Properly read and write bitcodes for multiple return values.
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/ParamAttrsList.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 /// These are manifest constants used by the bitcode writer. They do not need to
30 /// be kept in sync with the reader, but need to be consistent within this file.
31 enum {
32   CurVersion = 0,
33   
34   // VALUE_SYMTAB_BLOCK abbrev id's.
35   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36   VST_ENTRY_7_ABBREV,
37   VST_ENTRY_6_ABBREV,
38   VST_BBENTRY_6_ABBREV,
39   
40   // CONSTANTS_BLOCK abbrev id's.
41   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   CONSTANTS_INTEGER_ABBREV,
43   CONSTANTS_CE_CAST_Abbrev,
44   CONSTANTS_NULL_Abbrev,
45   
46   // FUNCTION_BLOCK abbrev id's.
47   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   FUNCTION_INST_BINOP_ABBREV,
49   FUNCTION_INST_CAST_ABBREV,
50   FUNCTION_INST_RET_VOID_ABBREV,
51   FUNCTION_INST_RET_VAL_ABBREV,
52   FUNCTION_INST_UNREACHABLE_ABBREV
53 };
54
55
56 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57   switch (Opcode) {
58   default: assert(0 && "Unknown cast instruction!");
59   case Instruction::Trunc   : return bitc::CAST_TRUNC;
60   case Instruction::ZExt    : return bitc::CAST_ZEXT;
61   case Instruction::SExt    : return bitc::CAST_SEXT;
62   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
63   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
64   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
65   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
66   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67   case Instruction::FPExt   : return bitc::CAST_FPEXT;
68   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70   case Instruction::BitCast : return bitc::CAST_BITCAST;
71   }
72 }
73
74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75   switch (Opcode) {
76   default: assert(0 && "Unknown binary instruction!");
77   case Instruction::Add:  return bitc::BINOP_ADD;
78   case Instruction::Sub:  return bitc::BINOP_SUB;
79   case Instruction::Mul:  return bitc::BINOP_MUL;
80   case Instruction::UDiv: return bitc::BINOP_UDIV;
81   case Instruction::FDiv:
82   case Instruction::SDiv: return bitc::BINOP_SDIV;
83   case Instruction::URem: return bitc::BINOP_UREM;
84   case Instruction::FRem:
85   case Instruction::SRem: return bitc::BINOP_SREM;
86   case Instruction::Shl:  return bitc::BINOP_SHL;
87   case Instruction::LShr: return bitc::BINOP_LSHR;
88   case Instruction::AShr: return bitc::BINOP_ASHR;
89   case Instruction::And:  return bitc::BINOP_AND;
90   case Instruction::Or:   return bitc::BINOP_OR;
91   case Instruction::Xor:  return bitc::BINOP_XOR;
92   }
93 }
94
95
96
97 static void WriteStringRecord(unsigned Code, const std::string &Str, 
98                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
99   SmallVector<unsigned, 64> Vals;
100   
101   // Code: [strchar x N]
102   for (unsigned i = 0, e = Str.size(); i != e; ++i)
103     Vals.push_back(Str[i]);
104     
105   // Emit the finished record.
106   Stream.EmitRecord(Code, Vals, AbbrevToUse);
107 }
108
109 // Emit information about parameter attributes.
110 static void WriteParamAttrTable(const ValueEnumerator &VE, 
111                                 BitstreamWriter &Stream) {
112   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113   if (Attrs.empty()) return;
114   
115   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117   SmallVector<uint64_t, 64> Record;
118   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119     const ParamAttrsList *A = Attrs[i];
120     for (unsigned op = 0, e = A->size(); op != e; ++op) {
121       Record.push_back(A->getParamIndex(op));
122       Record.push_back(A->getParamAttrsAtIndex(op));
123     }
124     
125     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126     Record.clear();
127   }
128   
129   Stream.ExitBlock();
130 }
131
132 /// WriteTypeTable - Write out the type table for a module.
133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135   
136   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137   SmallVector<uint64_t, 64> TypeVals;
138   
139   // Abbrev for TYPE_CODE_POINTER.
140   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143                             Log2_32_Ceil(VE.getTypes().size()+1)));
144   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
145   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
146   
147   // Abbrev for TYPE_CODE_FUNCTION.
148   Abbv = new BitCodeAbbrev();
149   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
150   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
151   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
152   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154                             Log2_32_Ceil(VE.getTypes().size()+1)));
155   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156   
157   // Abbrev for TYPE_CODE_STRUCT.
158   Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165  
166   // Abbrev for TYPE_CODE_ARRAY.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                             Log2_32_Ceil(VE.getTypes().size()+1)));
172   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173   
174   // Emit an entry count so the reader can reserve space.
175   TypeVals.push_back(TypeList.size());
176   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177   TypeVals.clear();
178   
179   // Loop over all of the types, emitting each in turn.
180   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181     const Type *T = TypeList[i].first;
182     int AbbrevToUse = 0;
183     unsigned Code = 0;
184     
185     switch (T->getTypeID()) {
186     default: assert(0 && "Unknown type!");
187     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
188     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
189     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
190     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
191     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
192     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
193     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
194     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
195     case Type::IntegerTyID:
196       // INTEGER: [width]
197       Code = bitc::TYPE_CODE_INTEGER;
198       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
199       break;
200     case Type::PointerTyID: {
201       const PointerType *PTy = cast<PointerType>(T);
202       // POINTER: [pointee type, address space]
203       Code = bitc::TYPE_CODE_POINTER;
204       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
205       unsigned AddressSpace = PTy->getAddressSpace();
206       TypeVals.push_back(AddressSpace);
207       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
208       break;
209     }
210     case Type::FunctionTyID: {
211       const FunctionType *FT = cast<FunctionType>(T);
212       // FUNCTION: [isvararg, attrid, retty, paramty x N]
213       Code = bitc::TYPE_CODE_FUNCTION;
214       TypeVals.push_back(FT->isVarArg());
215       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
216       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
217       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
218         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
219       AbbrevToUse = FunctionAbbrev;
220       break;
221     }
222     case Type::StructTyID: {
223       const StructType *ST = cast<StructType>(T);
224       // STRUCT: [ispacked, eltty x N]
225       Code = bitc::TYPE_CODE_STRUCT;
226       TypeVals.push_back(ST->isPacked());
227       // Output all of the element types.
228       for (StructType::element_iterator I = ST->element_begin(),
229            E = ST->element_end(); I != E; ++I)
230         TypeVals.push_back(VE.getTypeID(*I));
231       AbbrevToUse = StructAbbrev;
232       break;
233     }
234     case Type::ArrayTyID: {
235       const ArrayType *AT = cast<ArrayType>(T);
236       // ARRAY: [numelts, eltty]
237       Code = bitc::TYPE_CODE_ARRAY;
238       TypeVals.push_back(AT->getNumElements());
239       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
240       AbbrevToUse = ArrayAbbrev;
241       break;
242     }
243     case Type::VectorTyID: {
244       const VectorType *VT = cast<VectorType>(T);
245       // VECTOR [numelts, eltty]
246       Code = bitc::TYPE_CODE_VECTOR;
247       TypeVals.push_back(VT->getNumElements());
248       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
249       break;
250     }
251     }
252
253     // Emit the finished record.
254     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
255     TypeVals.clear();
256   }
257   
258   Stream.ExitBlock();
259 }
260
261 static unsigned getEncodedLinkage(const GlobalValue *GV) {
262   switch (GV->getLinkage()) {
263   default: assert(0 && "Invalid linkage!");
264   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
265   case GlobalValue::ExternalLinkage:     return 0;
266   case GlobalValue::WeakLinkage:         return 1;
267   case GlobalValue::AppendingLinkage:    return 2;
268   case GlobalValue::InternalLinkage:     return 3;
269   case GlobalValue::LinkOnceLinkage:     return 4;
270   case GlobalValue::DLLImportLinkage:    return 5;
271   case GlobalValue::DLLExportLinkage:    return 6;
272   case GlobalValue::ExternalWeakLinkage: return 7;
273   }
274 }
275
276 static unsigned getEncodedVisibility(const GlobalValue *GV) {
277   switch (GV->getVisibility()) {
278   default: assert(0 && "Invalid visibility!");
279   case GlobalValue::DefaultVisibility:   return 0;
280   case GlobalValue::HiddenVisibility:    return 1;
281   case GlobalValue::ProtectedVisibility: return 2;
282   }
283 }
284
285 // Emit top-level description of module, including target triple, inline asm,
286 // descriptors for global variables, and function prototype info.
287 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
288                             BitstreamWriter &Stream) {
289   // Emit the list of dependent libraries for the Module.
290   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
291     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
292
293   // Emit various pieces of data attached to a module.
294   if (!M->getTargetTriple().empty())
295     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
296                       0/*TODO*/, Stream);
297   if (!M->getDataLayout().empty())
298     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
299                       0/*TODO*/, Stream);
300   if (!M->getModuleInlineAsm().empty())
301     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
302                       0/*TODO*/, Stream);
303
304   // Emit information about sections and collectors, computing how many there
305   // are.  Also compute the maximum alignment value.
306   std::map<std::string, unsigned> SectionMap;
307   std::map<std::string, unsigned> CollectorMap;
308   unsigned MaxAlignment = 0;
309   unsigned MaxGlobalType = 0;
310   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
311        GV != E; ++GV) {
312     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
313     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
314     
315     if (!GV->hasSection()) continue;
316     // Give section names unique ID's.
317     unsigned &Entry = SectionMap[GV->getSection()];
318     if (Entry != 0) continue;
319     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
320                       0/*TODO*/, Stream);
321     Entry = SectionMap.size();
322   }
323   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
324     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
325     if (F->hasSection()) {
326       // Give section names unique ID's.
327       unsigned &Entry = SectionMap[F->getSection()];
328       if (!Entry) {
329         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
330                           0/*TODO*/, Stream);
331         Entry = SectionMap.size();
332       }
333     }
334     if (F->hasCollector()) {
335       // Same for collector names.
336       unsigned &Entry = CollectorMap[F->getCollector()];
337       if (!Entry) {
338         WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(),
339                           0/*TODO*/, Stream);
340         Entry = CollectorMap.size();
341       }
342     }
343   }
344   
345   // Emit abbrev for globals, now that we know # sections and max alignment.
346   unsigned SimpleGVarAbbrev = 0;
347   if (!M->global_empty()) { 
348     // Add an abbrev for common globals with no visibility or thread localness.
349     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
350     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
352                               Log2_32_Ceil(MaxGlobalType+1)));
353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
355     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
356     if (MaxAlignment == 0)                                      // Alignment.
357       Abbv->Add(BitCodeAbbrevOp(0));
358     else {
359       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
360       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
361                                Log2_32_Ceil(MaxEncAlignment+1)));
362     }
363     if (SectionMap.empty())                                    // Section.
364       Abbv->Add(BitCodeAbbrevOp(0));
365     else
366       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
367                                Log2_32_Ceil(SectionMap.size()+1)));
368     // Don't bother emitting vis + thread local.
369     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
370   }
371   
372   // Emit the global variable information.
373   SmallVector<unsigned, 64> Vals;
374   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
375        GV != E; ++GV) {
376     unsigned AbbrevToUse = 0;
377
378     // GLOBALVAR: [type, isconst, initid, 
379     //             linkage, alignment, section, visibility, threadlocal]
380     Vals.push_back(VE.getTypeID(GV->getType()));
381     Vals.push_back(GV->isConstant());
382     Vals.push_back(GV->isDeclaration() ? 0 :
383                    (VE.getValueID(GV->getInitializer()) + 1));
384     Vals.push_back(getEncodedLinkage(GV));
385     Vals.push_back(Log2_32(GV->getAlignment())+1);
386     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
387     if (GV->isThreadLocal() || 
388         GV->getVisibility() != GlobalValue::DefaultVisibility) {
389       Vals.push_back(getEncodedVisibility(GV));
390       Vals.push_back(GV->isThreadLocal());
391     } else {
392       AbbrevToUse = SimpleGVarAbbrev;
393     }
394     
395     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
396     Vals.clear();
397   }
398
399   // Emit the function proto information.
400   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
401     // FUNCTION:  [type, callingconv, isproto, paramattr,
402     //             linkage, alignment, section, visibility, collector]
403     Vals.push_back(VE.getTypeID(F->getType()));
404     Vals.push_back(F->getCallingConv());
405     Vals.push_back(F->isDeclaration());
406     Vals.push_back(getEncodedLinkage(F));
407     Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
408     Vals.push_back(Log2_32(F->getAlignment())+1);
409     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
410     Vals.push_back(getEncodedVisibility(F));
411     Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0);
412     
413     unsigned AbbrevToUse = 0;
414     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
415     Vals.clear();
416   }
417   
418   
419   // Emit the alias information.
420   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
421        AI != E; ++AI) {
422     Vals.push_back(VE.getTypeID(AI->getType()));
423     Vals.push_back(VE.getValueID(AI->getAliasee()));
424     Vals.push_back(getEncodedLinkage(AI));
425     unsigned AbbrevToUse = 0;
426     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
427     Vals.clear();
428   }
429 }
430
431
432 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
433                            const ValueEnumerator &VE,
434                            BitstreamWriter &Stream, bool isGlobal) {
435   if (FirstVal == LastVal) return;
436   
437   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
438
439   unsigned AggregateAbbrev = 0;
440   unsigned String8Abbrev = 0;
441   unsigned CString7Abbrev = 0;
442   unsigned CString6Abbrev = 0;
443   // If this is a constant pool for the module, emit module-specific abbrevs.
444   if (isGlobal) {
445     // Abbrev for CST_CODE_AGGREGATE.
446     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
447     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
450     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
451
452     // Abbrev for CST_CODE_STRING.
453     Abbv = new BitCodeAbbrev();
454     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
455     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
457     String8Abbrev = Stream.EmitAbbrev(Abbv);
458     // Abbrev for CST_CODE_CSTRING.
459     Abbv = new BitCodeAbbrev();
460     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
461     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
462     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
463     CString7Abbrev = Stream.EmitAbbrev(Abbv);
464     // Abbrev for CST_CODE_CSTRING.
465     Abbv = new BitCodeAbbrev();
466     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
467     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
468     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
469     CString6Abbrev = Stream.EmitAbbrev(Abbv);
470   }  
471   
472   SmallVector<uint64_t, 64> Record;
473
474   const ValueEnumerator::ValueList &Vals = VE.getValues();
475   const Type *LastTy = 0;
476   for (unsigned i = FirstVal; i != LastVal; ++i) {
477     const Value *V = Vals[i].first;
478     // If we need to switch types, do so now.
479     if (V->getType() != LastTy) {
480       LastTy = V->getType();
481       Record.push_back(VE.getTypeID(LastTy));
482       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
483                         CONSTANTS_SETTYPE_ABBREV);
484       Record.clear();
485     }
486     
487     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
488       Record.push_back(unsigned(IA->hasSideEffects()));
489       
490       // Add the asm string.
491       const std::string &AsmStr = IA->getAsmString();
492       Record.push_back(AsmStr.size());
493       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
494         Record.push_back(AsmStr[i]);
495       
496       // Add the constraint string.
497       const std::string &ConstraintStr = IA->getConstraintString();
498       Record.push_back(ConstraintStr.size());
499       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
500         Record.push_back(ConstraintStr[i]);
501       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
502       Record.clear();
503       continue;
504     }
505     const Constant *C = cast<Constant>(V);
506     unsigned Code = -1U;
507     unsigned AbbrevToUse = 0;
508     if (C->isNullValue()) {
509       Code = bitc::CST_CODE_NULL;
510     } else if (isa<UndefValue>(C)) {
511       Code = bitc::CST_CODE_UNDEF;
512     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
513       if (IV->getBitWidth() <= 64) {
514         int64_t V = IV->getSExtValue();
515         if (V >= 0)
516           Record.push_back(V << 1);
517         else
518           Record.push_back((-V << 1) | 1);
519         Code = bitc::CST_CODE_INTEGER;
520         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
521       } else {                             // Wide integers, > 64 bits in size.
522         // We have an arbitrary precision integer value to write whose 
523         // bit width is > 64. However, in canonical unsigned integer 
524         // format it is likely that the high bits are going to be zero.
525         // So, we only write the number of active words.
526         unsigned NWords = IV->getValue().getActiveWords(); 
527         const uint64_t *RawWords = IV->getValue().getRawData();
528         for (unsigned i = 0; i != NWords; ++i) {
529           int64_t V = RawWords[i];
530           if (V >= 0)
531             Record.push_back(V << 1);
532           else
533             Record.push_back((-V << 1) | 1);
534         }
535         Code = bitc::CST_CODE_WIDE_INTEGER;
536       }
537     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
538       Code = bitc::CST_CODE_FLOAT;
539       const Type *Ty = CFP->getType();
540       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
541         Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
542       } else if (Ty == Type::X86_FP80Ty) {
543         // api needed to prevent premature destruction
544         APInt api = CFP->getValueAPF().convertToAPInt();
545         const uint64_t *p = api.getRawData();
546         Record.push_back(p[0]);
547         Record.push_back((uint16_t)p[1]);
548       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
549         APInt api = CFP->getValueAPF().convertToAPInt();
550         const uint64_t *p = api.getRawData();
551         Record.push_back(p[0]);
552         Record.push_back(p[1]);
553       } else {
554         assert (0 && "Unknown FP type!");
555       }
556     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
557       // Emit constant strings specially.
558       unsigned NumOps = C->getNumOperands();
559       // If this is a null-terminated string, use the denser CSTRING encoding.
560       if (C->getOperand(NumOps-1)->isNullValue()) {
561         Code = bitc::CST_CODE_CSTRING;
562         --NumOps;  // Don't encode the null, which isn't allowed by char6.
563       } else {
564         Code = bitc::CST_CODE_STRING;
565         AbbrevToUse = String8Abbrev;
566       }
567       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
568       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
569       for (unsigned i = 0; i != NumOps; ++i) {
570         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
571         Record.push_back(V);
572         isCStr7 &= (V & 128) == 0;
573         if (isCStrChar6) 
574           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
575       }
576       
577       if (isCStrChar6)
578         AbbrevToUse = CString6Abbrev;
579       else if (isCStr7)
580         AbbrevToUse = CString7Abbrev;
581     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
582                isa<ConstantVector>(V)) {
583       Code = bitc::CST_CODE_AGGREGATE;
584       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
585         Record.push_back(VE.getValueID(C->getOperand(i)));
586       AbbrevToUse = AggregateAbbrev;
587     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
588       switch (CE->getOpcode()) {
589       default:
590         if (Instruction::isCast(CE->getOpcode())) {
591           Code = bitc::CST_CODE_CE_CAST;
592           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
593           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
594           Record.push_back(VE.getValueID(C->getOperand(0)));
595           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
596         } else {
597           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
598           Code = bitc::CST_CODE_CE_BINOP;
599           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
600           Record.push_back(VE.getValueID(C->getOperand(0)));
601           Record.push_back(VE.getValueID(C->getOperand(1)));
602         }
603         break;
604       case Instruction::GetElementPtr:
605         Code = bitc::CST_CODE_CE_GEP;
606         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
607           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
608           Record.push_back(VE.getValueID(C->getOperand(i)));
609         }
610         break;
611       case Instruction::Select:
612         Code = bitc::CST_CODE_CE_SELECT;
613         Record.push_back(VE.getValueID(C->getOperand(0)));
614         Record.push_back(VE.getValueID(C->getOperand(1)));
615         Record.push_back(VE.getValueID(C->getOperand(2)));
616         break;
617       case Instruction::ExtractElement:
618         Code = bitc::CST_CODE_CE_EXTRACTELT;
619         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
620         Record.push_back(VE.getValueID(C->getOperand(0)));
621         Record.push_back(VE.getValueID(C->getOperand(1)));
622         break;
623       case Instruction::InsertElement:
624         Code = bitc::CST_CODE_CE_INSERTELT;
625         Record.push_back(VE.getValueID(C->getOperand(0)));
626         Record.push_back(VE.getValueID(C->getOperand(1)));
627         Record.push_back(VE.getValueID(C->getOperand(2)));
628         break;
629       case Instruction::ShuffleVector:
630         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
631         Record.push_back(VE.getValueID(C->getOperand(0)));
632         Record.push_back(VE.getValueID(C->getOperand(1)));
633         Record.push_back(VE.getValueID(C->getOperand(2)));
634         break;
635       case Instruction::ICmp:
636       case Instruction::FCmp:
637         Code = bitc::CST_CODE_CE_CMP;
638         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
639         Record.push_back(VE.getValueID(C->getOperand(0)));
640         Record.push_back(VE.getValueID(C->getOperand(1)));
641         Record.push_back(CE->getPredicate());
642         break;
643       }
644     } else {
645       assert(0 && "Unknown constant!");
646     }
647     Stream.EmitRecord(Code, Record, AbbrevToUse);
648     Record.clear();
649   }
650
651   Stream.ExitBlock();
652 }
653
654 static void WriteModuleConstants(const ValueEnumerator &VE,
655                                  BitstreamWriter &Stream) {
656   const ValueEnumerator::ValueList &Vals = VE.getValues();
657   
658   // Find the first constant to emit, which is the first non-globalvalue value.
659   // We know globalvalues have been emitted by WriteModuleInfo.
660   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
661     if (!isa<GlobalValue>(Vals[i].first)) {
662       WriteConstants(i, Vals.size(), VE, Stream, true);
663       return;
664     }
665   }
666 }
667
668 /// PushValueAndType - The file has to encode both the value and type id for
669 /// many values, because we need to know what type to create for forward
670 /// references.  However, most operands are not forward references, so this type
671 /// field is not needed.
672 ///
673 /// This function adds V's value ID to Vals.  If the value ID is higher than the
674 /// instruction ID, then it is a forward reference, and it also includes the
675 /// type ID.
676 static bool PushValueAndType(Value *V, unsigned InstID,
677                              SmallVector<unsigned, 64> &Vals, 
678                              ValueEnumerator &VE) {
679   unsigned ValID = VE.getValueID(V);
680   Vals.push_back(ValID);
681   if (ValID >= InstID) {
682     Vals.push_back(VE.getTypeID(V->getType()));
683     return true;
684   }
685   return false;
686 }
687
688 /// WriteInstruction - Emit an instruction to the specified stream.
689 static void WriteInstruction(const Instruction &I, unsigned InstID,
690                              ValueEnumerator &VE, BitstreamWriter &Stream,
691                              SmallVector<unsigned, 64> &Vals) {
692   unsigned Code = 0;
693   unsigned AbbrevToUse = 0;
694   switch (I.getOpcode()) {
695   default:
696     if (Instruction::isCast(I.getOpcode())) {
697       Code = bitc::FUNC_CODE_INST_CAST;
698       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
699         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
700       Vals.push_back(VE.getTypeID(I.getType()));
701       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
702     } else {
703       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
704       Code = bitc::FUNC_CODE_INST_BINOP;
705       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
706         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
707       Vals.push_back(VE.getValueID(I.getOperand(1)));
708       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
709     }
710     break;
711
712   case Instruction::GetElementPtr:
713     Code = bitc::FUNC_CODE_INST_GEP;
714     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
715       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
716     break;
717   case Instruction::Select:
718     Code = bitc::FUNC_CODE_INST_SELECT;
719     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
720     Vals.push_back(VE.getValueID(I.getOperand(2)));
721     Vals.push_back(VE.getValueID(I.getOperand(0)));
722     break;
723   case Instruction::ExtractElement:
724     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
725     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
726     Vals.push_back(VE.getValueID(I.getOperand(1)));
727     break;
728   case Instruction::InsertElement:
729     Code = bitc::FUNC_CODE_INST_INSERTELT;
730     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
731     Vals.push_back(VE.getValueID(I.getOperand(1)));
732     Vals.push_back(VE.getValueID(I.getOperand(2)));
733     break;
734   case Instruction::ShuffleVector:
735     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
736     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
737     Vals.push_back(VE.getValueID(I.getOperand(1)));
738     Vals.push_back(VE.getValueID(I.getOperand(2)));
739     break;
740   case Instruction::ICmp:
741   case Instruction::FCmp:
742     Code = bitc::FUNC_CODE_INST_CMP;
743     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
744     Vals.push_back(VE.getValueID(I.getOperand(1)));
745     Vals.push_back(cast<CmpInst>(I).getPredicate());
746     break;
747   case Instruction::GetResult:
748     Code = bitc::FUNC_CODE_INST_GETRESULT;
749     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
750     Vals.push_back(cast<GetResultInst>(I).getIndex());
751     break;
752
753   case Instruction::Ret: 
754     {
755       Code = bitc::FUNC_CODE_INST_RET;
756       unsigned NumOperands = I.getNumOperands();
757       if (NumOperands == 0)
758         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
759       else if (NumOperands == 1) {
760         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
761           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
762       } else {
763         for (unsigned i = 0, e = NumOperands; i != e; ++i)
764           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
765       }
766     }
767     break;
768   case Instruction::Br:
769     Code = bitc::FUNC_CODE_INST_BR;
770     Vals.push_back(VE.getValueID(I.getOperand(0)));
771     if (cast<BranchInst>(I).isConditional()) {
772       Vals.push_back(VE.getValueID(I.getOperand(1)));
773       Vals.push_back(VE.getValueID(I.getOperand(2)));
774     }
775     break;
776   case Instruction::Switch:
777     Code = bitc::FUNC_CODE_INST_SWITCH;
778     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
779     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
780       Vals.push_back(VE.getValueID(I.getOperand(i)));
781     break;
782   case Instruction::Invoke: {
783     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
784     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
785     Code = bitc::FUNC_CODE_INST_INVOKE;
786     
787     const InvokeInst *II = cast<InvokeInst>(&I);
788     Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
789     Vals.push_back(II->getCallingConv());
790     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
791     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
792     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
793     
794     // Emit value #'s for the fixed parameters.
795     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
796       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
797
798     // Emit type/value pairs for varargs params.
799     if (FTy->isVarArg()) {
800       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
801            i != e; ++i)
802         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
803     }
804     break;
805   }
806   case Instruction::Unwind:
807     Code = bitc::FUNC_CODE_INST_UNWIND;
808     break;
809   case Instruction::Unreachable:
810     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
811     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
812     break;
813   
814   case Instruction::PHI:
815     Code = bitc::FUNC_CODE_INST_PHI;
816     Vals.push_back(VE.getTypeID(I.getType()));
817     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
818       Vals.push_back(VE.getValueID(I.getOperand(i)));
819     break;
820     
821   case Instruction::Malloc:
822     Code = bitc::FUNC_CODE_INST_MALLOC;
823     Vals.push_back(VE.getTypeID(I.getType()));
824     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
825     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
826     break;
827     
828   case Instruction::Free:
829     Code = bitc::FUNC_CODE_INST_FREE;
830     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
831     break;
832     
833   case Instruction::Alloca:
834     Code = bitc::FUNC_CODE_INST_ALLOCA;
835     Vals.push_back(VE.getTypeID(I.getType()));
836     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
837     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
838     break;
839     
840   case Instruction::Load:
841     Code = bitc::FUNC_CODE_INST_LOAD;
842     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
843       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
844       
845     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
846     Vals.push_back(cast<LoadInst>(I).isVolatile());
847     break;
848   case Instruction::Store:
849     Code = bitc::FUNC_CODE_INST_STORE2;
850     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
851     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
852     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
853     Vals.push_back(cast<StoreInst>(I).isVolatile());
854     break;
855   case Instruction::Call: {
856     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
857     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
858
859     Code = bitc::FUNC_CODE_INST_CALL;
860     
861     const CallInst *CI = cast<CallInst>(&I);
862     Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
863     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
864     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
865     
866     // Emit value #'s for the fixed parameters.
867     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
868       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
869       
870     // Emit type/value pairs for varargs params.
871     if (FTy->isVarArg()) {
872       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
873       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
874            i != e; ++i)
875         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
876     }
877     break;
878   }
879   case Instruction::VAArg:
880     Code = bitc::FUNC_CODE_INST_VAARG;
881     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
882     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
883     Vals.push_back(VE.getTypeID(I.getType())); // restype.
884     break;
885   }
886   
887   Stream.EmitRecord(Code, Vals, AbbrevToUse);
888   Vals.clear();
889 }
890
891 // Emit names for globals/functions etc.
892 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
893                                   const ValueEnumerator &VE,
894                                   BitstreamWriter &Stream) {
895   if (VST.empty()) return;
896   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
897
898   // FIXME: Set up the abbrev, we know how many values there are!
899   // FIXME: We know if the type names can use 7-bit ascii.
900   SmallVector<unsigned, 64> NameVals;
901   
902   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
903        SI != SE; ++SI) {
904     
905     const ValueName &Name = *SI;
906     
907     // Figure out the encoding to use for the name.
908     bool is7Bit = true;
909     bool isChar6 = true;
910     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
911          C != E; ++C) {
912       if (isChar6) 
913         isChar6 = BitCodeAbbrevOp::isChar6(*C);
914       if ((unsigned char)*C & 128) {
915         is7Bit = false;
916         break;  // don't bother scanning the rest.
917       }
918     }
919     
920     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
921     
922     // VST_ENTRY:   [valueid, namechar x N]
923     // VST_BBENTRY: [bbid, namechar x N]
924     unsigned Code;
925     if (isa<BasicBlock>(SI->getValue())) {
926       Code = bitc::VST_CODE_BBENTRY;
927       if (isChar6)
928         AbbrevToUse = VST_BBENTRY_6_ABBREV;
929     } else {
930       Code = bitc::VST_CODE_ENTRY;
931       if (isChar6)
932         AbbrevToUse = VST_ENTRY_6_ABBREV;
933       else if (is7Bit)
934         AbbrevToUse = VST_ENTRY_7_ABBREV;
935     }
936     
937     NameVals.push_back(VE.getValueID(SI->getValue()));
938     for (const char *P = Name.getKeyData(),
939          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
940       NameVals.push_back((unsigned char)*P);
941     
942     // Emit the finished record.
943     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
944     NameVals.clear();
945   }
946   Stream.ExitBlock();
947 }
948
949 /// WriteFunction - Emit a function body to the module stream.
950 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
951                           BitstreamWriter &Stream) {
952   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
953   VE.incorporateFunction(F);
954
955   SmallVector<unsigned, 64> Vals;
956   
957   // Emit the number of basic blocks, so the reader can create them ahead of
958   // time.
959   Vals.push_back(VE.getBasicBlocks().size());
960   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
961   Vals.clear();
962   
963   // If there are function-local constants, emit them now.
964   unsigned CstStart, CstEnd;
965   VE.getFunctionConstantRange(CstStart, CstEnd);
966   WriteConstants(CstStart, CstEnd, VE, Stream, false);
967   
968   // Keep a running idea of what the instruction ID is. 
969   unsigned InstID = CstEnd;
970   
971   // Finally, emit all the instructions, in order.
972   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
973     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
974          I != E; ++I) {
975       WriteInstruction(*I, InstID, VE, Stream, Vals);
976       if (I->getType() != Type::VoidTy)
977         ++InstID;
978     }
979   
980   // Emit names for all the instructions etc.
981   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
982     
983   VE.purgeFunction();
984   Stream.ExitBlock();
985 }
986
987 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
988 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
989                                  const ValueEnumerator &VE,
990                                  BitstreamWriter &Stream) {
991   if (TST.empty()) return;
992   
993   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
994   
995   // 7-bit fixed width VST_CODE_ENTRY strings.
996   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
997   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
998   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
999                             Log2_32_Ceil(VE.getTypes().size()+1)));
1000   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1002   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1003   
1004   SmallVector<unsigned, 64> NameVals;
1005   
1006   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1007        TI != TE; ++TI) {
1008     // TST_ENTRY: [typeid, namechar x N]
1009     NameVals.push_back(VE.getTypeID(TI->second));
1010     
1011     const std::string &Str = TI->first;
1012     bool is7Bit = true;
1013     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1014       NameVals.push_back((unsigned char)Str[i]);
1015       if (Str[i] & 128)
1016         is7Bit = false;
1017     }
1018     
1019     // Emit the finished record.
1020     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1021     NameVals.clear();
1022   }
1023   
1024   Stream.ExitBlock();
1025 }
1026
1027 // Emit blockinfo, which defines the standard abbreviations etc.
1028 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1029   // We only want to emit block info records for blocks that have multiple
1030   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1031   // blocks can defined their abbrevs inline.
1032   Stream.EnterBlockInfoBlock(2);
1033   
1034   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1035     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1036     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1039     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1040     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1041                                    Abbv) != VST_ENTRY_8_ABBREV)
1042       assert(0 && "Unexpected abbrev ordering!");
1043   }
1044   
1045   { // 7-bit fixed width VST_ENTRY strings.
1046     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1047     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1048     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1049     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1050     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1051     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1052                                    Abbv) != VST_ENTRY_7_ABBREV)
1053       assert(0 && "Unexpected abbrev ordering!");
1054   }
1055   { // 6-bit char6 VST_ENTRY strings.
1056     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1057     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1058     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1059     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1060     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1061     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1062                                    Abbv) != VST_ENTRY_6_ABBREV)
1063       assert(0 && "Unexpected abbrev ordering!");
1064   }
1065   { // 6-bit char6 VST_BBENTRY strings.
1066     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1067     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1068     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1069     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1071     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1072                                    Abbv) != VST_BBENTRY_6_ABBREV)
1073       assert(0 && "Unexpected abbrev ordering!");
1074   }
1075   
1076   
1077   
1078   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1079     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1080     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1081     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1082                               Log2_32_Ceil(VE.getTypes().size()+1)));
1083     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1084                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1085       assert(0 && "Unexpected abbrev ordering!");
1086   }
1087   
1088   { // INTEGER abbrev for CONSTANTS_BLOCK.
1089     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1090     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1092     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1093                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1094       assert(0 && "Unexpected abbrev ordering!");
1095   }
1096   
1097   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1098     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1099     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1100     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1102                               Log2_32_Ceil(VE.getTypes().size()+1)));
1103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1104
1105     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1106                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1107       assert(0 && "Unexpected abbrev ordering!");
1108   }
1109   { // NULL abbrev for CONSTANTS_BLOCK.
1110     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1111     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1112     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1113                                    Abbv) != CONSTANTS_NULL_Abbrev)
1114       assert(0 && "Unexpected abbrev ordering!");
1115   }
1116   
1117   // FIXME: This should only use space for first class types!
1118  
1119   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1120     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1121     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1122     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1123     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1124     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1125     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1126                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1127       assert(0 && "Unexpected abbrev ordering!");
1128   }
1129   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1130     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1131     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1132     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1133     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1135     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1136                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1137       assert(0 && "Unexpected abbrev ordering!");
1138   }
1139   { // INST_CAST abbrev for FUNCTION_BLOCK.
1140     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1141     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1143     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1144                               Log2_32_Ceil(VE.getTypes().size()+1)));
1145     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1146     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1147                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1148       assert(0 && "Unexpected abbrev ordering!");
1149   }
1150   
1151   { // INST_RET abbrev for FUNCTION_BLOCK.
1152     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1153     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1154     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1155                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1156       assert(0 && "Unexpected abbrev ordering!");
1157   }
1158   { // INST_RET abbrev for FUNCTION_BLOCK.
1159     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1160     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1162     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1163                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1164       assert(0 && "Unexpected abbrev ordering!");
1165   }
1166   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1167     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1168     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1169     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1170                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1171       assert(0 && "Unexpected abbrev ordering!");
1172   }
1173   
1174   Stream.ExitBlock();
1175 }
1176
1177
1178 /// WriteModule - Emit the specified module to the bitstream.
1179 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1180   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1181   
1182   // Emit the version number if it is non-zero.
1183   if (CurVersion) {
1184     SmallVector<unsigned, 1> Vals;
1185     Vals.push_back(CurVersion);
1186     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1187   }
1188   
1189   // Analyze the module, enumerating globals, functions, etc.
1190   ValueEnumerator VE(M);
1191
1192   // Emit blockinfo, which defines the standard abbreviations etc.
1193   WriteBlockInfo(VE, Stream);
1194   
1195   // Emit information about parameter attributes.
1196   WriteParamAttrTable(VE, Stream);
1197   
1198   // Emit information describing all of the types in the module.
1199   WriteTypeTable(VE, Stream);
1200   
1201   // Emit top-level description of module, including target triple, inline asm,
1202   // descriptors for global variables, and function prototype info.
1203   WriteModuleInfo(M, VE, Stream);
1204   
1205   // Emit constants.
1206   WriteModuleConstants(VE, Stream);
1207   
1208   // If we have any aggregate values in the value table, purge them - these can
1209   // only be used to initialize global variables.  Doing so makes the value
1210   // namespace smaller for code in functions.
1211   int NumNonAggregates = VE.PurgeAggregateValues();
1212   if (NumNonAggregates != -1) {
1213     SmallVector<unsigned, 1> Vals;
1214     Vals.push_back(NumNonAggregates);
1215     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1216   }
1217   
1218   // Emit function bodies.
1219   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1220     if (!I->isDeclaration())
1221       WriteFunction(*I, VE, Stream);
1222   
1223   // Emit the type symbol table information.
1224   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1225   
1226   // Emit names for globals/functions etc.
1227   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1228   
1229   Stream.ExitBlock();
1230 }
1231
1232
1233 /// WriteBitcodeToFile - Write the specified module to the specified output
1234 /// stream.
1235 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1236   std::vector<unsigned char> Buffer;
1237   BitstreamWriter Stream(Buffer);
1238   
1239   Buffer.reserve(256*1024);
1240   
1241   // Emit the file header.
1242   Stream.Emit((unsigned)'B', 8);
1243   Stream.Emit((unsigned)'C', 8);
1244   Stream.Emit(0x0, 4);
1245   Stream.Emit(0xC, 4);
1246   Stream.Emit(0xE, 4);
1247   Stream.Emit(0xD, 4);
1248
1249   // Emit the module.
1250   WriteModule(M, Stream);
1251   
1252   // Write the generated bitstream to "Out".
1253   Out.write((char*)&Buffer.front(), Buffer.size());
1254   
1255   // Make sure it hits disk now.
1256   Out.flush();
1257 }