Fix PR1146: parameter attributes are longer part of
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/ParameterAttributes.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 /// These are manifest constants used by the bitcode writer. They do not need to
30 /// be kept in sync with the reader, but need to be consistent within this file.
31 enum {
32   CurVersion = 0,
33   
34   // VALUE_SYMTAB_BLOCK abbrev id's.
35   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36   VST_ENTRY_7_ABBREV,
37   VST_ENTRY_6_ABBREV,
38   VST_BBENTRY_6_ABBREV,
39   
40   // CONSTANTS_BLOCK abbrev id's.
41   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   CONSTANTS_INTEGER_ABBREV,
43   CONSTANTS_CE_CAST_Abbrev,
44   CONSTANTS_NULL_Abbrev,
45   
46   // FUNCTION_BLOCK abbrev id's.
47   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   FUNCTION_INST_BINOP_ABBREV,
49   FUNCTION_INST_CAST_ABBREV,
50   FUNCTION_INST_RET_VOID_ABBREV,
51   FUNCTION_INST_RET_VAL_ABBREV,
52   FUNCTION_INST_UNREACHABLE_ABBREV
53 };
54
55
56 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57   switch (Opcode) {
58   default: assert(0 && "Unknown cast instruction!");
59   case Instruction::Trunc   : return bitc::CAST_TRUNC;
60   case Instruction::ZExt    : return bitc::CAST_ZEXT;
61   case Instruction::SExt    : return bitc::CAST_SEXT;
62   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
63   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
64   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
65   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
66   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67   case Instruction::FPExt   : return bitc::CAST_FPEXT;
68   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70   case Instruction::BitCast : return bitc::CAST_BITCAST;
71   }
72 }
73
74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75   switch (Opcode) {
76   default: assert(0 && "Unknown binary instruction!");
77   case Instruction::Add:  return bitc::BINOP_ADD;
78   case Instruction::Sub:  return bitc::BINOP_SUB;
79   case Instruction::Mul:  return bitc::BINOP_MUL;
80   case Instruction::UDiv: return bitc::BINOP_UDIV;
81   case Instruction::FDiv:
82   case Instruction::SDiv: return bitc::BINOP_SDIV;
83   case Instruction::URem: return bitc::BINOP_UREM;
84   case Instruction::FRem:
85   case Instruction::SRem: return bitc::BINOP_SREM;
86   case Instruction::Shl:  return bitc::BINOP_SHL;
87   case Instruction::LShr: return bitc::BINOP_LSHR;
88   case Instruction::AShr: return bitc::BINOP_ASHR;
89   case Instruction::And:  return bitc::BINOP_AND;
90   case Instruction::Or:   return bitc::BINOP_OR;
91   case Instruction::Xor:  return bitc::BINOP_XOR;
92   }
93 }
94
95
96
97 static void WriteStringRecord(unsigned Code, const std::string &Str, 
98                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
99   SmallVector<unsigned, 64> Vals;
100   
101   // Code: [strchar x N]
102   for (unsigned i = 0, e = Str.size(); i != e; ++i)
103     Vals.push_back(Str[i]);
104     
105   // Emit the finished record.
106   Stream.EmitRecord(Code, Vals, AbbrevToUse);
107 }
108
109 // Emit information about parameter attributes.
110 static void WriteParamAttrTable(const ValueEnumerator &VE, 
111                                 BitstreamWriter &Stream) {
112   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113   if (Attrs.empty()) return;
114   
115   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117   SmallVector<uint64_t, 64> Record;
118   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119     const ParamAttrsList *A = Attrs[i];
120     for (unsigned op = 0, e = A->size(); op != e; ++op) {
121       Record.push_back(A->getParamIndex(op));
122       Record.push_back(A->getParamAttrsAtIndex(op));
123     }
124     
125     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126     Record.clear();
127   }
128   
129   Stream.ExitBlock();
130 }
131
132 /// WriteTypeTable - Write out the type table for a module.
133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135   
136   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137   SmallVector<uint64_t, 64> TypeVals;
138   
139   // Abbrev for TYPE_CODE_POINTER.
140   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143                             Log2_32_Ceil(VE.getTypes().size()+1)));
144   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
145   
146   // Abbrev for TYPE_CODE_FUNCTION.
147   Abbv = new BitCodeAbbrev();
148   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
150   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
151   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
152                             Log2_32_Ceil(VE.getTypes().size()+1)));
153   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
154   
155   // Abbrev for TYPE_CODE_STRUCT.
156   Abbv = new BitCodeAbbrev();
157   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
158   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
159   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
163  
164   // Abbrev for TYPE_CODE_ARRAY.
165   Abbv = new BitCodeAbbrev();
166   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
169                             Log2_32_Ceil(VE.getTypes().size()+1)));
170   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
171   
172   // Emit an entry count so the reader can reserve space.
173   TypeVals.push_back(TypeList.size());
174   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
175   TypeVals.clear();
176   
177   // Loop over all of the types, emitting each in turn.
178   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
179     const Type *T = TypeList[i].first;
180     int AbbrevToUse = 0;
181     unsigned Code = 0;
182     
183     switch (T->getTypeID()) {
184     default: assert(0 && "Unknown type!");
185     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
186     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
187     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
188     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
189     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
190     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
191     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
192     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
193     case Type::IntegerTyID:
194       // INTEGER: [width]
195       Code = bitc::TYPE_CODE_INTEGER;
196       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
197       break;
198     case Type::PointerTyID:
199       // POINTER: [pointee type]
200       Code = bitc::TYPE_CODE_POINTER;
201       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
202       AbbrevToUse = PtrAbbrev;
203       break;
204
205     case Type::FunctionTyID: {
206       const FunctionType *FT = cast<FunctionType>(T);
207       // FUNCTION: [isvararg, retty, paramty x N]
208       Code = bitc::TYPE_CODE_FUNCTION;
209       TypeVals.push_back(FT->isVarArg());
210       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
211       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
212         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
213       AbbrevToUse = FunctionAbbrev;
214       break;
215     }
216     case Type::StructTyID: {
217       const StructType *ST = cast<StructType>(T);
218       // STRUCT: [ispacked, eltty x N]
219       Code = bitc::TYPE_CODE_STRUCT;
220       TypeVals.push_back(ST->isPacked());
221       // Output all of the element types.
222       for (StructType::element_iterator I = ST->element_begin(),
223            E = ST->element_end(); I != E; ++I)
224         TypeVals.push_back(VE.getTypeID(*I));
225       AbbrevToUse = StructAbbrev;
226       break;
227     }
228     case Type::ArrayTyID: {
229       const ArrayType *AT = cast<ArrayType>(T);
230       // ARRAY: [numelts, eltty]
231       Code = bitc::TYPE_CODE_ARRAY;
232       TypeVals.push_back(AT->getNumElements());
233       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
234       AbbrevToUse = ArrayAbbrev;
235       break;
236     }
237     case Type::VectorTyID: {
238       const VectorType *VT = cast<VectorType>(T);
239       // VECTOR [numelts, eltty]
240       Code = bitc::TYPE_CODE_VECTOR;
241       TypeVals.push_back(VT->getNumElements());
242       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
243       break;
244     }
245     }
246
247     // Emit the finished record.
248     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
249     TypeVals.clear();
250   }
251   
252   Stream.ExitBlock();
253 }
254
255 static unsigned getEncodedLinkage(const GlobalValue *GV) {
256   switch (GV->getLinkage()) {
257   default: assert(0 && "Invalid linkage!");
258   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
259   case GlobalValue::ExternalLinkage:     return 0;
260   case GlobalValue::WeakLinkage:         return 1;
261   case GlobalValue::AppendingLinkage:    return 2;
262   case GlobalValue::InternalLinkage:     return 3;
263   case GlobalValue::LinkOnceLinkage:     return 4;
264   case GlobalValue::DLLImportLinkage:    return 5;
265   case GlobalValue::DLLExportLinkage:    return 6;
266   case GlobalValue::ExternalWeakLinkage: return 7;
267   }
268 }
269
270 static unsigned getEncodedVisibility(const GlobalValue *GV) {
271   switch (GV->getVisibility()) {
272   default: assert(0 && "Invalid visibility!");
273   case GlobalValue::DefaultVisibility:   return 0;
274   case GlobalValue::HiddenVisibility:    return 1;
275   case GlobalValue::ProtectedVisibility: return 2;
276   }
277 }
278
279 // Emit top-level description of module, including target triple, inline asm,
280 // descriptors for global variables, and function prototype info.
281 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
282                             BitstreamWriter &Stream) {
283   // Emit the list of dependent libraries for the Module.
284   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
285     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
286
287   // Emit various pieces of data attached to a module.
288   if (!M->getTargetTriple().empty())
289     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
290                       0/*TODO*/, Stream);
291   if (!M->getDataLayout().empty())
292     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
293                       0/*TODO*/, Stream);
294   if (!M->getModuleInlineAsm().empty())
295     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
296                       0/*TODO*/, Stream);
297
298   // Emit information about sections, computing how many there are.  Also
299   // compute the maximum alignment value.
300   std::map<std::string, unsigned> SectionMap;
301   unsigned MaxAlignment = 0;
302   unsigned MaxGlobalType = 0;
303   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
304        GV != E; ++GV) {
305     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
306     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
307     
308     if (!GV->hasSection()) continue;
309     // Give section names unique ID's.
310     unsigned &Entry = SectionMap[GV->getSection()];
311     if (Entry != 0) continue;
312     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
313                       0/*TODO*/, Stream);
314     Entry = SectionMap.size();
315   }
316   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
317     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
318     if (!F->hasSection()) continue;
319     // Give section names unique ID's.
320     unsigned &Entry = SectionMap[F->getSection()];
321     if (Entry != 0) continue;
322     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
323                       0/*TODO*/, Stream);
324     Entry = SectionMap.size();
325   }
326   
327   // Emit abbrev for globals, now that we know # sections and max alignment.
328   unsigned SimpleGVarAbbrev = 0;
329   if (!M->global_empty()) { 
330     // Add an abbrev for common globals with no visibility or thread localness.
331     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
332     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
334                               Log2_32_Ceil(MaxGlobalType+1)));
335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
338     if (MaxAlignment == 0)                                      // Alignment.
339       Abbv->Add(BitCodeAbbrevOp(0));
340     else {
341       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
342       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343                                Log2_32_Ceil(MaxEncAlignment+1)));
344     }
345     if (SectionMap.empty())                                    // Section.
346       Abbv->Add(BitCodeAbbrevOp(0));
347     else
348       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
349                                Log2_32_Ceil(SectionMap.size()+1)));
350     // Don't bother emitting vis + thread local.
351     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
352   }
353   
354   // Emit the global variable information.
355   SmallVector<unsigned, 64> Vals;
356   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
357        GV != E; ++GV) {
358     unsigned AbbrevToUse = 0;
359
360     // GLOBALVAR: [type, isconst, initid, 
361     //             linkage, alignment, section, visibility, threadlocal]
362     Vals.push_back(VE.getTypeID(GV->getType()));
363     Vals.push_back(GV->isConstant());
364     Vals.push_back(GV->isDeclaration() ? 0 :
365                    (VE.getValueID(GV->getInitializer()) + 1));
366     Vals.push_back(getEncodedLinkage(GV));
367     Vals.push_back(Log2_32(GV->getAlignment())+1);
368     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
369     if (GV->isThreadLocal() || 
370         GV->getVisibility() != GlobalValue::DefaultVisibility) {
371       Vals.push_back(getEncodedVisibility(GV));
372       Vals.push_back(GV->isThreadLocal());
373     } else {
374       AbbrevToUse = SimpleGVarAbbrev;
375     }
376     
377     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
378     Vals.clear();
379   }
380
381   // Emit the function proto information.
382   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
383     // FUNCTION:  [type, callingconv, isproto, paramattr,
384     //             linkage, alignment, section, visibility]
385     Vals.push_back(VE.getTypeID(F->getType()));
386     Vals.push_back(F->getCallingConv());
387     Vals.push_back(F->isDeclaration());
388     Vals.push_back(getEncodedLinkage(F));
389     Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
390     Vals.push_back(Log2_32(F->getAlignment())+1);
391     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
392     Vals.push_back(getEncodedVisibility(F));
393     
394     unsigned AbbrevToUse = 0;
395     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
396     Vals.clear();
397   }
398   
399   
400   // Emit the alias information.
401   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
402        AI != E; ++AI) {
403     Vals.push_back(VE.getTypeID(AI->getType()));
404     Vals.push_back(VE.getValueID(AI->getAliasee()));
405     Vals.push_back(getEncodedLinkage(AI));
406     unsigned AbbrevToUse = 0;
407     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
408     Vals.clear();
409   }
410 }
411
412
413 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
414                            const ValueEnumerator &VE,
415                            BitstreamWriter &Stream, bool isGlobal) {
416   if (FirstVal == LastVal) return;
417   
418   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
419
420   unsigned AggregateAbbrev = 0;
421   unsigned String8Abbrev = 0;
422   unsigned CString7Abbrev = 0;
423   unsigned CString6Abbrev = 0;
424   // If this is a constant pool for the module, emit module-specific abbrevs.
425   if (isGlobal) {
426     // Abbrev for CST_CODE_AGGREGATE.
427     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
428     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
429     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
430     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
431     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
432
433     // Abbrev for CST_CODE_STRING.
434     Abbv = new BitCodeAbbrev();
435     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
437     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
438     String8Abbrev = Stream.EmitAbbrev(Abbv);
439     // Abbrev for CST_CODE_CSTRING.
440     Abbv = new BitCodeAbbrev();
441     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
443     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
444     CString7Abbrev = Stream.EmitAbbrev(Abbv);
445     // Abbrev for CST_CODE_CSTRING.
446     Abbv = new BitCodeAbbrev();
447     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
450     CString6Abbrev = Stream.EmitAbbrev(Abbv);
451   }  
452   
453   SmallVector<uint64_t, 64> Record;
454
455   const ValueEnumerator::ValueList &Vals = VE.getValues();
456   const Type *LastTy = 0;
457   for (unsigned i = FirstVal; i != LastVal; ++i) {
458     const Value *V = Vals[i].first;
459     // If we need to switch types, do so now.
460     if (V->getType() != LastTy) {
461       LastTy = V->getType();
462       Record.push_back(VE.getTypeID(LastTy));
463       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
464                         CONSTANTS_SETTYPE_ABBREV);
465       Record.clear();
466     }
467     
468     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
469       Record.push_back(unsigned(IA->hasSideEffects()));
470       
471       // Add the asm string.
472       const std::string &AsmStr = IA->getAsmString();
473       Record.push_back(AsmStr.size());
474       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
475         Record.push_back(AsmStr[i]);
476       
477       // Add the constraint string.
478       const std::string &ConstraintStr = IA->getConstraintString();
479       Record.push_back(ConstraintStr.size());
480       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
481         Record.push_back(ConstraintStr[i]);
482       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
483       Record.clear();
484       continue;
485     }
486     const Constant *C = cast<Constant>(V);
487     unsigned Code = -1U;
488     unsigned AbbrevToUse = 0;
489     if (C->isNullValue()) {
490       Code = bitc::CST_CODE_NULL;
491     } else if (isa<UndefValue>(C)) {
492       Code = bitc::CST_CODE_UNDEF;
493     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
494       if (IV->getBitWidth() <= 64) {
495         int64_t V = IV->getSExtValue();
496         if (V >= 0)
497           Record.push_back(V << 1);
498         else
499           Record.push_back((-V << 1) | 1);
500         Code = bitc::CST_CODE_INTEGER;
501         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
502       } else {                             // Wide integers, > 64 bits in size.
503         // We have an arbitrary precision integer value to write whose 
504         // bit width is > 64. However, in canonical unsigned integer 
505         // format it is likely that the high bits are going to be zero.
506         // So, we only write the number of active words.
507         unsigned NWords = IV->getValue().getActiveWords(); 
508         const uint64_t *RawWords = IV->getValue().getRawData();
509         for (unsigned i = 0; i != NWords; ++i) {
510           int64_t V = RawWords[i];
511           if (V >= 0)
512             Record.push_back(V << 1);
513           else
514             Record.push_back((-V << 1) | 1);
515         }
516         Code = bitc::CST_CODE_WIDE_INTEGER;
517       }
518     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
519       Code = bitc::CST_CODE_FLOAT;
520       const Type *Ty = CFP->getType();
521       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
522         Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
523       } else if (Ty == Type::X86_FP80Ty) {
524         // api needed to prevent premature destruction
525         APInt api = CFP->getValueAPF().convertToAPInt();
526         const uint64_t *p = api.getRawData();
527         Record.push_back(p[0]);
528         Record.push_back((uint16_t)p[1]);
529       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
530         APInt api = CFP->getValueAPF().convertToAPInt();
531         const uint64_t *p = api.getRawData();
532         Record.push_back(p[0]);
533         Record.push_back(p[1]);
534       } else {
535         assert (0 && "Unknown FP type!");
536       }
537     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
538       // Emit constant strings specially.
539       unsigned NumOps = C->getNumOperands();
540       // If this is a null-terminated string, use the denser CSTRING encoding.
541       if (C->getOperand(NumOps-1)->isNullValue()) {
542         Code = bitc::CST_CODE_CSTRING;
543         --NumOps;  // Don't encode the null, which isn't allowed by char6.
544       } else {
545         Code = bitc::CST_CODE_STRING;
546         AbbrevToUse = String8Abbrev;
547       }
548       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
549       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
550       for (unsigned i = 0; i != NumOps; ++i) {
551         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
552         Record.push_back(V);
553         isCStr7 &= (V & 128) == 0;
554         if (isCStrChar6) 
555           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
556       }
557       
558       if (isCStrChar6)
559         AbbrevToUse = CString6Abbrev;
560       else if (isCStr7)
561         AbbrevToUse = CString7Abbrev;
562     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
563                isa<ConstantVector>(V)) {
564       Code = bitc::CST_CODE_AGGREGATE;
565       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
566         Record.push_back(VE.getValueID(C->getOperand(i)));
567       AbbrevToUse = AggregateAbbrev;
568     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
569       switch (CE->getOpcode()) {
570       default:
571         if (Instruction::isCast(CE->getOpcode())) {
572           Code = bitc::CST_CODE_CE_CAST;
573           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
574           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
575           Record.push_back(VE.getValueID(C->getOperand(0)));
576           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
577         } else {
578           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
579           Code = bitc::CST_CODE_CE_BINOP;
580           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
581           Record.push_back(VE.getValueID(C->getOperand(0)));
582           Record.push_back(VE.getValueID(C->getOperand(1)));
583         }
584         break;
585       case Instruction::GetElementPtr:
586         Code = bitc::CST_CODE_CE_GEP;
587         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
588           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
589           Record.push_back(VE.getValueID(C->getOperand(i)));
590         }
591         break;
592       case Instruction::Select:
593         Code = bitc::CST_CODE_CE_SELECT;
594         Record.push_back(VE.getValueID(C->getOperand(0)));
595         Record.push_back(VE.getValueID(C->getOperand(1)));
596         Record.push_back(VE.getValueID(C->getOperand(2)));
597         break;
598       case Instruction::ExtractElement:
599         Code = bitc::CST_CODE_CE_EXTRACTELT;
600         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
601         Record.push_back(VE.getValueID(C->getOperand(0)));
602         Record.push_back(VE.getValueID(C->getOperand(1)));
603         break;
604       case Instruction::InsertElement:
605         Code = bitc::CST_CODE_CE_INSERTELT;
606         Record.push_back(VE.getValueID(C->getOperand(0)));
607         Record.push_back(VE.getValueID(C->getOperand(1)));
608         Record.push_back(VE.getValueID(C->getOperand(2)));
609         break;
610       case Instruction::ShuffleVector:
611         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
612         Record.push_back(VE.getValueID(C->getOperand(0)));
613         Record.push_back(VE.getValueID(C->getOperand(1)));
614         Record.push_back(VE.getValueID(C->getOperand(2)));
615         break;
616       case Instruction::ICmp:
617       case Instruction::FCmp:
618         Code = bitc::CST_CODE_CE_CMP;
619         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
620         Record.push_back(VE.getValueID(C->getOperand(0)));
621         Record.push_back(VE.getValueID(C->getOperand(1)));
622         Record.push_back(CE->getPredicate());
623         break;
624       }
625     } else {
626       assert(0 && "Unknown constant!");
627     }
628     Stream.EmitRecord(Code, Record, AbbrevToUse);
629     Record.clear();
630   }
631
632   Stream.ExitBlock();
633 }
634
635 static void WriteModuleConstants(const ValueEnumerator &VE,
636                                  BitstreamWriter &Stream) {
637   const ValueEnumerator::ValueList &Vals = VE.getValues();
638   
639   // Find the first constant to emit, which is the first non-globalvalue value.
640   // We know globalvalues have been emitted by WriteModuleInfo.
641   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
642     if (!isa<GlobalValue>(Vals[i].first)) {
643       WriteConstants(i, Vals.size(), VE, Stream, true);
644       return;
645     }
646   }
647 }
648
649 /// PushValueAndType - The file has to encode both the value and type id for
650 /// many values, because we need to know what type to create for forward
651 /// references.  However, most operands are not forward references, so this type
652 /// field is not needed.
653 ///
654 /// This function adds V's value ID to Vals.  If the value ID is higher than the
655 /// instruction ID, then it is a forward reference, and it also includes the
656 /// type ID.
657 static bool PushValueAndType(Value *V, unsigned InstID,
658                              SmallVector<unsigned, 64> &Vals, 
659                              ValueEnumerator &VE) {
660   unsigned ValID = VE.getValueID(V);
661   Vals.push_back(ValID);
662   if (ValID >= InstID) {
663     Vals.push_back(VE.getTypeID(V->getType()));
664     return true;
665   }
666   return false;
667 }
668
669 /// WriteInstruction - Emit an instruction to the specified stream.
670 static void WriteInstruction(const Instruction &I, unsigned InstID,
671                              ValueEnumerator &VE, BitstreamWriter &Stream,
672                              SmallVector<unsigned, 64> &Vals) {
673   unsigned Code = 0;
674   unsigned AbbrevToUse = 0;
675   switch (I.getOpcode()) {
676   default:
677     if (Instruction::isCast(I.getOpcode())) {
678       Code = bitc::FUNC_CODE_INST_CAST;
679       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
680         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
681       Vals.push_back(VE.getTypeID(I.getType()));
682       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
683     } else {
684       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
685       Code = bitc::FUNC_CODE_INST_BINOP;
686       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
687         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
688       Vals.push_back(VE.getValueID(I.getOperand(1)));
689       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
690     }
691     break;
692
693   case Instruction::GetElementPtr:
694     Code = bitc::FUNC_CODE_INST_GEP;
695     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
696       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
697     break;
698   case Instruction::Select:
699     Code = bitc::FUNC_CODE_INST_SELECT;
700     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
701     Vals.push_back(VE.getValueID(I.getOperand(2)));
702     Vals.push_back(VE.getValueID(I.getOperand(0)));
703     break;
704   case Instruction::ExtractElement:
705     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
706     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
707     Vals.push_back(VE.getValueID(I.getOperand(1)));
708     break;
709   case Instruction::InsertElement:
710     Code = bitc::FUNC_CODE_INST_INSERTELT;
711     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
712     Vals.push_back(VE.getValueID(I.getOperand(1)));
713     Vals.push_back(VE.getValueID(I.getOperand(2)));
714     break;
715   case Instruction::ShuffleVector:
716     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
717     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
718     Vals.push_back(VE.getValueID(I.getOperand(1)));
719     Vals.push_back(VE.getValueID(I.getOperand(2)));
720     break;
721   case Instruction::ICmp:
722   case Instruction::FCmp:
723     Code = bitc::FUNC_CODE_INST_CMP;
724     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
725     Vals.push_back(VE.getValueID(I.getOperand(1)));
726     Vals.push_back(cast<CmpInst>(I).getPredicate());
727     break;
728
729   case Instruction::Ret:
730     Code = bitc::FUNC_CODE_INST_RET;
731     if (!I.getNumOperands())
732       AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
733     else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
734       AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
735     break;
736   case Instruction::Br:
737     Code = bitc::FUNC_CODE_INST_BR;
738     Vals.push_back(VE.getValueID(I.getOperand(0)));
739     if (cast<BranchInst>(I).isConditional()) {
740       Vals.push_back(VE.getValueID(I.getOperand(1)));
741       Vals.push_back(VE.getValueID(I.getOperand(2)));
742     }
743     break;
744   case Instruction::Switch:
745     Code = bitc::FUNC_CODE_INST_SWITCH;
746     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
747     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
748       Vals.push_back(VE.getValueID(I.getOperand(i)));
749     break;
750   case Instruction::Invoke: {
751     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
752     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
753     Code = bitc::FUNC_CODE_INST_INVOKE;
754     
755     const InvokeInst *II = cast<InvokeInst>(&I);
756     Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
757     Vals.push_back(II->getCallingConv());
758     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
759     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
760     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
761     
762     // Emit value #'s for the fixed parameters.
763     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
764       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
765
766     // Emit type/value pairs for varargs params.
767     if (FTy->isVarArg()) {
768       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
769            i != e; ++i)
770         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
771     }
772     break;
773   }
774   case Instruction::Unwind:
775     Code = bitc::FUNC_CODE_INST_UNWIND;
776     break;
777   case Instruction::Unreachable:
778     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
779     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
780     break;
781   
782   case Instruction::PHI:
783     Code = bitc::FUNC_CODE_INST_PHI;
784     Vals.push_back(VE.getTypeID(I.getType()));
785     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
786       Vals.push_back(VE.getValueID(I.getOperand(i)));
787     break;
788     
789   case Instruction::Malloc:
790     Code = bitc::FUNC_CODE_INST_MALLOC;
791     Vals.push_back(VE.getTypeID(I.getType()));
792     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
793     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
794     break;
795     
796   case Instruction::Free:
797     Code = bitc::FUNC_CODE_INST_FREE;
798     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
799     break;
800     
801   case Instruction::Alloca:
802     Code = bitc::FUNC_CODE_INST_ALLOCA;
803     Vals.push_back(VE.getTypeID(I.getType()));
804     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
805     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
806     break;
807     
808   case Instruction::Load:
809     Code = bitc::FUNC_CODE_INST_LOAD;
810     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
811       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
812       
813     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
814     Vals.push_back(cast<LoadInst>(I).isVolatile());
815     break;
816   case Instruction::Store:
817     Code = bitc::FUNC_CODE_INST_STORE;
818     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
819     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
820     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
821     Vals.push_back(cast<StoreInst>(I).isVolatile());
822     break;
823   case Instruction::Call: {
824     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
825     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
826
827     Code = bitc::FUNC_CODE_INST_CALL;
828     
829     const CallInst *CI = cast<CallInst>(&I);
830     Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
831     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
832     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
833     
834     // Emit value #'s for the fixed parameters.
835     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
836       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
837       
838     // Emit type/value pairs for varargs params.
839     if (FTy->isVarArg()) {
840       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
841       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
842            i != e; ++i)
843         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
844     }
845     break;
846   }
847   case Instruction::VAArg:
848     Code = bitc::FUNC_CODE_INST_VAARG;
849     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
850     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
851     Vals.push_back(VE.getTypeID(I.getType())); // restype.
852     break;
853   }
854   
855   Stream.EmitRecord(Code, Vals, AbbrevToUse);
856   Vals.clear();
857 }
858
859 // Emit names for globals/functions etc.
860 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
861                                   const ValueEnumerator &VE,
862                                   BitstreamWriter &Stream) {
863   if (VST.empty()) return;
864   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
865
866   // FIXME: Set up the abbrev, we know how many values there are!
867   // FIXME: We know if the type names can use 7-bit ascii.
868   SmallVector<unsigned, 64> NameVals;
869   
870   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
871        SI != SE; ++SI) {
872     
873     const ValueName &Name = *SI;
874     
875     // Figure out the encoding to use for the name.
876     bool is7Bit = true;
877     bool isChar6 = true;
878     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
879          C != E; ++C) {
880       if (isChar6) 
881         isChar6 = BitCodeAbbrevOp::isChar6(*C);
882       if ((unsigned char)*C & 128) {
883         is7Bit = false;
884         break;  // don't bother scanning the rest.
885       }
886     }
887     
888     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
889     
890     // VST_ENTRY:   [valueid, namechar x N]
891     // VST_BBENTRY: [bbid, namechar x N]
892     unsigned Code;
893     if (isa<BasicBlock>(SI->getValue())) {
894       Code = bitc::VST_CODE_BBENTRY;
895       if (isChar6)
896         AbbrevToUse = VST_BBENTRY_6_ABBREV;
897     } else {
898       Code = bitc::VST_CODE_ENTRY;
899       if (isChar6)
900         AbbrevToUse = VST_ENTRY_6_ABBREV;
901       else if (is7Bit)
902         AbbrevToUse = VST_ENTRY_7_ABBREV;
903     }
904     
905     NameVals.push_back(VE.getValueID(SI->getValue()));
906     for (const char *P = Name.getKeyData(),
907          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
908       NameVals.push_back((unsigned char)*P);
909     
910     // Emit the finished record.
911     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
912     NameVals.clear();
913   }
914   Stream.ExitBlock();
915 }
916
917 /// WriteFunction - Emit a function body to the module stream.
918 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
919                           BitstreamWriter &Stream) {
920   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
921   VE.incorporateFunction(F);
922
923   SmallVector<unsigned, 64> Vals;
924   
925   // Emit the number of basic blocks, so the reader can create them ahead of
926   // time.
927   Vals.push_back(VE.getBasicBlocks().size());
928   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
929   Vals.clear();
930   
931   // If there are function-local constants, emit them now.
932   unsigned CstStart, CstEnd;
933   VE.getFunctionConstantRange(CstStart, CstEnd);
934   WriteConstants(CstStart, CstEnd, VE, Stream, false);
935   
936   // Keep a running idea of what the instruction ID is. 
937   unsigned InstID = CstEnd;
938   
939   // Finally, emit all the instructions, in order.
940   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
941     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
942          I != E; ++I) {
943       WriteInstruction(*I, InstID, VE, Stream, Vals);
944       if (I->getType() != Type::VoidTy)
945         ++InstID;
946     }
947   
948   // Emit names for all the instructions etc.
949   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
950     
951   VE.purgeFunction();
952   Stream.ExitBlock();
953 }
954
955 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
956 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
957                                  const ValueEnumerator &VE,
958                                  BitstreamWriter &Stream) {
959   if (TST.empty()) return;
960   
961   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
962   
963   // 7-bit fixed width VST_CODE_ENTRY strings.
964   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
965   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
966   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
967                             Log2_32_Ceil(VE.getTypes().size()+1)));
968   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
970   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
971   
972   SmallVector<unsigned, 64> NameVals;
973   
974   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
975        TI != TE; ++TI) {
976     // TST_ENTRY: [typeid, namechar x N]
977     NameVals.push_back(VE.getTypeID(TI->second));
978     
979     const std::string &Str = TI->first;
980     bool is7Bit = true;
981     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
982       NameVals.push_back((unsigned char)Str[i]);
983       if (Str[i] & 128)
984         is7Bit = false;
985     }
986     
987     // Emit the finished record.
988     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
989     NameVals.clear();
990   }
991   
992   Stream.ExitBlock();
993 }
994
995 // Emit blockinfo, which defines the standard abbreviations etc.
996 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
997   // We only want to emit block info records for blocks that have multiple
998   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
999   // blocks can defined their abbrevs inline.
1000   Stream.EnterBlockInfoBlock(2);
1001   
1002   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1003     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1004     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1005     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1008     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1009                                    Abbv) != VST_ENTRY_8_ABBREV)
1010       assert(0 && "Unexpected abbrev ordering!");
1011   }
1012   
1013   { // 7-bit fixed width VST_ENTRY strings.
1014     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1015     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1016     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1017     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1018     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1019     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1020                                    Abbv) != VST_ENTRY_7_ABBREV)
1021       assert(0 && "Unexpected abbrev ordering!");
1022   }
1023   { // 6-bit char6 VST_ENTRY strings.
1024     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1025     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1026     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1027     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1028     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1029     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1030                                    Abbv) != VST_ENTRY_6_ABBREV)
1031       assert(0 && "Unexpected abbrev ordering!");
1032   }
1033   { // 6-bit char6 VST_BBENTRY strings.
1034     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1035     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1036     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1039     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1040                                    Abbv) != VST_BBENTRY_6_ABBREV)
1041       assert(0 && "Unexpected abbrev ordering!");
1042   }
1043   
1044   
1045   
1046   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1047     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1048     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1049     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1050                               Log2_32_Ceil(VE.getTypes().size()+1)));
1051     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1052                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1053       assert(0 && "Unexpected abbrev ordering!");
1054   }
1055   
1056   { // INTEGER abbrev for CONSTANTS_BLOCK.
1057     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1058     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1059     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1060     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1061                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1062       assert(0 && "Unexpected abbrev ordering!");
1063   }
1064   
1065   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1066     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1067     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1068     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1069     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1070                               Log2_32_Ceil(VE.getTypes().size()+1)));
1071     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1072
1073     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1074                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1075       assert(0 && "Unexpected abbrev ordering!");
1076   }
1077   { // NULL abbrev for CONSTANTS_BLOCK.
1078     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1079     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1080     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1081                                    Abbv) != CONSTANTS_NULL_Abbrev)
1082       assert(0 && "Unexpected abbrev ordering!");
1083   }
1084   
1085   // FIXME: This should only use space for first class types!
1086  
1087   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1088     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1089     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1090     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1093     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1094                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1095       assert(0 && "Unexpected abbrev ordering!");
1096   }
1097   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1098     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1099     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1100     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1102     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1103     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1104                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1105       assert(0 && "Unexpected abbrev ordering!");
1106   }
1107   { // INST_CAST abbrev for FUNCTION_BLOCK.
1108     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1109     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1110     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1112                               Log2_32_Ceil(VE.getTypes().size()+1)));
1113     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1114     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1115                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1116       assert(0 && "Unexpected abbrev ordering!");
1117   }
1118   
1119   { // INST_RET abbrev for FUNCTION_BLOCK.
1120     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1121     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1122     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1123                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1124       assert(0 && "Unexpected abbrev ordering!");
1125   }
1126   { // INST_RET abbrev for FUNCTION_BLOCK.
1127     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1128     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1130     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1131                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1132       assert(0 && "Unexpected abbrev ordering!");
1133   }
1134   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1135     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1136     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1137     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1138                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1139       assert(0 && "Unexpected abbrev ordering!");
1140   }
1141   
1142   Stream.ExitBlock();
1143 }
1144
1145
1146 /// WriteModule - Emit the specified module to the bitstream.
1147 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1148   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1149   
1150   // Emit the version number if it is non-zero.
1151   if (CurVersion) {
1152     SmallVector<unsigned, 1> Vals;
1153     Vals.push_back(CurVersion);
1154     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1155   }
1156   
1157   // Analyze the module, enumerating globals, functions, etc.
1158   ValueEnumerator VE(M);
1159
1160   // Emit blockinfo, which defines the standard abbreviations etc.
1161   WriteBlockInfo(VE, Stream);
1162   
1163   // Emit information about parameter attributes.
1164   WriteParamAttrTable(VE, Stream);
1165   
1166   // Emit information describing all of the types in the module.
1167   WriteTypeTable(VE, Stream);
1168   
1169   // Emit top-level description of module, including target triple, inline asm,
1170   // descriptors for global variables, and function prototype info.
1171   WriteModuleInfo(M, VE, Stream);
1172   
1173   // Emit constants.
1174   WriteModuleConstants(VE, Stream);
1175   
1176   // If we have any aggregate values in the value table, purge them - these can
1177   // only be used to initialize global variables.  Doing so makes the value
1178   // namespace smaller for code in functions.
1179   int NumNonAggregates = VE.PurgeAggregateValues();
1180   if (NumNonAggregates != -1) {
1181     SmallVector<unsigned, 1> Vals;
1182     Vals.push_back(NumNonAggregates);
1183     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1184   }
1185   
1186   // Emit function bodies.
1187   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1188     if (!I->isDeclaration())
1189       WriteFunction(*I, VE, Stream);
1190   
1191   // Emit the type symbol table information.
1192   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1193   
1194   // Emit names for globals/functions etc.
1195   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1196   
1197   Stream.ExitBlock();
1198 }
1199
1200
1201 /// WriteBitcodeToFile - Write the specified module to the specified output
1202 /// stream.
1203 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1204   std::vector<unsigned char> Buffer;
1205   BitstreamWriter Stream(Buffer);
1206   
1207   Buffer.reserve(256*1024);
1208   
1209   // Emit the file header.
1210   Stream.Emit((unsigned)'B', 8);
1211   Stream.Emit((unsigned)'C', 8);
1212   Stream.Emit(0x0, 4);
1213   Stream.Emit(0xC, 4);
1214   Stream.Emit(0xE, 4);
1215   Stream.Emit(0xD, 4);
1216
1217   // Emit the module.
1218   WriteModule(M, Stream);
1219   
1220   // Write the generated bitstream to "Out".
1221   Out.write((char*)&Buffer.front(), Buffer.size());
1222   
1223   // Make sure it hits disk now.
1224   Out.flush();
1225 }