
1379   case Instruction::Invoke: {
1380     const InvokeInst *II = cast<InvokeInst>(&I);
1381     const Value *Callee(II->getCalledValue());
1382     PointerType *PTy = cast<PointerType>(Callee->getType());
1383     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1384     Code = bitc::FUNC_CODE_INST_INVOKE;
1385
1386     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1387     Vals.push_back(II->getCallingConv());
1388     Vals.push_back(VE.getValueID(II->getNormalDest()));
1389     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1390     PushValueAndType(Callee, InstID, Vals, VE);
1391
1392     // Emit value #'s for the fixed parameters.
1393     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1394       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1395
1396     // Emit type/value pairs for varargs params.
1397     if (FTy->isVarArg()) {
1398       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1399            i != e; ++i)
1400         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1401     }
1402     break;
1403   }
1404   case Instruction::Resume:
1405     Code = bitc::FUNC_CODE_INST_RESUME;
1406     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1407     break;
1408   case Instruction::Unreachable:
1409     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1410     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1411     break;
1412
1413   case Instruction::PHI: {
1414     const PHINode &PN = cast<PHINode>(I);
1415     Code = bitc::FUNC_CODE_INST_PHI;
1416     // With the newer instruction encoding, forward references could give
1417     // negative valued IDs.  This is most common for PHIs, so we use
1418     // signed VBRs.
1419     SmallVector<uint64_t, 128> Vals64;
1420     Vals64.push_back(VE.getTypeID(PN.getType()));
1421     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1422       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1423       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1424     }
1425     // Emit a Vals64 vector and exit.
1426     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1427     Vals64.clear();
1428     return;
1429   }
1430
1431   case Instruction::LandingPad: {
1432     const LandingPadInst &LP = cast<LandingPadInst>(I);
1433     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1434     Vals.push_back(VE.getTypeID(LP.getType()));
1435     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1436     Vals.push_back(LP.isCleanup());
1437     Vals.push_back(LP.getNumClauses());
1438     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1439       if (LP.isCatch(I))
1440         Vals.push_back(LandingPadInst::Catch);
1441       else
1442         Vals.push_back(LandingPadInst::Filter);
1443       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1444     }
1445     break;
1446   }
1447
1448   case Instruction::Alloca: {
1449     Code = bitc::FUNC_CODE_INST_ALLOCA;
1450     Vals.push_back(VE.getTypeID(I.getType()));
1451     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1452     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1453     const AllocaInst &AI = cast<AllocaInst>(I);
1454     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1455     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1456            "not enough bits for maximum alignment");
1457     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1458     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1459     Vals.push_back(AlignRecord);
1460     break;
1461   }
1462
1463   case Instruction::Load:
1464     if (cast<LoadInst>(I).isAtomic()) {
1465       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1466       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1467     } else {
1468       Code = bitc::FUNC_CODE_INST_LOAD;
1469       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1470         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1471     }
1472     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1473     Vals.push_back(cast<LoadInst>(I).isVolatile());
1474     if (cast<LoadInst>(I).isAtomic()) {
1475       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1476       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1477     }
1478     break;
1479   case Instruction::Store:
1480     if (cast<StoreInst>(I).isAtomic())
1481       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1482     else
1483       Code = bitc::FUNC_CODE_INST_STORE;
1484     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1485     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1486     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1487     Vals.push_back(cast<StoreInst>(I).isVolatile());
1488     if (cast<StoreInst>(I).isAtomic()) {
1489       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1490       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1491     }
1492     break;
1493   case Instruction::AtomicCmpXchg:
1494     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1495     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1496     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1497     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1498     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1499     Vals.push_back(GetEncodedOrdering(
1500                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1501     Vals.push_back(GetEncodedSynchScope(
1502                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1503     Vals.push_back(GetEncodedOrdering(
1504                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1505     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1506     break;
1507   case Instruction::AtomicRMW:
1508     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1509     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1510     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1511     Vals.push_back(GetEncodedRMWOperation(
1512                      cast<AtomicRMWInst>(I).getOperation()));
1513     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1514     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1515     Vals.push_back(GetEncodedSynchScope(
1516                      cast<AtomicRMWInst>(I).getSynchScope()));
1517     break;
1518   case Instruction::Fence:
1519     Code = bitc::FUNC_CODE_INST_FENCE;
1520     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1521     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1522     break;
1523   case Instruction::Call: {
1524     const CallInst &CI = cast<CallInst>(I);
1525     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1526     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1527
1528     Code = bitc::FUNC_CODE_INST_CALL;
1529
1530     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1531     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1532                    unsigned(CI.isMustTailCall()) << 14);
1533     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1534
1535     // Emit value #'s for the fixed parameters.
1536     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1537       // Check for labels (can happen with asm labels).
1538       if (FTy->getParamType(i)->isLabelTy())
1539         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1540       else
1541         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1542     }
1543
1544     // Emit type/value pairs for varargs params.
1545     if (FTy->isVarArg()) {
1546       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1547            i != e; ++i)
1548         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1549     }
1550     break;
1551   }
1552   case Instruction::VAArg:
1553     Code = bitc::FUNC_CODE_INST_VAARG;
1554     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1555     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1556     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1557     break;
1558   }
1559
1560   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1561   Vals.clear();
1562 }
1563
1564 // Emit names for globals/functions etc.
1565 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1566                                   const ValueEnumerator &VE,
1567                                   BitstreamWriter &Stream) {
1568   if (VST.empty()) return;
1569   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1570
1571   // FIXME: Set up the abbrev, we know how many values there are!
1572   // FIXME: We know if the type names can use 7-bit ascii.
1573   SmallVector<unsigned, 64> NameVals;
1574
1575   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1576        SI != SE; ++SI) {
1577
1578     const ValueName &Name = *SI;
1579
1580     // Figure out the encoding to use for the name.
1581     bool is7Bit = true;
1582     bool isChar6 = true;
1583     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1584          C != E; ++C) {
1585       if (isChar6)
1586         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1587       if ((unsigned char)*C & 128) {
1588         is7Bit = false;
1589         break;  // don't bother scanning the rest.
1590       }
1591     }
1592
1593     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1594
1595     // VST_ENTRY:   [valueid, namechar x N]
1596     // VST_BBENTRY: [bbid, namechar x N]
1597     unsigned Code;
1598     if (isa<BasicBlock>(SI->getValue())) {
1599       Code = bitc::VST_CODE_BBENTRY;
1600       if (isChar6)
1601         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1602     } else {
1603       Code = bitc::VST_CODE_ENTRY;
1604       if (isChar6)
1605         AbbrevToUse = VST_ENTRY_6_ABBREV;
1606       else if (is7Bit)
1607         AbbrevToUse = VST_ENTRY_7_ABBREV;
1608     }
1609
1610     NameVals.push_back(VE.getValueID(SI->getValue()));
1611     for (const char *P = Name.getKeyData(),
1612          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1613       NameVals.push_back((unsigned char)*P);
1614
1615     // Emit the finished record.
1616     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1617     NameVals.clear();
1618   }
1619   Stream.ExitBlock();
1620 }
1621
1622 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1623                          BitstreamWriter &Stream) {
1624   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1625   unsigned Code;
1626   if (isa<BasicBlock>(Order.V))
1627     Code = bitc::USELIST_CODE_BB;
1628   else
1629     Code = bitc::USELIST_CODE_DEFAULT;
1630
1631   SmallVector<uint64_t, 64> Record;
1632   for (unsigned I : Order.Shuffle)
1633     Record.push_back(I);
1634   Record.push_back(VE.getValueID(Order.V));
1635   Stream.EmitRecord(Code, Record);
1636 }
1637
1638 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1639                               BitstreamWriter &Stream) {
1640   auto hasMore = [&]() {
1641     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1642   };
1643   if (!hasMore())
1644     // Nothing to do.
1645     return;
1646
1647   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1648   while (hasMore()) {
1649     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1650     VE.UseListOrders.pop_back();
1651   }
1652   Stream.ExitBlock();
1653 }
1654
1655 /// WriteFunction - Emit a function body to the module stream.
1656 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1657                           BitstreamWriter &Stream) {
1658   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1659   VE.incorporateFunction(F);
1660
1661   SmallVector<unsigned, 64> Vals;
1662
1663   // Emit the number of basic blocks, so the reader can create them ahead of
1664   // time.
1665   Vals.push_back(VE.getBasicBlocks().size());
1666   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1667   Vals.clear();
1668
1669   // If there are function-local constants, emit them now.
1670   unsigned CstStart, CstEnd;
1671   VE.getFunctionConstantRange(CstStart, CstEnd);
1672   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1673
1674   // If there is function-local metadata, emit it now.
1675   WriteFunctionLocalMetadata(F, VE, Stream);
1676
1677   // Keep a running idea of what the instruction ID is.
1678   unsigned InstID = CstEnd;
1679
1680   bool NeedsMetadataAttachment = false;
1681
1682   DebugLoc LastDL;
1683
1684   // Finally, emit all the instructions, in order.
1685   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1686     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1687          I != E; ++I) {
1688       WriteInstruction(*I, InstID, VE, Stream, Vals);
1689
1690       if (!I->getType()->isVoidTy())
1691         ++InstID;
1692
1693       // If the instruction has metadata, write a metadata attachment later.
1694       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1695
1696       // If the instruction has a debug location, emit it.
1697       DebugLoc DL = I->getDebugLoc();
1698       if (DL.isUnknown()) {
1699         // nothing todo.
1700       } else if (DL == LastDL) {
1701         // Just repeat the same debug loc as last time.
1702         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1703       } else {
1704         MDNode *Scope, *IA;
1705         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1706         assert(Scope && "Expected valid scope");
1707
1708         Vals.push_back(DL.getLine());
1709         Vals.push_back(DL.getCol());
1710         Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0);
1711         Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0);
1712         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1713         Vals.clear();
1714
1715         LastDL = DL;
1716       }
1717     }
1718
1719   // Emit names for all the instructions etc.
1720   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1721
1722   if (NeedsMetadataAttachment)
1723     WriteMetadataAttachment(F, VE, Stream);
1724   if (shouldPreserveBitcodeUseListOrder())
1725     WriteUseListBlock(&F, VE, Stream);
1726   VE.purgeFunction();
1727   Stream.ExitBlock();
1728 }
1729
1730 // Emit blockinfo, which defines the standard abbreviations etc.
1731 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1732   // We only want to emit block info records for blocks that have multiple
1733   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1734   // Other blocks can define their abbrevs inline.
1735   Stream.EnterBlockInfoBlock(2);
1736
1737   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1738     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1739     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1740     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1741     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1742     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1743     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1744                                    Abbv) != VST_ENTRY_8_ABBREV)
1745       llvm_unreachable("Unexpected abbrev ordering!");
1746   }
1747
1748   { // 7-bit fixed width VST_ENTRY strings.
1749     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1750     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1751     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1752     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1754     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1755                                    Abbv) != VST_ENTRY_7_ABBREV)
1756       llvm_unreachable("Unexpected abbrev ordering!");
1757   }
1758   { // 6-bit char6 VST_ENTRY strings.
1759     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1760     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1761     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1762     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1763     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1764     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1765                                    Abbv) != VST_ENTRY_6_ABBREV)
1766       llvm_unreachable("Unexpected abbrev ordering!");
1767   }
1768   { // 6-bit char6 VST_BBENTRY strings.
1769     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1770     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1771     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1772     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1773     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1774     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1775                                    Abbv) != VST_BBENTRY_6_ABBREV)
1776       llvm_unreachable("Unexpected abbrev ordering!");
1777   }
1778
1779
1780
1781   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1782     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1783     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1785                               Log2_32_Ceil(VE.getTypes().size()+1)));
1786     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1787                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1788       llvm_unreachable("Unexpected abbrev ordering!");
1789   }
1790
1791   { // INTEGER abbrev for CONSTANTS_BLOCK.
1792     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1793     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1795     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1796                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1797       llvm_unreachable("Unexpected abbrev ordering!");
1798   }
1799
1800   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1801     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1802     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1804     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1805                               Log2_32_Ceil(VE.getTypes().size()+1)));
1806     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1807
1808     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1809                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1810       llvm_unreachable("Unexpected abbrev ordering!");
1811   }
1812   { // NULL abbrev for CONSTANTS_BLOCK.
1813     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1814     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1815     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1816                                    Abbv) != CONSTANTS_NULL_Abbrev)
1817       llvm_unreachable("Unexpected abbrev ordering!");
1818   }
1819
1820   // FIXME: This should only use space for first class types!
1821
1822   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1823     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1824     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1825     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1826     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1827     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1828     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1829                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1830       llvm_unreachable("Unexpected abbrev ordering!");
1831   }
1832   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1833     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1834     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1835     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1836     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1837     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1838     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1839                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1840       llvm_unreachable("Unexpected abbrev ordering!");
1841   }
1842   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1843     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1844     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1845     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1846     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1847     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1848     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1849     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1850                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1851       llvm_unreachable("Unexpected abbrev ordering!");
1852   }
1853   { // INST_CAST abbrev for FUNCTION_BLOCK.
1854     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1855     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1856     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1857     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1858                               Log2_32_Ceil(VE.getTypes().size()+1)));
1859     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1860     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1861                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1862       llvm_unreachable("Unexpected abbrev ordering!");
1863   }
1864
1865   { // INST_RET abbrev for FUNCTION_BLOCK.
1866     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1867     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1868     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1869                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1870       llvm_unreachable("Unexpected abbrev ordering!");
1871   }
1872   { // INST_RET abbrev for FUNCTION_BLOCK.
1873     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1874     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1875     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1876     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1877                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1878       llvm_unreachable("Unexpected abbrev ordering!");
1879   }
1880   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1881     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1882     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1883     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1884                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1885       llvm_unreachable("Unexpected abbrev ordering!");
1886   }
1887
1888   Stream.ExitBlock();
1889 }
1890
1891 /// WriteModule - Emit the specified module to the bitstream.
1892 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1893   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1894
1895   SmallVector<unsigned, 1> Vals;
1896   unsigned CurVersion = 1;
1897   Vals.push_back(CurVersion);
1898   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1899
1900   // Analyze the module, enumerating globals, functions, etc.
1901   ValueEnumerator VE(*M);
1902
1903   // Emit blockinfo, which defines the standard abbreviations etc.
1904   WriteBlockInfo(VE, Stream);
1905
1906   // Emit information about attribute groups.
1907   WriteAttributeGroupTable(VE, Stream);
1908
1909   // Emit information about parameter attributes.
1910   WriteAttributeTable(VE, Stream);
1911
1912   // Emit information describing all of the types in the module.
1913   WriteTypeTable(VE, Stream);
1914
1915   writeComdats(VE, Stream);
1916
1917   // Emit top-level description of module, including target triple, inline asm,
1918   // descriptors for global variables, and function prototype info.
1919   WriteModuleInfo(M, VE, Stream);
1920
1921   // Emit constants.
1922   WriteModuleConstants(VE, Stream);
1923
1924   // Emit metadata.
1925   WriteModuleMetadata(M, VE, Stream);
1926
1927   // Emit metadata.
1928   WriteModuleMetadataStore(M, Stream);
1929
1930   // Emit names for globals/functions etc.
1931   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1932
1933   // Emit module-level use-lists.
1934   if (shouldPreserveBitcodeUseListOrder())
1935     WriteUseListBlock(nullptr, VE, Stream);
1936
1937   // Emit function bodies.
1938   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1939     if (!F->isDeclaration())
1940       WriteFunction(*F, VE, Stream);
1941
1942   Stream.ExitBlock();
1943 }
1944
1945 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1946 /// header and trailer to make it compatible with the system archiver.  To do
1947 /// this we emit the following header, and then emit a trailer that pads the
1948 /// file out to be a multiple of 16 bytes.
1949 ///
1950 /// struct bc_header {
1951 ///   uint32_t Magic;         // 0x0B17C0DE
1952 ///   uint32_t Version;       // Version, currently always 0.
1953 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1954 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1955 ///   uint32_t CPUType;       // CPU specifier.
1956 ///   ... potentially more later ...
1957 /// };
1958 enum {
1959   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1960   DarwinBCHeaderSize = 5*4
1961 };
1962
1963 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1964                                uint32_t &Position) {
1965   Buffer[Position + 0] = (unsigned char) (Value >>  0);
1966   Buffer[Position + 1] = (unsigned char) (Value >>  8);
1967   Buffer[Position + 2] = (unsigned char) (Value >> 16);
1968   Buffer[Position + 3] = (unsigned char) (Value >> 24);
1969   Position += 4;
1970 }
1971
1972 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1973                                          const Triple &TT) {
1974   unsigned CPUType = ~0U;
1975
1976   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1977   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1978   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1979   // specific constants here because they are implicitly part of the Darwin ABI.
1980   enum {
1981     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1982     DARWIN_CPU_TYPE_X86        = 7,
1983     DARWIN_CPU_TYPE_ARM        = 12,
1984     DARWIN_CPU_TYPE_POWERPC    = 18
1985   };
1986
1987   Triple::ArchType Arch = TT.getArch();
1988   if (Arch == Triple::x86_64)
1989     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1990   else if (Arch == Triple::x86)
1991     CPUType = DARWIN_CPU_TYPE_X86;
1992   else if (Arch == Triple::ppc)
1993     CPUType = DARWIN_CPU_TYPE_POWERPC;
1994   else if (Arch == Triple::ppc64)
1995     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1996   else if (Arch == Triple::arm || Arch == Triple::thumb)
1997     CPUType = DARWIN_CPU_TYPE_ARM;
1998
1999   // Traditional Bitcode starts after header.
2000   assert(Buffer.size() >= DarwinBCHeaderSize &&
2001          "Expected header size to be reserved");
2002   unsigned BCOffset = DarwinBCHeaderSize;
2003   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2004
2005   // Write the magic and version.
2006   unsigned Position = 0;
2007   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2008   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2009   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2010   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2011   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2012
2013   // If the file is not a multiple of 16 bytes, insert dummy padding.
2014   while (Buffer.size() & 15)
2015     Buffer.push_back(0);
2016 }
2017
2018 /// WriteBitcodeToFile - Write the specified module to the specified output
2019 /// stream.
2020 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2021   SmallVector<char, 0> Buffer;
2022   Buffer.reserve(256*1024);
2023
2024   // If this is darwin or another generic macho target, reserve space for the
2025   // header.
2026   Triple TT(M->getTargetTriple());
2027   if (TT.isOSDarwin())
2028     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2029
2030   // Emit the module into the buffer.
2031   {
2032     BitstreamWriter Stream(Buffer);
2033
2034     // Emit the file header.
2035     Stream.Emit((unsigned)'B', 8);
2036     Stream.Emit((unsigned)'C', 8);
2037     Stream.Emit(0x0, 4);
2038     Stream.Emit(0xC, 4);
2039     Stream.Emit(0xE, 4);
2040     Stream.Emit(0xD, 4);
2041
2042     // Emit the module.
2043     WriteModule(M, Stream);
2044   }
2045
2046   if (TT.isOSDarwin())
2047     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2048
2049   // Write the generated bitstream to "Out".
2050   Out.write((char*)&Buffer.front(), Buffer.size());
2051 }