IR: Add assembly/bitcode support for function metadata attachments
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV,
60   FUNCTION_INST_GEP_ABBREV,
61 };
62
63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64   switch (Opcode) {
65   default: llvm_unreachable("Unknown cast instruction!");
66   case Instruction::Trunc   : return bitc::CAST_TRUNC;
67   case Instruction::ZExt    : return bitc::CAST_ZEXT;
68   case Instruction::SExt    : return bitc::CAST_SEXT;
69   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74   case Instruction::FPExt   : return bitc::CAST_FPEXT;
75   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77   case Instruction::BitCast : return bitc::CAST_BITCAST;
78   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
79   }
80 }
81
82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
83   switch (Opcode) {
84   default: llvm_unreachable("Unknown binary instruction!");
85   case Instruction::Add:
86   case Instruction::FAdd: return bitc::BINOP_ADD;
87   case Instruction::Sub:
88   case Instruction::FSub: return bitc::BINOP_SUB;
89   case Instruction::Mul:
90   case Instruction::FMul: return bitc::BINOP_MUL;
91   case Instruction::UDiv: return bitc::BINOP_UDIV;
92   case Instruction::FDiv:
93   case Instruction::SDiv: return bitc::BINOP_SDIV;
94   case Instruction::URem: return bitc::BINOP_UREM;
95   case Instruction::FRem:
96   case Instruction::SRem: return bitc::BINOP_SREM;
97   case Instruction::Shl:  return bitc::BINOP_SHL;
98   case Instruction::LShr: return bitc::BINOP_LSHR;
99   case Instruction::AShr: return bitc::BINOP_ASHR;
100   case Instruction::And:  return bitc::BINOP_AND;
101   case Instruction::Or:   return bitc::BINOP_OR;
102   case Instruction::Xor:  return bitc::BINOP_XOR;
103   }
104 }
105
106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
107   switch (Op) {
108   default: llvm_unreachable("Unknown RMW operation!");
109   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
110   case AtomicRMWInst::Add: return bitc::RMW_ADD;
111   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
112   case AtomicRMWInst::And: return bitc::RMW_AND;
113   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
114   case AtomicRMWInst::Or: return bitc::RMW_OR;
115   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
116   case AtomicRMWInst::Max: return bitc::RMW_MAX;
117   case AtomicRMWInst::Min: return bitc::RMW_MIN;
118   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
119   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
120   }
121 }
122
123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
124   switch (Ordering) {
125   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126   case Unordered: return bitc::ORDERING_UNORDERED;
127   case Monotonic: return bitc::ORDERING_MONOTONIC;
128   case Acquire: return bitc::ORDERING_ACQUIRE;
129   case Release: return bitc::ORDERING_RELEASE;
130   case AcquireRelease: return bitc::ORDERING_ACQREL;
131   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132   }
133   llvm_unreachable("Invalid ordering");
134 }
135
136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
137   switch (SynchScope) {
138   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140   }
141   llvm_unreachable("Invalid synch scope");
142 }
143
144 static void WriteStringRecord(unsigned Code, StringRef Str,
145                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
146   SmallVector<unsigned, 64> Vals;
147
148   // Code: [strchar x N]
149   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
150     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
151       AbbrevToUse = 0;
152     Vals.push_back(Str[i]);
153   }
154
155   // Emit the finished record.
156   Stream.EmitRecord(Code, Vals, AbbrevToUse);
157 }
158
159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
160   switch (Kind) {
161   case Attribute::Alignment:
162     return bitc::ATTR_KIND_ALIGNMENT;
163   case Attribute::AlwaysInline:
164     return bitc::ATTR_KIND_ALWAYS_INLINE;
165   case Attribute::Builtin:
166     return bitc::ATTR_KIND_BUILTIN;
167   case Attribute::ByVal:
168     return bitc::ATTR_KIND_BY_VAL;
169   case Attribute::InAlloca:
170     return bitc::ATTR_KIND_IN_ALLOCA;
171   case Attribute::Cold:
172     return bitc::ATTR_KIND_COLD;
173   case Attribute::InlineHint:
174     return bitc::ATTR_KIND_INLINE_HINT;
175   case Attribute::InReg:
176     return bitc::ATTR_KIND_IN_REG;
177   case Attribute::JumpTable:
178     return bitc::ATTR_KIND_JUMP_TABLE;
179   case Attribute::MinSize:
180     return bitc::ATTR_KIND_MIN_SIZE;
181   case Attribute::Naked:
182     return bitc::ATTR_KIND_NAKED;
183   case Attribute::Nest:
184     return bitc::ATTR_KIND_NEST;
185   case Attribute::NoAlias:
186     return bitc::ATTR_KIND_NO_ALIAS;
187   case Attribute::NoBuiltin:
188     return bitc::ATTR_KIND_NO_BUILTIN;
189   case Attribute::NoCapture:
190     return bitc::ATTR_KIND_NO_CAPTURE;
191   case Attribute::NoDuplicate:
192     return bitc::ATTR_KIND_NO_DUPLICATE;
193   case Attribute::NoImplicitFloat:
194     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
195   case Attribute::NoInline:
196     return bitc::ATTR_KIND_NO_INLINE;
197   case Attribute::NonLazyBind:
198     return bitc::ATTR_KIND_NON_LAZY_BIND;
199   case Attribute::NonNull:
200     return bitc::ATTR_KIND_NON_NULL;
201   case Attribute::Dereferenceable:
202     return bitc::ATTR_KIND_DEREFERENCEABLE;
203   case Attribute::DereferenceableOrNull:
204     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
205   case Attribute::NoRedZone:
206     return bitc::ATTR_KIND_NO_RED_ZONE;
207   case Attribute::NoReturn:
208     return bitc::ATTR_KIND_NO_RETURN;
209   case Attribute::NoUnwind:
210     return bitc::ATTR_KIND_NO_UNWIND;
211   case Attribute::OptimizeForSize:
212     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
213   case Attribute::OptimizeNone:
214     return bitc::ATTR_KIND_OPTIMIZE_NONE;
215   case Attribute::ReadNone:
216     return bitc::ATTR_KIND_READ_NONE;
217   case Attribute::ReadOnly:
218     return bitc::ATTR_KIND_READ_ONLY;
219   case Attribute::Returned:
220     return bitc::ATTR_KIND_RETURNED;
221   case Attribute::ReturnsTwice:
222     return bitc::ATTR_KIND_RETURNS_TWICE;
223   case Attribute::SExt:
224     return bitc::ATTR_KIND_S_EXT;
225   case Attribute::StackAlignment:
226     return bitc::ATTR_KIND_STACK_ALIGNMENT;
227   case Attribute::StackProtect:
228     return bitc::ATTR_KIND_STACK_PROTECT;
229   case Attribute::StackProtectReq:
230     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
231   case Attribute::StackProtectStrong:
232     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
233   case Attribute::StructRet:
234     return bitc::ATTR_KIND_STRUCT_RET;
235   case Attribute::SanitizeAddress:
236     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
237   case Attribute::SanitizeThread:
238     return bitc::ATTR_KIND_SANITIZE_THREAD;
239   case Attribute::SanitizeMemory:
240     return bitc::ATTR_KIND_SANITIZE_MEMORY;
241   case Attribute::UWTable:
242     return bitc::ATTR_KIND_UW_TABLE;
243   case Attribute::ZExt:
244     return bitc::ATTR_KIND_Z_EXT;
245   case Attribute::EndAttrKinds:
246     llvm_unreachable("Can not encode end-attribute kinds marker.");
247   case Attribute::None:
248     llvm_unreachable("Can not encode none-attribute.");
249   }
250
251   llvm_unreachable("Trying to encode unknown attribute");
252 }
253
254 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
255                                      BitstreamWriter &Stream) {
256   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
257   if (AttrGrps.empty()) return;
258
259   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
260
261   SmallVector<uint64_t, 64> Record;
262   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
263     AttributeSet AS = AttrGrps[i];
264     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
265       AttributeSet A = AS.getSlotAttributes(i);
266
267       Record.push_back(VE.getAttributeGroupID(A));
268       Record.push_back(AS.getSlotIndex(i));
269
270       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
271            I != E; ++I) {
272         Attribute Attr = *I;
273         if (Attr.isEnumAttribute()) {
274           Record.push_back(0);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276         } else if (Attr.isIntAttribute()) {
277           Record.push_back(1);
278           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
279           Record.push_back(Attr.getValueAsInt());
280         } else {
281           StringRef Kind = Attr.getKindAsString();
282           StringRef Val = Attr.getValueAsString();
283
284           Record.push_back(Val.empty() ? 3 : 4);
285           Record.append(Kind.begin(), Kind.end());
286           Record.push_back(0);
287           if (!Val.empty()) {
288             Record.append(Val.begin(), Val.end());
289             Record.push_back(0);
290           }
291         }
292       }
293
294       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
295       Record.clear();
296     }
297   }
298
299   Stream.ExitBlock();
300 }
301
302 static void WriteAttributeTable(const ValueEnumerator &VE,
303                                 BitstreamWriter &Stream) {
304   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
305   if (Attrs.empty()) return;
306
307   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
308
309   SmallVector<uint64_t, 64> Record;
310   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
311     const AttributeSet &A = Attrs[i];
312     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
313       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
314
315     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
316     Record.clear();
317   }
318
319   Stream.ExitBlock();
320 }
321
322 /// WriteTypeTable - Write out the type table for a module.
323 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
324   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
325
326   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
327   SmallVector<uint64_t, 64> TypeVals;
328
329   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
330
331   // Abbrev for TYPE_CODE_POINTER.
332   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
333   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
334   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
335   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
336   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
337
338   // Abbrev for TYPE_CODE_FUNCTION.
339   Abbv = new BitCodeAbbrev();
340   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
341   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
342   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
343   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
344
345   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
346
347   // Abbrev for TYPE_CODE_STRUCT_ANON.
348   Abbv = new BitCodeAbbrev();
349   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
350   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
351   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
352   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
353
354   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
355
356   // Abbrev for TYPE_CODE_STRUCT_NAME.
357   Abbv = new BitCodeAbbrev();
358   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
360   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
361   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
362
363   // Abbrev for TYPE_CODE_STRUCT_NAMED.
364   Abbv = new BitCodeAbbrev();
365   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
369
370   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
371
372   // Abbrev for TYPE_CODE_ARRAY.
373   Abbv = new BitCodeAbbrev();
374   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
376   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
377
378   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
379
380   // Emit an entry count so the reader can reserve space.
381   TypeVals.push_back(TypeList.size());
382   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
383   TypeVals.clear();
384
385   // Loop over all of the types, emitting each in turn.
386   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
387     Type *T = TypeList[i];
388     int AbbrevToUse = 0;
389     unsigned Code = 0;
390
391     switch (T->getTypeID()) {
392     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
393     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
394     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
395     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
396     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
397     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
398     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
399     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
400     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
401     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
402     case Type::IntegerTyID:
403       // INTEGER: [width]
404       Code = bitc::TYPE_CODE_INTEGER;
405       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
406       break;
407     case Type::PointerTyID: {
408       PointerType *PTy = cast<PointerType>(T);
409       // POINTER: [pointee type, address space]
410       Code = bitc::TYPE_CODE_POINTER;
411       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
412       unsigned AddressSpace = PTy->getAddressSpace();
413       TypeVals.push_back(AddressSpace);
414       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
415       break;
416     }
417     case Type::FunctionTyID: {
418       FunctionType *FT = cast<FunctionType>(T);
419       // FUNCTION: [isvararg, retty, paramty x N]
420       Code = bitc::TYPE_CODE_FUNCTION;
421       TypeVals.push_back(FT->isVarArg());
422       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
423       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
424         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
425       AbbrevToUse = FunctionAbbrev;
426       break;
427     }
428     case Type::StructTyID: {
429       StructType *ST = cast<StructType>(T);
430       // STRUCT: [ispacked, eltty x N]
431       TypeVals.push_back(ST->isPacked());
432       // Output all of the element types.
433       for (StructType::element_iterator I = ST->element_begin(),
434            E = ST->element_end(); I != E; ++I)
435         TypeVals.push_back(VE.getTypeID(*I));
436
437       if (ST->isLiteral()) {
438         Code = bitc::TYPE_CODE_STRUCT_ANON;
439         AbbrevToUse = StructAnonAbbrev;
440       } else {
441         if (ST->isOpaque()) {
442           Code = bitc::TYPE_CODE_OPAQUE;
443         } else {
444           Code = bitc::TYPE_CODE_STRUCT_NAMED;
445           AbbrevToUse = StructNamedAbbrev;
446         }
447
448         // Emit the name if it is present.
449         if (!ST->getName().empty())
450           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
451                             StructNameAbbrev, Stream);
452       }
453       break;
454     }
455     case Type::ArrayTyID: {
456       ArrayType *AT = cast<ArrayType>(T);
457       // ARRAY: [numelts, eltty]
458       Code = bitc::TYPE_CODE_ARRAY;
459       TypeVals.push_back(AT->getNumElements());
460       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
461       AbbrevToUse = ArrayAbbrev;
462       break;
463     }
464     case Type::VectorTyID: {
465       VectorType *VT = cast<VectorType>(T);
466       // VECTOR [numelts, eltty]
467       Code = bitc::TYPE_CODE_VECTOR;
468       TypeVals.push_back(VT->getNumElements());
469       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
470       break;
471     }
472     }
473
474     // Emit the finished record.
475     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
476     TypeVals.clear();
477   }
478
479   Stream.ExitBlock();
480 }
481
482 static unsigned getEncodedLinkage(const GlobalValue &GV) {
483   switch (GV.getLinkage()) {
484   case GlobalValue::ExternalLinkage:
485     return 0;
486   case GlobalValue::WeakAnyLinkage:
487     return 16;
488   case GlobalValue::AppendingLinkage:
489     return 2;
490   case GlobalValue::InternalLinkage:
491     return 3;
492   case GlobalValue::LinkOnceAnyLinkage:
493     return 18;
494   case GlobalValue::ExternalWeakLinkage:
495     return 7;
496   case GlobalValue::CommonLinkage:
497     return 8;
498   case GlobalValue::PrivateLinkage:
499     return 9;
500   case GlobalValue::WeakODRLinkage:
501     return 17;
502   case GlobalValue::LinkOnceODRLinkage:
503     return 19;
504   case GlobalValue::AvailableExternallyLinkage:
505     return 12;
506   }
507   llvm_unreachable("Invalid linkage");
508 }
509
510 static unsigned getEncodedVisibility(const GlobalValue &GV) {
511   switch (GV.getVisibility()) {
512   case GlobalValue::DefaultVisibility:   return 0;
513   case GlobalValue::HiddenVisibility:    return 1;
514   case GlobalValue::ProtectedVisibility: return 2;
515   }
516   llvm_unreachable("Invalid visibility");
517 }
518
519 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
520   switch (GV.getDLLStorageClass()) {
521   case GlobalValue::DefaultStorageClass:   return 0;
522   case GlobalValue::DLLImportStorageClass: return 1;
523   case GlobalValue::DLLExportStorageClass: return 2;
524   }
525   llvm_unreachable("Invalid DLL storage class");
526 }
527
528 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
529   switch (GV.getThreadLocalMode()) {
530     case GlobalVariable::NotThreadLocal:         return 0;
531     case GlobalVariable::GeneralDynamicTLSModel: return 1;
532     case GlobalVariable::LocalDynamicTLSModel:   return 2;
533     case GlobalVariable::InitialExecTLSModel:    return 3;
534     case GlobalVariable::LocalExecTLSModel:      return 4;
535   }
536   llvm_unreachable("Invalid TLS model");
537 }
538
539 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
540   switch (C.getSelectionKind()) {
541   case Comdat::Any:
542     return bitc::COMDAT_SELECTION_KIND_ANY;
543   case Comdat::ExactMatch:
544     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
545   case Comdat::Largest:
546     return bitc::COMDAT_SELECTION_KIND_LARGEST;
547   case Comdat::NoDuplicates:
548     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
549   case Comdat::SameSize:
550     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
551   }
552   llvm_unreachable("Invalid selection kind");
553 }
554
555 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
556   SmallVector<uint16_t, 64> Vals;
557   for (const Comdat *C : VE.getComdats()) {
558     // COMDAT: [selection_kind, name]
559     Vals.push_back(getEncodedComdatSelectionKind(*C));
560     size_t Size = C->getName().size();
561     assert(isUInt<16>(Size));
562     Vals.push_back(Size);
563     for (char Chr : C->getName())
564       Vals.push_back((unsigned char)Chr);
565     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
566     Vals.clear();
567   }
568 }
569
570 // Emit top-level description of module, including target triple, inline asm,
571 // descriptors for global variables, and function prototype info.
572 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
573                             BitstreamWriter &Stream) {
574   // Emit various pieces of data attached to a module.
575   if (!M->getTargetTriple().empty())
576     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
577                       0/*TODO*/, Stream);
578   const std::string &DL = M->getDataLayoutStr();
579   if (!DL.empty())
580     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
581   if (!M->getModuleInlineAsm().empty())
582     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
583                       0/*TODO*/, Stream);
584
585   // Emit information about sections and GC, computing how many there are. Also
586   // compute the maximum alignment value.
587   std::map<std::string, unsigned> SectionMap;
588   std::map<std::string, unsigned> GCMap;
589   unsigned MaxAlignment = 0;
590   unsigned MaxGlobalType = 0;
591   for (const GlobalValue &GV : M->globals()) {
592     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
593     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
594     if (GV.hasSection()) {
595       // Give section names unique ID's.
596       unsigned &Entry = SectionMap[GV.getSection()];
597       if (!Entry) {
598         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
599                           0/*TODO*/, Stream);
600         Entry = SectionMap.size();
601       }
602     }
603   }
604   for (const Function &F : *M) {
605     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
606     if (F.hasSection()) {
607       // Give section names unique ID's.
608       unsigned &Entry = SectionMap[F.getSection()];
609       if (!Entry) {
610         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
611                           0/*TODO*/, Stream);
612         Entry = SectionMap.size();
613       }
614     }
615     if (F.hasGC()) {
616       // Same for GC names.
617       unsigned &Entry = GCMap[F.getGC()];
618       if (!Entry) {
619         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
620                           0/*TODO*/, Stream);
621         Entry = GCMap.size();
622       }
623     }
624   }
625
626   // Emit abbrev for globals, now that we know # sections and max alignment.
627   unsigned SimpleGVarAbbrev = 0;
628   if (!M->global_empty()) {
629     // Add an abbrev for common globals with no visibility or thread localness.
630     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
631     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
633                               Log2_32_Ceil(MaxGlobalType+1)));
634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
635     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
636     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
637     if (MaxAlignment == 0)                                      // Alignment.
638       Abbv->Add(BitCodeAbbrevOp(0));
639     else {
640       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
641       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
642                                Log2_32_Ceil(MaxEncAlignment+1)));
643     }
644     if (SectionMap.empty())                                    // Section.
645       Abbv->Add(BitCodeAbbrevOp(0));
646     else
647       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
648                                Log2_32_Ceil(SectionMap.size()+1)));
649     // Don't bother emitting vis + thread local.
650     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
651   }
652
653   // Emit the global variable information.
654   SmallVector<unsigned, 64> Vals;
655   for (const GlobalVariable &GV : M->globals()) {
656     unsigned AbbrevToUse = 0;
657
658     // GLOBALVAR: [type, isconst, initid,
659     //             linkage, alignment, section, visibility, threadlocal,
660     //             unnamed_addr, externally_initialized, dllstorageclass,
661     //             comdat]
662     Vals.push_back(VE.getTypeID(GV.getType()));
663     Vals.push_back(GV.isConstant());
664     Vals.push_back(GV.isDeclaration() ? 0 :
665                    (VE.getValueID(GV.getInitializer()) + 1));
666     Vals.push_back(getEncodedLinkage(GV));
667     Vals.push_back(Log2_32(GV.getAlignment())+1);
668     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
669     if (GV.isThreadLocal() ||
670         GV.getVisibility() != GlobalValue::DefaultVisibility ||
671         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
672         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
673         GV.hasComdat()) {
674       Vals.push_back(getEncodedVisibility(GV));
675       Vals.push_back(getEncodedThreadLocalMode(GV));
676       Vals.push_back(GV.hasUnnamedAddr());
677       Vals.push_back(GV.isExternallyInitialized());
678       Vals.push_back(getEncodedDLLStorageClass(GV));
679       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
680     } else {
681       AbbrevToUse = SimpleGVarAbbrev;
682     }
683
684     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
685     Vals.clear();
686   }
687
688   // Emit the function proto information.
689   for (const Function &F : *M) {
690     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
691     //             section, visibility, gc, unnamed_addr, prologuedata,
692     //             dllstorageclass, comdat, prefixdata]
693     Vals.push_back(VE.getTypeID(F.getFunctionType()));
694     Vals.push_back(F.getCallingConv());
695     Vals.push_back(F.isDeclaration());
696     Vals.push_back(getEncodedLinkage(F));
697     Vals.push_back(VE.getAttributeID(F.getAttributes()));
698     Vals.push_back(Log2_32(F.getAlignment())+1);
699     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
700     Vals.push_back(getEncodedVisibility(F));
701     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
702     Vals.push_back(F.hasUnnamedAddr());
703     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
704                                        : 0);
705     Vals.push_back(getEncodedDLLStorageClass(F));
706     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
707     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
708                                      : 0);
709
710     unsigned AbbrevToUse = 0;
711     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
712     Vals.clear();
713   }
714
715   // Emit the alias information.
716   for (const GlobalAlias &A : M->aliases()) {
717     // ALIAS: [alias type, aliasee val#, linkage, visibility]
718     Vals.push_back(VE.getTypeID(A.getType()));
719     Vals.push_back(VE.getValueID(A.getAliasee()));
720     Vals.push_back(getEncodedLinkage(A));
721     Vals.push_back(getEncodedVisibility(A));
722     Vals.push_back(getEncodedDLLStorageClass(A));
723     Vals.push_back(getEncodedThreadLocalMode(A));
724     Vals.push_back(A.hasUnnamedAddr());
725     unsigned AbbrevToUse = 0;
726     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
727     Vals.clear();
728   }
729 }
730
731 static uint64_t GetOptimizationFlags(const Value *V) {
732   uint64_t Flags = 0;
733
734   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
735     if (OBO->hasNoSignedWrap())
736       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
737     if (OBO->hasNoUnsignedWrap())
738       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
739   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
740     if (PEO->isExact())
741       Flags |= 1 << bitc::PEO_EXACT;
742   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
743     if (FPMO->hasUnsafeAlgebra())
744       Flags |= FastMathFlags::UnsafeAlgebra;
745     if (FPMO->hasNoNaNs())
746       Flags |= FastMathFlags::NoNaNs;
747     if (FPMO->hasNoInfs())
748       Flags |= FastMathFlags::NoInfs;
749     if (FPMO->hasNoSignedZeros())
750       Flags |= FastMathFlags::NoSignedZeros;
751     if (FPMO->hasAllowReciprocal())
752       Flags |= FastMathFlags::AllowReciprocal;
753   }
754
755   return Flags;
756 }
757
758 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
759                                  const ValueEnumerator &VE,
760                                  BitstreamWriter &Stream,
761                                  SmallVectorImpl<uint64_t> &Record) {
762   // Mimic an MDNode with a value as one operand.
763   Value *V = MD->getValue();
764   Record.push_back(VE.getTypeID(V->getType()));
765   Record.push_back(VE.getValueID(V));
766   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
767   Record.clear();
768 }
769
770 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
771                          BitstreamWriter &Stream,
772                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
773   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
774     Metadata *MD = N->getOperand(i);
775     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
776            "Unexpected function-local metadata");
777     Record.push_back(VE.getMetadataOrNullID(MD));
778   }
779   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
780                                     : bitc::METADATA_NODE,
781                     Record, Abbrev);
782   Record.clear();
783 }
784
785 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
786                             BitstreamWriter &Stream,
787                             SmallVectorImpl<uint64_t> &Record,
788                             unsigned Abbrev) {
789   Record.push_back(N->isDistinct());
790   Record.push_back(N->getLine());
791   Record.push_back(N->getColumn());
792   Record.push_back(VE.getMetadataID(N->getScope()));
793   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
794
795   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
796   Record.clear();
797 }
798
799 static void WriteGenericDebugNode(const GenericDebugNode *N,
800                                   const ValueEnumerator &VE,
801                                   BitstreamWriter &Stream,
802                                   SmallVectorImpl<uint64_t> &Record,
803                                   unsigned Abbrev) {
804   Record.push_back(N->isDistinct());
805   Record.push_back(N->getTag());
806   Record.push_back(0); // Per-tag version field; unused for now.
807
808   for (auto &I : N->operands())
809     Record.push_back(VE.getMetadataOrNullID(I));
810
811   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
812   Record.clear();
813 }
814
815 static uint64_t rotateSign(int64_t I) {
816   uint64_t U = I;
817   return I < 0 ? ~(U << 1) : U << 1;
818 }
819
820 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
821                             BitstreamWriter &Stream,
822                             SmallVectorImpl<uint64_t> &Record,
823                             unsigned Abbrev) {
824   Record.push_back(N->isDistinct());
825   Record.push_back(N->getCount());
826   Record.push_back(rotateSign(N->getLowerBound()));
827
828   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
829   Record.clear();
830 }
831
832 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
833                               BitstreamWriter &Stream,
834                               SmallVectorImpl<uint64_t> &Record,
835                               unsigned Abbrev) {
836   Record.push_back(N->isDistinct());
837   Record.push_back(rotateSign(N->getValue()));
838   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
839
840   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
841   Record.clear();
842 }
843
844 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
845                              BitstreamWriter &Stream,
846                              SmallVectorImpl<uint64_t> &Record,
847                              unsigned Abbrev) {
848   Record.push_back(N->isDistinct());
849   Record.push_back(N->getTag());
850   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
851   Record.push_back(N->getSizeInBits());
852   Record.push_back(N->getAlignInBits());
853   Record.push_back(N->getEncoding());
854
855   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
856   Record.clear();
857 }
858
859 static void WriteMDDerivedType(const MDDerivedType *N,
860                                const ValueEnumerator &VE,
861                                BitstreamWriter &Stream,
862                                SmallVectorImpl<uint64_t> &Record,
863                                unsigned Abbrev) {
864   Record.push_back(N->isDistinct());
865   Record.push_back(N->getTag());
866   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
867   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
868   Record.push_back(N->getLine());
869   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
870   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
871   Record.push_back(N->getSizeInBits());
872   Record.push_back(N->getAlignInBits());
873   Record.push_back(N->getOffsetInBits());
874   Record.push_back(N->getFlags());
875   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
876
877   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
878   Record.clear();
879 }
880
881 static void WriteMDCompositeType(const MDCompositeType *N,
882                                  const ValueEnumerator &VE,
883                                  BitstreamWriter &Stream,
884                                  SmallVectorImpl<uint64_t> &Record,
885                                  unsigned Abbrev) {
886   Record.push_back(N->isDistinct());
887   Record.push_back(N->getTag());
888   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
889   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
890   Record.push_back(N->getLine());
891   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
892   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
893   Record.push_back(N->getSizeInBits());
894   Record.push_back(N->getAlignInBits());
895   Record.push_back(N->getOffsetInBits());
896   Record.push_back(N->getFlags());
897   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
898   Record.push_back(N->getRuntimeLang());
899   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
900   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
901   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
902
903   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
904   Record.clear();
905 }
906
907 static void WriteMDSubroutineType(const MDSubroutineType *N,
908                                   const ValueEnumerator &VE,
909                                   BitstreamWriter &Stream,
910                                   SmallVectorImpl<uint64_t> &Record,
911                                   unsigned Abbrev) {
912   Record.push_back(N->isDistinct());
913   Record.push_back(N->getFlags());
914   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
915
916   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
917   Record.clear();
918 }
919
920 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
921                         BitstreamWriter &Stream,
922                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
923   Record.push_back(N->isDistinct());
924   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
925   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
926
927   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
928   Record.clear();
929 }
930
931 static void WriteMDCompileUnit(const MDCompileUnit *N,
932                                const ValueEnumerator &VE,
933                                BitstreamWriter &Stream,
934                                SmallVectorImpl<uint64_t> &Record,
935                                unsigned Abbrev) {
936   Record.push_back(N->isDistinct());
937   Record.push_back(N->getSourceLanguage());
938   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
939   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
940   Record.push_back(N->isOptimized());
941   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
942   Record.push_back(N->getRuntimeVersion());
943   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
944   Record.push_back(N->getEmissionKind());
945   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
946   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
947   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
948   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
949   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
950
951   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
952   Record.clear();
953 }
954
955 static void WriteMDSubprogram(const MDSubprogram *N,
956                                const ValueEnumerator &VE,
957                                BitstreamWriter &Stream,
958                                SmallVectorImpl<uint64_t> &Record,
959                                unsigned Abbrev) {
960   Record.push_back(N->isDistinct());
961   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
962   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
963   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
964   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
965   Record.push_back(N->getLine());
966   Record.push_back(VE.getMetadataOrNullID(N->getType()));
967   Record.push_back(N->isLocalToUnit());
968   Record.push_back(N->isDefinition());
969   Record.push_back(N->getScopeLine());
970   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
971   Record.push_back(N->getVirtuality());
972   Record.push_back(N->getVirtualIndex());
973   Record.push_back(N->getFlags());
974   Record.push_back(N->isOptimized());
975   Record.push_back(VE.getMetadataOrNullID(N->getRawFunction()));
976   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
977   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
978   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
979
980   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
981   Record.clear();
982 }
983
984 static void WriteMDLexicalBlock(const MDLexicalBlock *N,
985                                const ValueEnumerator &VE,
986                                BitstreamWriter &Stream,
987                                SmallVectorImpl<uint64_t> &Record,
988                                unsigned Abbrev) {
989   Record.push_back(N->isDistinct());
990   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
991   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
992   Record.push_back(N->getLine());
993   Record.push_back(N->getColumn());
994
995   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
996   Record.clear();
997 }
998
999 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N,
1000                                     const ValueEnumerator &VE,
1001                                     BitstreamWriter &Stream,
1002                                     SmallVectorImpl<uint64_t> &Record,
1003                                     unsigned Abbrev) {
1004   Record.push_back(N->isDistinct());
1005   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1006   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1007   Record.push_back(N->getDiscriminator());
1008
1009   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1010   Record.clear();
1011 }
1012
1013 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE,
1014                              BitstreamWriter &Stream,
1015                              SmallVectorImpl<uint64_t> &Record,
1016                              unsigned Abbrev) {
1017   Record.push_back(N->isDistinct());
1018   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1019   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1020   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1021   Record.push_back(N->getLine());
1022
1023   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1024   Record.clear();
1025 }
1026
1027 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N,
1028                                          const ValueEnumerator &VE,
1029                                          BitstreamWriter &Stream,
1030                                          SmallVectorImpl<uint64_t> &Record,
1031                                          unsigned Abbrev) {
1032   Record.push_back(N->isDistinct());
1033   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1034   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1035
1036   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1037   Record.clear();
1038 }
1039
1040 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N,
1041                                           const ValueEnumerator &VE,
1042                                           BitstreamWriter &Stream,
1043                                           SmallVectorImpl<uint64_t> &Record,
1044                                           unsigned Abbrev) {
1045   Record.push_back(N->isDistinct());
1046   Record.push_back(N->getTag());
1047   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1048   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1049   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1050
1051   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1052   Record.clear();
1053 }
1054
1055 static void WriteMDGlobalVariable(const MDGlobalVariable *N,
1056                                   const ValueEnumerator &VE,
1057                                   BitstreamWriter &Stream,
1058                                   SmallVectorImpl<uint64_t> &Record,
1059                                   unsigned Abbrev) {
1060   Record.push_back(N->isDistinct());
1061   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1062   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1063   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1064   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1065   Record.push_back(N->getLine());
1066   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1067   Record.push_back(N->isLocalToUnit());
1068   Record.push_back(N->isDefinition());
1069   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1070   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1071
1072   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1073   Record.clear();
1074 }
1075
1076 static void WriteMDLocalVariable(const MDLocalVariable *N,
1077                                  const ValueEnumerator &VE,
1078                                  BitstreamWriter &Stream,
1079                                  SmallVectorImpl<uint64_t> &Record,
1080                                  unsigned Abbrev) {
1081   Record.push_back(N->isDistinct());
1082   Record.push_back(N->getTag());
1083   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1084   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1085   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1086   Record.push_back(N->getLine());
1087   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1088   Record.push_back(N->getArg());
1089   Record.push_back(N->getFlags());
1090
1091   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1092   Record.clear();
1093 }
1094
1095 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &,
1096                               BitstreamWriter &Stream,
1097                               SmallVectorImpl<uint64_t> &Record,
1098                               unsigned Abbrev) {
1099   Record.reserve(N->getElements().size() + 1);
1100
1101   Record.push_back(N->isDistinct());
1102   Record.append(N->elements_begin(), N->elements_end());
1103
1104   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1105   Record.clear();
1106 }
1107
1108 static void WriteMDObjCProperty(const MDObjCProperty *N,
1109                                  const ValueEnumerator &VE,
1110                                  BitstreamWriter &Stream,
1111                                  SmallVectorImpl<uint64_t> &Record,
1112                                  unsigned Abbrev) {
1113   Record.push_back(N->isDistinct());
1114   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1115   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1116   Record.push_back(N->getLine());
1117   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1118   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1119   Record.push_back(N->getAttributes());
1120   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1121
1122   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1123   Record.clear();
1124 }
1125
1126 static void WriteMDImportedEntity(const MDImportedEntity *N,
1127                                   const ValueEnumerator &VE,
1128                                   BitstreamWriter &Stream,
1129                                   SmallVectorImpl<uint64_t> &Record,
1130                                   unsigned Abbrev) {
1131   Record.push_back(N->isDistinct());
1132   Record.push_back(N->getTag());
1133   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1134   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1135   Record.push_back(N->getLine());
1136   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1137
1138   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1139   Record.clear();
1140 }
1141
1142 static void WriteModuleMetadata(const Module *M,
1143                                 const ValueEnumerator &VE,
1144                                 BitstreamWriter &Stream) {
1145   const auto &MDs = VE.getMDs();
1146   if (MDs.empty() && M->named_metadata_empty())
1147     return;
1148
1149   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1150
1151   unsigned MDSAbbrev = 0;
1152   if (VE.hasMDString()) {
1153     // Abbrev for METADATA_STRING.
1154     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1155     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1157     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1158     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1159   }
1160
1161   // Initialize MDNode abbreviations.
1162 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1163 #include "llvm/IR/Metadata.def"
1164
1165   if (VE.hasMDLocation()) {
1166     // Abbrev for METADATA_LOCATION.
1167     //
1168     // Assume the column is usually under 128, and always output the inlined-at
1169     // location (it's never more expensive than building an array size 1).
1170     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1171     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1177     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
1178   }
1179
1180   if (VE.hasGenericDebugNode()) {
1181     // Abbrev for METADATA_GENERIC_DEBUG.
1182     //
1183     // Assume the column is usually under 128, and always output the inlined-at
1184     // location (it's never more expensive than building an array size 1).
1185     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1186     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1193     GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
1194   }
1195
1196   unsigned NameAbbrev = 0;
1197   if (!M->named_metadata_empty()) {
1198     // Abbrev for METADATA_NAME.
1199     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1200     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1203     NameAbbrev = Stream.EmitAbbrev(Abbv);
1204   }
1205
1206   SmallVector<uint64_t, 64> Record;
1207   for (const Metadata *MD : MDs) {
1208     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1209       assert(N->isResolved() && "Expected forward references to be resolved");
1210
1211       switch (N->getMetadataID()) {
1212       default:
1213         llvm_unreachable("Invalid MDNode subclass");
1214 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1215   case Metadata::CLASS##Kind:                                                  \
1216     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1217     continue;
1218 #include "llvm/IR/Metadata.def"
1219       }
1220     }
1221     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1222       WriteValueAsMetadata(MDC, VE, Stream, Record);
1223       continue;
1224     }
1225     const MDString *MDS = cast<MDString>(MD);
1226     // Code: [strchar x N]
1227     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1228
1229     // Emit the finished record.
1230     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1231     Record.clear();
1232   }
1233
1234   // Write named metadata.
1235   for (const NamedMDNode &NMD : M->named_metadata()) {
1236     // Write name.
1237     StringRef Str = NMD.getName();
1238     Record.append(Str.bytes_begin(), Str.bytes_end());
1239     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1240     Record.clear();
1241
1242     // Write named metadata operands.
1243     for (const MDNode *N : NMD.operands())
1244       Record.push_back(VE.getMetadataID(N));
1245     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1246     Record.clear();
1247   }
1248
1249   Stream.ExitBlock();
1250 }
1251
1252 static void WriteFunctionLocalMetadata(const Function &F,
1253                                        const ValueEnumerator &VE,
1254                                        BitstreamWriter &Stream) {
1255   bool StartedMetadataBlock = false;
1256   SmallVector<uint64_t, 64> Record;
1257   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1258       VE.getFunctionLocalMDs();
1259   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1260     assert(MDs[i] && "Expected valid function-local metadata");
1261     if (!StartedMetadataBlock) {
1262       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1263       StartedMetadataBlock = true;
1264     }
1265     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1266   }
1267
1268   if (StartedMetadataBlock)
1269     Stream.ExitBlock();
1270 }
1271
1272 static void WriteMetadataAttachment(const Function &F,
1273                                     const ValueEnumerator &VE,
1274                                     BitstreamWriter &Stream) {
1275   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1276
1277   SmallVector<uint64_t, 64> Record;
1278
1279   // Write metadata attachments
1280   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1281   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1282   F.getAllMetadata(MDs);
1283   if (!MDs.empty()) {
1284     for (const auto &I : MDs) {
1285       Record.push_back(I.first);
1286       Record.push_back(VE.getMetadataID(I.second));
1287     }
1288     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1289     Record.clear();
1290   }
1291
1292   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1293     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1294          I != E; ++I) {
1295       MDs.clear();
1296       I->getAllMetadataOtherThanDebugLoc(MDs);
1297
1298       // If no metadata, ignore instruction.
1299       if (MDs.empty()) continue;
1300
1301       Record.push_back(VE.getInstructionID(I));
1302
1303       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1304         Record.push_back(MDs[i].first);
1305         Record.push_back(VE.getMetadataID(MDs[i].second));
1306       }
1307       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1308       Record.clear();
1309     }
1310
1311   Stream.ExitBlock();
1312 }
1313
1314 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1315   SmallVector<uint64_t, 64> Record;
1316
1317   // Write metadata kinds
1318   // METADATA_KIND - [n x [id, name]]
1319   SmallVector<StringRef, 8> Names;
1320   M->getMDKindNames(Names);
1321
1322   if (Names.empty()) return;
1323
1324   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1325
1326   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1327     Record.push_back(MDKindID);
1328     StringRef KName = Names[MDKindID];
1329     Record.append(KName.begin(), KName.end());
1330
1331     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1332     Record.clear();
1333   }
1334
1335   Stream.ExitBlock();
1336 }
1337
1338 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1339   if ((int64_t)V >= 0)
1340     Vals.push_back(V << 1);
1341   else
1342     Vals.push_back((-V << 1) | 1);
1343 }
1344
1345 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1346                            const ValueEnumerator &VE,
1347                            BitstreamWriter &Stream, bool isGlobal) {
1348   if (FirstVal == LastVal) return;
1349
1350   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1351
1352   unsigned AggregateAbbrev = 0;
1353   unsigned String8Abbrev = 0;
1354   unsigned CString7Abbrev = 0;
1355   unsigned CString6Abbrev = 0;
1356   // If this is a constant pool for the module, emit module-specific abbrevs.
1357   if (isGlobal) {
1358     // Abbrev for CST_CODE_AGGREGATE.
1359     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1360     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1361     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1362     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1363     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1364
1365     // Abbrev for CST_CODE_STRING.
1366     Abbv = new BitCodeAbbrev();
1367     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1369     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1370     String8Abbrev = Stream.EmitAbbrev(Abbv);
1371     // Abbrev for CST_CODE_CSTRING.
1372     Abbv = new BitCodeAbbrev();
1373     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1376     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1377     // Abbrev for CST_CODE_CSTRING.
1378     Abbv = new BitCodeAbbrev();
1379     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1382     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1383   }
1384
1385   SmallVector<uint64_t, 64> Record;
1386
1387   const ValueEnumerator::ValueList &Vals = VE.getValues();
1388   Type *LastTy = nullptr;
1389   for (unsigned i = FirstVal; i != LastVal; ++i) {
1390     const Value *V = Vals[i].first;
1391     // If we need to switch types, do so now.
1392     if (V->getType() != LastTy) {
1393       LastTy = V->getType();
1394       Record.push_back(VE.getTypeID(LastTy));
1395       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1396                         CONSTANTS_SETTYPE_ABBREV);
1397       Record.clear();
1398     }
1399
1400     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1401       Record.push_back(unsigned(IA->hasSideEffects()) |
1402                        unsigned(IA->isAlignStack()) << 1 |
1403                        unsigned(IA->getDialect()&1) << 2);
1404
1405       // Add the asm string.
1406       const std::string &AsmStr = IA->getAsmString();
1407       Record.push_back(AsmStr.size());
1408       Record.append(AsmStr.begin(), AsmStr.end());
1409
1410       // Add the constraint string.
1411       const std::string &ConstraintStr = IA->getConstraintString();
1412       Record.push_back(ConstraintStr.size());
1413       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1414       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1415       Record.clear();
1416       continue;
1417     }
1418     const Constant *C = cast<Constant>(V);
1419     unsigned Code = -1U;
1420     unsigned AbbrevToUse = 0;
1421     if (C->isNullValue()) {
1422       Code = bitc::CST_CODE_NULL;
1423     } else if (isa<UndefValue>(C)) {
1424       Code = bitc::CST_CODE_UNDEF;
1425     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1426       if (IV->getBitWidth() <= 64) {
1427         uint64_t V = IV->getSExtValue();
1428         emitSignedInt64(Record, V);
1429         Code = bitc::CST_CODE_INTEGER;
1430         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1431       } else {                             // Wide integers, > 64 bits in size.
1432         // We have an arbitrary precision integer value to write whose
1433         // bit width is > 64. However, in canonical unsigned integer
1434         // format it is likely that the high bits are going to be zero.
1435         // So, we only write the number of active words.
1436         unsigned NWords = IV->getValue().getActiveWords();
1437         const uint64_t *RawWords = IV->getValue().getRawData();
1438         for (unsigned i = 0; i != NWords; ++i) {
1439           emitSignedInt64(Record, RawWords[i]);
1440         }
1441         Code = bitc::CST_CODE_WIDE_INTEGER;
1442       }
1443     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1444       Code = bitc::CST_CODE_FLOAT;
1445       Type *Ty = CFP->getType();
1446       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1447         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1448       } else if (Ty->isX86_FP80Ty()) {
1449         // api needed to prevent premature destruction
1450         // bits are not in the same order as a normal i80 APInt, compensate.
1451         APInt api = CFP->getValueAPF().bitcastToAPInt();
1452         const uint64_t *p = api.getRawData();
1453         Record.push_back((p[1] << 48) | (p[0] >> 16));
1454         Record.push_back(p[0] & 0xffffLL);
1455       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1456         APInt api = CFP->getValueAPF().bitcastToAPInt();
1457         const uint64_t *p = api.getRawData();
1458         Record.push_back(p[0]);
1459         Record.push_back(p[1]);
1460       } else {
1461         assert (0 && "Unknown FP type!");
1462       }
1463     } else if (isa<ConstantDataSequential>(C) &&
1464                cast<ConstantDataSequential>(C)->isString()) {
1465       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1466       // Emit constant strings specially.
1467       unsigned NumElts = Str->getNumElements();
1468       // If this is a null-terminated string, use the denser CSTRING encoding.
1469       if (Str->isCString()) {
1470         Code = bitc::CST_CODE_CSTRING;
1471         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1472       } else {
1473         Code = bitc::CST_CODE_STRING;
1474         AbbrevToUse = String8Abbrev;
1475       }
1476       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1477       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1478       for (unsigned i = 0; i != NumElts; ++i) {
1479         unsigned char V = Str->getElementAsInteger(i);
1480         Record.push_back(V);
1481         isCStr7 &= (V & 128) == 0;
1482         if (isCStrChar6)
1483           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1484       }
1485
1486       if (isCStrChar6)
1487         AbbrevToUse = CString6Abbrev;
1488       else if (isCStr7)
1489         AbbrevToUse = CString7Abbrev;
1490     } else if (const ConstantDataSequential *CDS =
1491                   dyn_cast<ConstantDataSequential>(C)) {
1492       Code = bitc::CST_CODE_DATA;
1493       Type *EltTy = CDS->getType()->getElementType();
1494       if (isa<IntegerType>(EltTy)) {
1495         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1496           Record.push_back(CDS->getElementAsInteger(i));
1497       } else if (EltTy->isFloatTy()) {
1498         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1499           union { float F; uint32_t I; };
1500           F = CDS->getElementAsFloat(i);
1501           Record.push_back(I);
1502         }
1503       } else {
1504         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1505         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1506           union { double F; uint64_t I; };
1507           F = CDS->getElementAsDouble(i);
1508           Record.push_back(I);
1509         }
1510       }
1511     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1512                isa<ConstantVector>(C)) {
1513       Code = bitc::CST_CODE_AGGREGATE;
1514       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1515         Record.push_back(VE.getValueID(C->getOperand(i)));
1516       AbbrevToUse = AggregateAbbrev;
1517     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1518       switch (CE->getOpcode()) {
1519       default:
1520         if (Instruction::isCast(CE->getOpcode())) {
1521           Code = bitc::CST_CODE_CE_CAST;
1522           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1523           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1524           Record.push_back(VE.getValueID(C->getOperand(0)));
1525           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1526         } else {
1527           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1528           Code = bitc::CST_CODE_CE_BINOP;
1529           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1530           Record.push_back(VE.getValueID(C->getOperand(0)));
1531           Record.push_back(VE.getValueID(C->getOperand(1)));
1532           uint64_t Flags = GetOptimizationFlags(CE);
1533           if (Flags != 0)
1534             Record.push_back(Flags);
1535         }
1536         break;
1537       case Instruction::GetElementPtr: {
1538         Code = bitc::CST_CODE_CE_GEP;
1539         const auto *GO = cast<GEPOperator>(C);
1540         if (GO->isInBounds())
1541           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1542         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1543         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1544           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1545           Record.push_back(VE.getValueID(C->getOperand(i)));
1546         }
1547         break;
1548       }
1549       case Instruction::Select:
1550         Code = bitc::CST_CODE_CE_SELECT;
1551         Record.push_back(VE.getValueID(C->getOperand(0)));
1552         Record.push_back(VE.getValueID(C->getOperand(1)));
1553         Record.push_back(VE.getValueID(C->getOperand(2)));
1554         break;
1555       case Instruction::ExtractElement:
1556         Code = bitc::CST_CODE_CE_EXTRACTELT;
1557         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1558         Record.push_back(VE.getValueID(C->getOperand(0)));
1559         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1560         Record.push_back(VE.getValueID(C->getOperand(1)));
1561         break;
1562       case Instruction::InsertElement:
1563         Code = bitc::CST_CODE_CE_INSERTELT;
1564         Record.push_back(VE.getValueID(C->getOperand(0)));
1565         Record.push_back(VE.getValueID(C->getOperand(1)));
1566         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1567         Record.push_back(VE.getValueID(C->getOperand(2)));
1568         break;
1569       case Instruction::ShuffleVector:
1570         // If the return type and argument types are the same, this is a
1571         // standard shufflevector instruction.  If the types are different,
1572         // then the shuffle is widening or truncating the input vectors, and
1573         // the argument type must also be encoded.
1574         if (C->getType() == C->getOperand(0)->getType()) {
1575           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1576         } else {
1577           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1578           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1579         }
1580         Record.push_back(VE.getValueID(C->getOperand(0)));
1581         Record.push_back(VE.getValueID(C->getOperand(1)));
1582         Record.push_back(VE.getValueID(C->getOperand(2)));
1583         break;
1584       case Instruction::ICmp:
1585       case Instruction::FCmp:
1586         Code = bitc::CST_CODE_CE_CMP;
1587         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1588         Record.push_back(VE.getValueID(C->getOperand(0)));
1589         Record.push_back(VE.getValueID(C->getOperand(1)));
1590         Record.push_back(CE->getPredicate());
1591         break;
1592       }
1593     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1594       Code = bitc::CST_CODE_BLOCKADDRESS;
1595       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1596       Record.push_back(VE.getValueID(BA->getFunction()));
1597       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1598     } else {
1599 #ifndef NDEBUG
1600       C->dump();
1601 #endif
1602       llvm_unreachable("Unknown constant!");
1603     }
1604     Stream.EmitRecord(Code, Record, AbbrevToUse);
1605     Record.clear();
1606   }
1607
1608   Stream.ExitBlock();
1609 }
1610
1611 static void WriteModuleConstants(const ValueEnumerator &VE,
1612                                  BitstreamWriter &Stream) {
1613   const ValueEnumerator::ValueList &Vals = VE.getValues();
1614
1615   // Find the first constant to emit, which is the first non-globalvalue value.
1616   // We know globalvalues have been emitted by WriteModuleInfo.
1617   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1618     if (!isa<GlobalValue>(Vals[i].first)) {
1619       WriteConstants(i, Vals.size(), VE, Stream, true);
1620       return;
1621     }
1622   }
1623 }
1624
1625 /// PushValueAndType - The file has to encode both the value and type id for
1626 /// many values, because we need to know what type to create for forward
1627 /// references.  However, most operands are not forward references, so this type
1628 /// field is not needed.
1629 ///
1630 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1631 /// instruction ID, then it is a forward reference, and it also includes the
1632 /// type ID.  The value ID that is written is encoded relative to the InstID.
1633 static bool PushValueAndType(const Value *V, unsigned InstID,
1634                              SmallVectorImpl<unsigned> &Vals,
1635                              ValueEnumerator &VE) {
1636   unsigned ValID = VE.getValueID(V);
1637   // Make encoding relative to the InstID.
1638   Vals.push_back(InstID - ValID);
1639   if (ValID >= InstID) {
1640     Vals.push_back(VE.getTypeID(V->getType()));
1641     return true;
1642   }
1643   return false;
1644 }
1645
1646 /// pushValue - Like PushValueAndType, but where the type of the value is
1647 /// omitted (perhaps it was already encoded in an earlier operand).
1648 static void pushValue(const Value *V, unsigned InstID,
1649                       SmallVectorImpl<unsigned> &Vals,
1650                       ValueEnumerator &VE) {
1651   unsigned ValID = VE.getValueID(V);
1652   Vals.push_back(InstID - ValID);
1653 }
1654
1655 static void pushValueSigned(const Value *V, unsigned InstID,
1656                             SmallVectorImpl<uint64_t> &Vals,
1657                             ValueEnumerator &VE) {
1658   unsigned ValID = VE.getValueID(V);
1659   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1660   emitSignedInt64(Vals, diff);
1661 }
1662
1663 /// WriteInstruction - Emit an instruction to the specified stream.
1664 static void WriteInstruction(const Instruction &I, unsigned InstID,
1665                              ValueEnumerator &VE, BitstreamWriter &Stream,
1666                              SmallVectorImpl<unsigned> &Vals) {
1667   unsigned Code = 0;
1668   unsigned AbbrevToUse = 0;
1669   VE.setInstructionID(&I);
1670   switch (I.getOpcode()) {
1671   default:
1672     if (Instruction::isCast(I.getOpcode())) {
1673       Code = bitc::FUNC_CODE_INST_CAST;
1674       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1675         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1676       Vals.push_back(VE.getTypeID(I.getType()));
1677       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1678     } else {
1679       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1680       Code = bitc::FUNC_CODE_INST_BINOP;
1681       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1682         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1683       pushValue(I.getOperand(1), InstID, Vals, VE);
1684       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1685       uint64_t Flags = GetOptimizationFlags(&I);
1686       if (Flags != 0) {
1687         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1688           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1689         Vals.push_back(Flags);
1690       }
1691     }
1692     break;
1693
1694   case Instruction::GetElementPtr: {
1695     Code = bitc::FUNC_CODE_INST_GEP;
1696     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1697     auto &GEPInst = cast<GetElementPtrInst>(I);
1698     Vals.push_back(GEPInst.isInBounds());
1699     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1700     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1701       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1702     break;
1703   }
1704   case Instruction::ExtractValue: {
1705     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1706     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1707     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1708     Vals.append(EVI->idx_begin(), EVI->idx_end());
1709     break;
1710   }
1711   case Instruction::InsertValue: {
1712     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1713     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1714     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1715     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1716     Vals.append(IVI->idx_begin(), IVI->idx_end());
1717     break;
1718   }
1719   case Instruction::Select:
1720     Code = bitc::FUNC_CODE_INST_VSELECT;
1721     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1722     pushValue(I.getOperand(2), InstID, Vals, VE);
1723     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1724     break;
1725   case Instruction::ExtractElement:
1726     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1727     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1728     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1729     break;
1730   case Instruction::InsertElement:
1731     Code = bitc::FUNC_CODE_INST_INSERTELT;
1732     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1733     pushValue(I.getOperand(1), InstID, Vals, VE);
1734     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1735     break;
1736   case Instruction::ShuffleVector:
1737     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1738     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1739     pushValue(I.getOperand(1), InstID, Vals, VE);
1740     pushValue(I.getOperand(2), InstID, Vals, VE);
1741     break;
1742   case Instruction::ICmp:
1743   case Instruction::FCmp:
1744     // compare returning Int1Ty or vector of Int1Ty
1745     Code = bitc::FUNC_CODE_INST_CMP2;
1746     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1747     pushValue(I.getOperand(1), InstID, Vals, VE);
1748     Vals.push_back(cast<CmpInst>(I).getPredicate());
1749     break;
1750
1751   case Instruction::Ret:
1752     {
1753       Code = bitc::FUNC_CODE_INST_RET;
1754       unsigned NumOperands = I.getNumOperands();
1755       if (NumOperands == 0)
1756         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1757       else if (NumOperands == 1) {
1758         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1759           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1760       } else {
1761         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1762           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1763       }
1764     }
1765     break;
1766   case Instruction::Br:
1767     {
1768       Code = bitc::FUNC_CODE_INST_BR;
1769       const BranchInst &II = cast<BranchInst>(I);
1770       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1771       if (II.isConditional()) {
1772         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1773         pushValue(II.getCondition(), InstID, Vals, VE);
1774       }
1775     }
1776     break;
1777   case Instruction::Switch:
1778     {
1779       Code = bitc::FUNC_CODE_INST_SWITCH;
1780       const SwitchInst &SI = cast<SwitchInst>(I);
1781       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1782       pushValue(SI.getCondition(), InstID, Vals, VE);
1783       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1784       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1785            i != e; ++i) {
1786         Vals.push_back(VE.getValueID(i.getCaseValue()));
1787         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1788       }
1789     }
1790     break;
1791   case Instruction::IndirectBr:
1792     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1793     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1794     // Encode the address operand as relative, but not the basic blocks.
1795     pushValue(I.getOperand(0), InstID, Vals, VE);
1796     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1797       Vals.push_back(VE.getValueID(I.getOperand(i)));
1798     break;
1799
1800   case Instruction::Invoke: {
1801     const InvokeInst *II = cast<InvokeInst>(&I);
1802     const Value *Callee = II->getCalledValue();
1803     FunctionType *FTy = II->getFunctionType();
1804     Code = bitc::FUNC_CODE_INST_INVOKE;
1805
1806     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1807     Vals.push_back(II->getCallingConv() | 1 << 13);
1808     Vals.push_back(VE.getValueID(II->getNormalDest()));
1809     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1810     Vals.push_back(VE.getTypeID(FTy));
1811     PushValueAndType(Callee, InstID, Vals, VE);
1812
1813     // Emit value #'s for the fixed parameters.
1814     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1815       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1816
1817     // Emit type/value pairs for varargs params.
1818     if (FTy->isVarArg()) {
1819       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1820            i != e; ++i)
1821         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1822     }
1823     break;
1824   }
1825   case Instruction::Resume:
1826     Code = bitc::FUNC_CODE_INST_RESUME;
1827     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1828     break;
1829   case Instruction::Unreachable:
1830     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1831     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1832     break;
1833
1834   case Instruction::PHI: {
1835     const PHINode &PN = cast<PHINode>(I);
1836     Code = bitc::FUNC_CODE_INST_PHI;
1837     // With the newer instruction encoding, forward references could give
1838     // negative valued IDs.  This is most common for PHIs, so we use
1839     // signed VBRs.
1840     SmallVector<uint64_t, 128> Vals64;
1841     Vals64.push_back(VE.getTypeID(PN.getType()));
1842     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1843       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1844       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1845     }
1846     // Emit a Vals64 vector and exit.
1847     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1848     Vals64.clear();
1849     return;
1850   }
1851
1852   case Instruction::LandingPad: {
1853     const LandingPadInst &LP = cast<LandingPadInst>(I);
1854     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1855     Vals.push_back(VE.getTypeID(LP.getType()));
1856     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1857     Vals.push_back(LP.isCleanup());
1858     Vals.push_back(LP.getNumClauses());
1859     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1860       if (LP.isCatch(I))
1861         Vals.push_back(LandingPadInst::Catch);
1862       else
1863         Vals.push_back(LandingPadInst::Filter);
1864       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1865     }
1866     break;
1867   }
1868
1869   case Instruction::Alloca: {
1870     Code = bitc::FUNC_CODE_INST_ALLOCA;
1871     Vals.push_back(VE.getTypeID(I.getType()));
1872     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1873     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1874     const AllocaInst &AI = cast<AllocaInst>(I);
1875     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1876     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1877            "not enough bits for maximum alignment");
1878     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1879     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1880     Vals.push_back(AlignRecord);
1881     break;
1882   }
1883
1884   case Instruction::Load:
1885     if (cast<LoadInst>(I).isAtomic()) {
1886       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1887       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1888     } else {
1889       Code = bitc::FUNC_CODE_INST_LOAD;
1890       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1891         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1892     }
1893     Vals.push_back(VE.getTypeID(I.getType()));
1894     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1895     Vals.push_back(cast<LoadInst>(I).isVolatile());
1896     if (cast<LoadInst>(I).isAtomic()) {
1897       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1898       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1899     }
1900     break;
1901   case Instruction::Store:
1902     if (cast<StoreInst>(I).isAtomic())
1903       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1904     else
1905       Code = bitc::FUNC_CODE_INST_STORE;
1906     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1907     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
1908     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1909     Vals.push_back(cast<StoreInst>(I).isVolatile());
1910     if (cast<StoreInst>(I).isAtomic()) {
1911       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1912       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1913     }
1914     break;
1915   case Instruction::AtomicCmpXchg:
1916     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1917     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1918     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1919     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1920     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1921     Vals.push_back(GetEncodedOrdering(
1922                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1923     Vals.push_back(GetEncodedSynchScope(
1924                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1925     Vals.push_back(GetEncodedOrdering(
1926                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1927     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1928     break;
1929   case Instruction::AtomicRMW:
1930     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1931     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1932     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1933     Vals.push_back(GetEncodedRMWOperation(
1934                      cast<AtomicRMWInst>(I).getOperation()));
1935     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1936     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1937     Vals.push_back(GetEncodedSynchScope(
1938                      cast<AtomicRMWInst>(I).getSynchScope()));
1939     break;
1940   case Instruction::Fence:
1941     Code = bitc::FUNC_CODE_INST_FENCE;
1942     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1943     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1944     break;
1945   case Instruction::Call: {
1946     const CallInst &CI = cast<CallInst>(I);
1947     FunctionType *FTy = CI.getFunctionType();
1948
1949     Code = bitc::FUNC_CODE_INST_CALL;
1950
1951     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1952     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1953                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
1954     Vals.push_back(VE.getTypeID(FTy));
1955     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1956
1957     // Emit value #'s for the fixed parameters.
1958     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1959       // Check for labels (can happen with asm labels).
1960       if (FTy->getParamType(i)->isLabelTy())
1961         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1962       else
1963         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1964     }
1965
1966     // Emit type/value pairs for varargs params.
1967     if (FTy->isVarArg()) {
1968       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1969            i != e; ++i)
1970         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1971     }
1972     break;
1973   }
1974   case Instruction::VAArg:
1975     Code = bitc::FUNC_CODE_INST_VAARG;
1976     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1977     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1978     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1979     break;
1980   }
1981
1982   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1983   Vals.clear();
1984 }
1985
1986 // Emit names for globals/functions etc.
1987 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1988                                   const ValueEnumerator &VE,
1989                                   BitstreamWriter &Stream) {
1990   if (VST.empty()) return;
1991   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1992
1993   // FIXME: Set up the abbrev, we know how many values there are!
1994   // FIXME: We know if the type names can use 7-bit ascii.
1995   SmallVector<unsigned, 64> NameVals;
1996
1997   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1998        SI != SE; ++SI) {
1999
2000     const ValueName &Name = *SI;
2001
2002     // Figure out the encoding to use for the name.
2003     bool is7Bit = true;
2004     bool isChar6 = true;
2005     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
2006          C != E; ++C) {
2007       if (isChar6)
2008         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2009       if ((unsigned char)*C & 128) {
2010         is7Bit = false;
2011         break;  // don't bother scanning the rest.
2012       }
2013     }
2014
2015     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2016
2017     // VST_ENTRY:   [valueid, namechar x N]
2018     // VST_BBENTRY: [bbid, namechar x N]
2019     unsigned Code;
2020     if (isa<BasicBlock>(SI->getValue())) {
2021       Code = bitc::VST_CODE_BBENTRY;
2022       if (isChar6)
2023         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2024     } else {
2025       Code = bitc::VST_CODE_ENTRY;
2026       if (isChar6)
2027         AbbrevToUse = VST_ENTRY_6_ABBREV;
2028       else if (is7Bit)
2029         AbbrevToUse = VST_ENTRY_7_ABBREV;
2030     }
2031
2032     NameVals.push_back(VE.getValueID(SI->getValue()));
2033     for (const char *P = Name.getKeyData(),
2034          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
2035       NameVals.push_back((unsigned char)*P);
2036
2037     // Emit the finished record.
2038     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2039     NameVals.clear();
2040   }
2041   Stream.ExitBlock();
2042 }
2043
2044 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2045                          BitstreamWriter &Stream) {
2046   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2047   unsigned Code;
2048   if (isa<BasicBlock>(Order.V))
2049     Code = bitc::USELIST_CODE_BB;
2050   else
2051     Code = bitc::USELIST_CODE_DEFAULT;
2052
2053   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2054   Record.push_back(VE.getValueID(Order.V));
2055   Stream.EmitRecord(Code, Record);
2056 }
2057
2058 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2059                               BitstreamWriter &Stream) {
2060   assert(VE.shouldPreserveUseListOrder() &&
2061          "Expected to be preserving use-list order");
2062
2063   auto hasMore = [&]() {
2064     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2065   };
2066   if (!hasMore())
2067     // Nothing to do.
2068     return;
2069
2070   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2071   while (hasMore()) {
2072     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2073     VE.UseListOrders.pop_back();
2074   }
2075   Stream.ExitBlock();
2076 }
2077
2078 /// WriteFunction - Emit a function body to the module stream.
2079 static void WriteFunction(const Function &F, ValueEnumerator &VE,
2080                           BitstreamWriter &Stream) {
2081   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2082   VE.incorporateFunction(F);
2083
2084   SmallVector<unsigned, 64> Vals;
2085
2086   // Emit the number of basic blocks, so the reader can create them ahead of
2087   // time.
2088   Vals.push_back(VE.getBasicBlocks().size());
2089   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2090   Vals.clear();
2091
2092   // If there are function-local constants, emit them now.
2093   unsigned CstStart, CstEnd;
2094   VE.getFunctionConstantRange(CstStart, CstEnd);
2095   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2096
2097   // If there is function-local metadata, emit it now.
2098   WriteFunctionLocalMetadata(F, VE, Stream);
2099
2100   // Keep a running idea of what the instruction ID is.
2101   unsigned InstID = CstEnd;
2102
2103   bool NeedsMetadataAttachment = F.hasMetadata();
2104
2105   MDLocation *LastDL = nullptr;
2106
2107   // Finally, emit all the instructions, in order.
2108   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2109     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2110          I != E; ++I) {
2111       WriteInstruction(*I, InstID, VE, Stream, Vals);
2112
2113       if (!I->getType()->isVoidTy())
2114         ++InstID;
2115
2116       // If the instruction has metadata, write a metadata attachment later.
2117       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2118
2119       // If the instruction has a debug location, emit it.
2120       MDLocation *DL = I->getDebugLoc();
2121       if (!DL)
2122         continue;
2123
2124       if (DL == LastDL) {
2125         // Just repeat the same debug loc as last time.
2126         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2127         continue;
2128       }
2129
2130       Vals.push_back(DL->getLine());
2131       Vals.push_back(DL->getColumn());
2132       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2133       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2134       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2135       Vals.clear();
2136     }
2137
2138   // Emit names for all the instructions etc.
2139   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2140
2141   if (NeedsMetadataAttachment)
2142     WriteMetadataAttachment(F, VE, Stream);
2143   if (VE.shouldPreserveUseListOrder())
2144     WriteUseListBlock(&F, VE, Stream);
2145   VE.purgeFunction();
2146   Stream.ExitBlock();
2147 }
2148
2149 // Emit blockinfo, which defines the standard abbreviations etc.
2150 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2151   // We only want to emit block info records for blocks that have multiple
2152   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2153   // Other blocks can define their abbrevs inline.
2154   Stream.EnterBlockInfoBlock(2);
2155
2156   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2157     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2162     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2163                                    Abbv) != VST_ENTRY_8_ABBREV)
2164       llvm_unreachable("Unexpected abbrev ordering!");
2165   }
2166
2167   { // 7-bit fixed width VST_ENTRY strings.
2168     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2169     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2170     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2171     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2173     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2174                                    Abbv) != VST_ENTRY_7_ABBREV)
2175       llvm_unreachable("Unexpected abbrev ordering!");
2176   }
2177   { // 6-bit char6 VST_ENTRY strings.
2178     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2179     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2183     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2184                                    Abbv) != VST_ENTRY_6_ABBREV)
2185       llvm_unreachable("Unexpected abbrev ordering!");
2186   }
2187   { // 6-bit char6 VST_BBENTRY strings.
2188     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2189     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2193     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2194                                    Abbv) != VST_BBENTRY_6_ABBREV)
2195       llvm_unreachable("Unexpected abbrev ordering!");
2196   }
2197
2198
2199
2200   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2201     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2202     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2204                               VE.computeBitsRequiredForTypeIndicies()));
2205     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2206                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2207       llvm_unreachable("Unexpected abbrev ordering!");
2208   }
2209
2210   { // INTEGER abbrev for CONSTANTS_BLOCK.
2211     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2212     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2214     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2215                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2216       llvm_unreachable("Unexpected abbrev ordering!");
2217   }
2218
2219   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2220     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2221     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2224                               VE.computeBitsRequiredForTypeIndicies()));
2225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2226
2227     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2228                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2229       llvm_unreachable("Unexpected abbrev ordering!");
2230   }
2231   { // NULL abbrev for CONSTANTS_BLOCK.
2232     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2233     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2234     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2235                                    Abbv) != CONSTANTS_NULL_Abbrev)
2236       llvm_unreachable("Unexpected abbrev ordering!");
2237   }
2238
2239   // FIXME: This should only use space for first class types!
2240
2241   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2242     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2243     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2246                               VE.computeBitsRequiredForTypeIndicies()));
2247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2249     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2250                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2251       llvm_unreachable("Unexpected abbrev ordering!");
2252   }
2253   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2254     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2255     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2256     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2259     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2260                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2261       llvm_unreachable("Unexpected abbrev ordering!");
2262   }
2263   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2264     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2265     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2266     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2270     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2271                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2272       llvm_unreachable("Unexpected abbrev ordering!");
2273   }
2274   { // INST_CAST abbrev for FUNCTION_BLOCK.
2275     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2276     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2279                               VE.computeBitsRequiredForTypeIndicies()));
2280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2281     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2282                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2283       llvm_unreachable("Unexpected abbrev ordering!");
2284   }
2285
2286   { // INST_RET abbrev for FUNCTION_BLOCK.
2287     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2288     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2289     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2290                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2291       llvm_unreachable("Unexpected abbrev ordering!");
2292   }
2293   { // INST_RET abbrev for FUNCTION_BLOCK.
2294     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2295     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2297     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2298                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2299       llvm_unreachable("Unexpected abbrev ordering!");
2300   }
2301   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2302     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2303     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2304     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2305                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2306       llvm_unreachable("Unexpected abbrev ordering!");
2307   }
2308   {
2309     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2310     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2313                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2314     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2315     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2316     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2317         FUNCTION_INST_GEP_ABBREV)
2318       llvm_unreachable("Unexpected abbrev ordering!");
2319   }
2320
2321   Stream.ExitBlock();
2322 }
2323
2324 /// WriteModule - Emit the specified module to the bitstream.
2325 static void WriteModule(const Module *M, BitstreamWriter &Stream,
2326                         bool ShouldPreserveUseListOrder) {
2327   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2328
2329   SmallVector<unsigned, 1> Vals;
2330   unsigned CurVersion = 1;
2331   Vals.push_back(CurVersion);
2332   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2333
2334   // Analyze the module, enumerating globals, functions, etc.
2335   ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2336
2337   // Emit blockinfo, which defines the standard abbreviations etc.
2338   WriteBlockInfo(VE, Stream);
2339
2340   // Emit information about attribute groups.
2341   WriteAttributeGroupTable(VE, Stream);
2342
2343   // Emit information about parameter attributes.
2344   WriteAttributeTable(VE, Stream);
2345
2346   // Emit information describing all of the types in the module.
2347   WriteTypeTable(VE, Stream);
2348
2349   writeComdats(VE, Stream);
2350
2351   // Emit top-level description of module, including target triple, inline asm,
2352   // descriptors for global variables, and function prototype info.
2353   WriteModuleInfo(M, VE, Stream);
2354
2355   // Emit constants.
2356   WriteModuleConstants(VE, Stream);
2357
2358   // Emit metadata.
2359   WriteModuleMetadata(M, VE, Stream);
2360
2361   // Emit metadata.
2362   WriteModuleMetadataStore(M, Stream);
2363
2364   // Emit names for globals/functions etc.
2365   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2366
2367   // Emit module-level use-lists.
2368   if (VE.shouldPreserveUseListOrder())
2369     WriteUseListBlock(nullptr, VE, Stream);
2370
2371   // Emit function bodies.
2372   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2373     if (!F->isDeclaration())
2374       WriteFunction(*F, VE, Stream);
2375
2376   Stream.ExitBlock();
2377 }
2378
2379 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2380 /// header and trailer to make it compatible with the system archiver.  To do
2381 /// this we emit the following header, and then emit a trailer that pads the
2382 /// file out to be a multiple of 16 bytes.
2383 ///
2384 /// struct bc_header {
2385 ///   uint32_t Magic;         // 0x0B17C0DE
2386 ///   uint32_t Version;       // Version, currently always 0.
2387 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2388 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2389 ///   uint32_t CPUType;       // CPU specifier.
2390 ///   ... potentially more later ...
2391 /// };
2392 enum {
2393   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2394   DarwinBCHeaderSize = 5*4
2395 };
2396
2397 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2398                                uint32_t &Position) {
2399   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2400   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2401   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2402   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2403   Position += 4;
2404 }
2405
2406 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2407                                          const Triple &TT) {
2408   unsigned CPUType = ~0U;
2409
2410   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2411   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2412   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2413   // specific constants here because they are implicitly part of the Darwin ABI.
2414   enum {
2415     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2416     DARWIN_CPU_TYPE_X86        = 7,
2417     DARWIN_CPU_TYPE_ARM        = 12,
2418     DARWIN_CPU_TYPE_POWERPC    = 18
2419   };
2420
2421   Triple::ArchType Arch = TT.getArch();
2422   if (Arch == Triple::x86_64)
2423     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2424   else if (Arch == Triple::x86)
2425     CPUType = DARWIN_CPU_TYPE_X86;
2426   else if (Arch == Triple::ppc)
2427     CPUType = DARWIN_CPU_TYPE_POWERPC;
2428   else if (Arch == Triple::ppc64)
2429     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2430   else if (Arch == Triple::arm || Arch == Triple::thumb)
2431     CPUType = DARWIN_CPU_TYPE_ARM;
2432
2433   // Traditional Bitcode starts after header.
2434   assert(Buffer.size() >= DarwinBCHeaderSize &&
2435          "Expected header size to be reserved");
2436   unsigned BCOffset = DarwinBCHeaderSize;
2437   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2438
2439   // Write the magic and version.
2440   unsigned Position = 0;
2441   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2442   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2443   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2444   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2445   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2446
2447   // If the file is not a multiple of 16 bytes, insert dummy padding.
2448   while (Buffer.size() & 15)
2449     Buffer.push_back(0);
2450 }
2451
2452 /// WriteBitcodeToFile - Write the specified module to the specified output
2453 /// stream.
2454 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
2455                               bool ShouldPreserveUseListOrder) {
2456   SmallVector<char, 0> Buffer;
2457   Buffer.reserve(256*1024);
2458
2459   // If this is darwin or another generic macho target, reserve space for the
2460   // header.
2461   Triple TT(M->getTargetTriple());
2462   if (TT.isOSDarwin())
2463     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2464
2465   // Emit the module into the buffer.
2466   {
2467     BitstreamWriter Stream(Buffer);
2468
2469     // Emit the file header.
2470     Stream.Emit((unsigned)'B', 8);
2471     Stream.Emit((unsigned)'C', 8);
2472     Stream.Emit(0x0, 4);
2473     Stream.Emit(0xC, 4);
2474     Stream.Emit(0xE, 4);
2475     Stream.Emit(0xD, 4);
2476
2477     // Emit the module.
2478     WriteModule(M, Stream, ShouldPreserveUseListOrder);
2479   }
2480
2481   if (TT.isOSDarwin())
2482     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2483
2484   // Write the generated bitstream to "Out".
2485   Out.write((char*)&Buffer.front(), Buffer.size());
2486 }