further reduce the redundancy of types in the instruction encoding. This
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ParameterAttributes.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 /// These are manifest constants used by the bitcode writer. They do not need to
29 /// be kept in sync with the reader, but need to be consistent within this file.
30 enum {
31   CurVersion = 0,
32   
33   // VALUE_SYMTAB_BLOCK abbrev id's.
34   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
35   VST_ENTRY_7_ABBREV,
36   VST_ENTRY_6_ABBREV,
37   VST_BBENTRY_6_ABBREV,
38   
39   // CONSTANTS_BLOCK abbrev id's.
40   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   CONSTANTS_INTEGER_ABBREV,
42   CONSTANTS_CE_CAST_Abbrev,
43   CONSTANTS_NULL_Abbrev,
44   
45   // FUNCTION_BLOCK abbrev id's.
46   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV
47 };
48
49
50 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
51   switch (Opcode) {
52   default: assert(0 && "Unknown cast instruction!");
53   case Instruction::Trunc   : return bitc::CAST_TRUNC;
54   case Instruction::ZExt    : return bitc::CAST_ZEXT;
55   case Instruction::SExt    : return bitc::CAST_SEXT;
56   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
57   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
58   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
59   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
60   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
61   case Instruction::FPExt   : return bitc::CAST_FPEXT;
62   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
63   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
64   case Instruction::BitCast : return bitc::CAST_BITCAST;
65   }
66 }
67
68 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
69   switch (Opcode) {
70   default: assert(0 && "Unknown binary instruction!");
71   case Instruction::Add:  return bitc::BINOP_ADD;
72   case Instruction::Sub:  return bitc::BINOP_SUB;
73   case Instruction::Mul:  return bitc::BINOP_MUL;
74   case Instruction::UDiv: return bitc::BINOP_UDIV;
75   case Instruction::FDiv:
76   case Instruction::SDiv: return bitc::BINOP_SDIV;
77   case Instruction::URem: return bitc::BINOP_UREM;
78   case Instruction::FRem:
79   case Instruction::SRem: return bitc::BINOP_SREM;
80   case Instruction::Shl:  return bitc::BINOP_SHL;
81   case Instruction::LShr: return bitc::BINOP_LSHR;
82   case Instruction::AShr: return bitc::BINOP_ASHR;
83   case Instruction::And:  return bitc::BINOP_AND;
84   case Instruction::Or:   return bitc::BINOP_OR;
85   case Instruction::Xor:  return bitc::BINOP_XOR;
86   }
87 }
88
89
90
91 static void WriteStringRecord(unsigned Code, const std::string &Str, 
92                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
93   SmallVector<unsigned, 64> Vals;
94   
95   // Code: [strchar x N]
96   for (unsigned i = 0, e = Str.size(); i != e; ++i)
97     Vals.push_back(Str[i]);
98     
99   // Emit the finished record.
100   Stream.EmitRecord(Code, Vals, AbbrevToUse);
101 }
102
103 // Emit information about parameter attributes.
104 static void WriteParamAttrTable(const ValueEnumerator &VE, 
105                                 BitstreamWriter &Stream) {
106   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
107   if (Attrs.empty()) return;
108   
109   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
110
111   SmallVector<uint64_t, 64> Record;
112   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
113     const ParamAttrsList *A = Attrs[i];
114     for (unsigned op = 0, e = A->size(); op != e; ++op) {
115       Record.push_back(A->getParamIndex(op));
116       Record.push_back(A->getParamAttrsAtIndex(op));
117     }
118     
119     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
120     Record.clear();
121   }
122   
123   Stream.ExitBlock();
124 }
125
126 /// WriteTypeTable - Write out the type table for a module.
127 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
128   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
129   
130   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
131   SmallVector<uint64_t, 64> TypeVals;
132   
133   // Abbrev for TYPE_CODE_POINTER.
134   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
135   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
136   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
137                             Log2_32_Ceil(VE.getTypes().size()+1)));
138   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
139   
140   // Abbrev for TYPE_CODE_FUNCTION.
141   Abbv = new BitCodeAbbrev();
142   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
143   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
144   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
145                             Log2_32_Ceil(VE.getParamAttrs().size()+1)));
146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
147   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
148                             Log2_32_Ceil(VE.getTypes().size()+1)));
149   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
150   
151   // Abbrev for TYPE_CODE_STRUCT.
152   Abbv = new BitCodeAbbrev();
153   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
156   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
157                             Log2_32_Ceil(VE.getTypes().size()+1)));
158   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
159  
160   // Abbrev for TYPE_CODE_ARRAY.
161   Abbv = new BitCodeAbbrev();
162   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
164   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
165                             Log2_32_Ceil(VE.getTypes().size()+1)));
166   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
167   
168   // Emit an entry count so the reader can reserve space.
169   TypeVals.push_back(TypeList.size());
170   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
171   TypeVals.clear();
172   
173   // Loop over all of the types, emitting each in turn.
174   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
175     const Type *T = TypeList[i].first;
176     int AbbrevToUse = 0;
177     unsigned Code = 0;
178     
179     switch (T->getTypeID()) {
180     case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
181     default: assert(0 && "Unknown type!");
182     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
183     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
184     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
185     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
186     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
187     case Type::IntegerTyID:
188       // INTEGER: [width]
189       Code = bitc::TYPE_CODE_INTEGER;
190       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
191       break;
192     case Type::PointerTyID:
193       // POINTER: [pointee type]
194       Code = bitc::TYPE_CODE_POINTER;
195       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
196       AbbrevToUse = PtrAbbrev;
197       break;
198
199     case Type::FunctionTyID: {
200       const FunctionType *FT = cast<FunctionType>(T);
201       // FUNCTION: [isvararg, attrid, retty, paramty x N]
202       Code = bitc::TYPE_CODE_FUNCTION;
203       TypeVals.push_back(FT->isVarArg());
204       TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
205       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
206       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
207         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
208       AbbrevToUse = FunctionAbbrev;
209       break;
210     }
211     case Type::StructTyID: {
212       const StructType *ST = cast<StructType>(T);
213       // STRUCT: [ispacked, eltty x N]
214       Code = bitc::TYPE_CODE_STRUCT;
215       TypeVals.push_back(ST->isPacked());
216       // Output all of the element types.
217       for (StructType::element_iterator I = ST->element_begin(),
218            E = ST->element_end(); I != E; ++I)
219         TypeVals.push_back(VE.getTypeID(*I));
220       AbbrevToUse = StructAbbrev;
221       break;
222     }
223     case Type::ArrayTyID: {
224       const ArrayType *AT = cast<ArrayType>(T);
225       // ARRAY: [numelts, eltty]
226       Code = bitc::TYPE_CODE_ARRAY;
227       TypeVals.push_back(AT->getNumElements());
228       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
229       AbbrevToUse = ArrayAbbrev;
230       break;
231     }
232     case Type::VectorTyID: {
233       const VectorType *VT = cast<VectorType>(T);
234       // VECTOR [numelts, eltty]
235       Code = bitc::TYPE_CODE_VECTOR;
236       TypeVals.push_back(VT->getNumElements());
237       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
238       break;
239     }
240     }
241
242     // Emit the finished record.
243     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
244     TypeVals.clear();
245   }
246   
247   Stream.ExitBlock();
248 }
249
250 static unsigned getEncodedLinkage(const GlobalValue *GV) {
251   switch (GV->getLinkage()) {
252   default: assert(0 && "Invalid linkage!");
253   case GlobalValue::ExternalLinkage:     return 0;
254   case GlobalValue::WeakLinkage:         return 1;
255   case GlobalValue::AppendingLinkage:    return 2;
256   case GlobalValue::InternalLinkage:     return 3;
257   case GlobalValue::LinkOnceLinkage:     return 4;
258   case GlobalValue::DLLImportLinkage:    return 5;
259   case GlobalValue::DLLExportLinkage:    return 6;
260   case GlobalValue::ExternalWeakLinkage: return 7;
261   }
262 }
263
264 static unsigned getEncodedVisibility(const GlobalValue *GV) {
265   switch (GV->getVisibility()) {
266   default: assert(0 && "Invalid visibility!");
267   case GlobalValue::DefaultVisibility:   return 0;
268   case GlobalValue::HiddenVisibility:    return 1;
269   case GlobalValue::ProtectedVisibility: return 2;
270   }
271 }
272
273 // Emit top-level description of module, including target triple, inline asm,
274 // descriptors for global variables, and function prototype info.
275 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
276                             BitstreamWriter &Stream) {
277   // Emit the list of dependent libraries for the Module.
278   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
279     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
280
281   // Emit various pieces of data attached to a module.
282   if (!M->getTargetTriple().empty())
283     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
284                       0/*TODO*/, Stream);
285   if (!M->getDataLayout().empty())
286     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
287                       0/*TODO*/, Stream);
288   if (!M->getModuleInlineAsm().empty())
289     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
290                       0/*TODO*/, Stream);
291
292   // Emit information about sections, computing how many there are.  Also
293   // compute the maximum alignment value.
294   std::map<std::string, unsigned> SectionMap;
295   unsigned MaxAlignment = 0;
296   unsigned MaxGlobalType = 0;
297   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
298        GV != E; ++GV) {
299     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
300     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
301     
302     if (!GV->hasSection()) continue;
303     // Give section names unique ID's.
304     unsigned &Entry = SectionMap[GV->getSection()];
305     if (Entry != 0) continue;
306     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
307                       0/*TODO*/, Stream);
308     Entry = SectionMap.size();
309   }
310   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
311     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
312     if (!F->hasSection()) continue;
313     // Give section names unique ID's.
314     unsigned &Entry = SectionMap[F->getSection()];
315     if (Entry != 0) continue;
316     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
317                       0/*TODO*/, Stream);
318     Entry = SectionMap.size();
319   }
320   
321   // Emit abbrev for globals, now that we know # sections and max alignment.
322   unsigned SimpleGVarAbbrev = 0;
323   if (!M->global_empty()) { 
324     // Add an abbrev for common globals with no visibility or thread localness.
325     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
326     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
327     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
328                               Log2_32_Ceil(MaxGlobalType+1)));
329     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
330     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
332     if (MaxAlignment == 0)                                      // Alignment.
333       Abbv->Add(BitCodeAbbrevOp(0));
334     else {
335       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
336       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
337                                Log2_32_Ceil(MaxEncAlignment+1)));
338     }
339     if (SectionMap.empty())                                    // Section.
340       Abbv->Add(BitCodeAbbrevOp(0));
341     else
342       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343                                Log2_32_Ceil(SectionMap.size()+1)));
344     // Don't bother emitting vis + thread local.
345     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
346   }
347   
348   // Emit the global variable information.
349   SmallVector<unsigned, 64> Vals;
350   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
351        GV != E; ++GV) {
352     unsigned AbbrevToUse = 0;
353
354     // GLOBALVAR: [type, isconst, initid, 
355     //             linkage, alignment, section, visibility, threadlocal]
356     Vals.push_back(VE.getTypeID(GV->getType()));
357     Vals.push_back(GV->isConstant());
358     Vals.push_back(GV->isDeclaration() ? 0 :
359                    (VE.getValueID(GV->getInitializer()) + 1));
360     Vals.push_back(getEncodedLinkage(GV));
361     Vals.push_back(Log2_32(GV->getAlignment())+1);
362     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
363     if (GV->isThreadLocal() || 
364         GV->getVisibility() != GlobalValue::DefaultVisibility) {
365       Vals.push_back(getEncodedVisibility(GV));
366       Vals.push_back(GV->isThreadLocal());
367     } else {
368       AbbrevToUse = SimpleGVarAbbrev;
369     }
370     
371     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
372     Vals.clear();
373   }
374
375   // Emit the function proto information.
376   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
377     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
378     //             visibility]
379     Vals.push_back(VE.getTypeID(F->getType()));
380     Vals.push_back(F->getCallingConv());
381     Vals.push_back(F->isDeclaration());
382     Vals.push_back(getEncodedLinkage(F));
383     Vals.push_back(Log2_32(F->getAlignment())+1);
384     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
385     Vals.push_back(getEncodedVisibility(F));
386     
387     unsigned AbbrevToUse = 0;
388     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
389     Vals.clear();
390   }
391   
392   
393   // Emit the alias information.
394   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
395        AI != E; ++AI) {
396     Vals.push_back(VE.getTypeID(AI->getType()));
397     Vals.push_back(VE.getValueID(AI->getAliasee()));
398     Vals.push_back(getEncodedLinkage(AI));
399     unsigned AbbrevToUse = 0;
400     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
401     Vals.clear();
402   }
403 }
404
405
406 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
407                            const ValueEnumerator &VE,
408                            BitstreamWriter &Stream, bool isGlobal) {
409   if (FirstVal == LastVal) return;
410   
411   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
412
413   unsigned AggregateAbbrev = 0;
414   unsigned GEPAbbrev = 0;
415   // If this is a constant pool for the module, emit module-specific abbrevs.
416   if (isGlobal) {
417     // Abbrev for CST_CODE_AGGREGATE.
418     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
419     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
420     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
421     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
422     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
423   }  
424   
425   // FIXME: Install and use abbrevs to reduce size.  Install them globally so
426   // they don't need to be reemitted for each function body.
427   
428   SmallVector<uint64_t, 64> Record;
429
430   const ValueEnumerator::ValueList &Vals = VE.getValues();
431   const Type *LastTy = 0;
432   for (unsigned i = FirstVal; i != LastVal; ++i) {
433     const Value *V = Vals[i].first;
434     // If we need to switch types, do so now.
435     if (V->getType() != LastTy) {
436       LastTy = V->getType();
437       Record.push_back(VE.getTypeID(LastTy));
438       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
439                         CONSTANTS_SETTYPE_ABBREV);
440       Record.clear();
441     }
442     
443     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
444       assert(0 && IA && "FIXME: Inline asm writing unimp!");
445       continue;
446     }
447     const Constant *C = cast<Constant>(V);
448     unsigned Code = -1U;
449     unsigned AbbrevToUse = 0;
450     if (C->isNullValue()) {
451       Code = bitc::CST_CODE_NULL;
452     } else if (isa<UndefValue>(C)) {
453       Code = bitc::CST_CODE_UNDEF;
454     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
455       if (IV->getBitWidth() <= 64) {
456         int64_t V = IV->getSExtValue();
457         if (V >= 0)
458           Record.push_back(V << 1);
459         else
460           Record.push_back((-V << 1) | 1);
461         Code = bitc::CST_CODE_INTEGER;
462         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
463       } else {                             // Wide integers, > 64 bits in size.
464         // We have an arbitrary precision integer value to write whose 
465         // bit width is > 64. However, in canonical unsigned integer 
466         // format it is likely that the high bits are going to be zero.
467         // So, we only write the number of active words.
468         unsigned NWords = IV->getValue().getActiveWords(); 
469         const uint64_t *RawWords = IV->getValue().getRawData();
470         for (unsigned i = 0; i != NWords; ++i) {
471           int64_t V = RawWords[i];
472           if (V >= 0)
473             Record.push_back(V << 1);
474           else
475             Record.push_back((-V << 1) | 1);
476         }
477         Code = bitc::CST_CODE_WIDE_INTEGER;
478       }
479     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
480       Code = bitc::CST_CODE_FLOAT;
481       if (CFP->getType() == Type::FloatTy) {
482         Record.push_back(FloatToBits((float)CFP->getValue()));
483       } else {
484         assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
485         Record.push_back(DoubleToBits((double)CFP->getValue()));
486       }
487     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
488                isa<ConstantVector>(V)) {
489       Code = bitc::CST_CODE_AGGREGATE;
490       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
491         Record.push_back(VE.getValueID(C->getOperand(i)));
492       AbbrevToUse = AggregateAbbrev;
493     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
494       switch (CE->getOpcode()) {
495       default:
496         if (Instruction::isCast(CE->getOpcode())) {
497           Code = bitc::CST_CODE_CE_CAST;
498           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
499           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
500           Record.push_back(VE.getValueID(C->getOperand(0)));
501           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
502         } else {
503           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
504           Code = bitc::CST_CODE_CE_BINOP;
505           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
506           Record.push_back(VE.getValueID(C->getOperand(0)));
507           Record.push_back(VE.getValueID(C->getOperand(1)));
508         }
509         break;
510       case Instruction::GetElementPtr:
511         Code = bitc::CST_CODE_CE_GEP;
512         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
513           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
514           Record.push_back(VE.getValueID(C->getOperand(i)));
515         }
516         AbbrevToUse = GEPAbbrev;
517         break;
518       case Instruction::Select:
519         Code = bitc::CST_CODE_CE_SELECT;
520         Record.push_back(VE.getValueID(C->getOperand(0)));
521         Record.push_back(VE.getValueID(C->getOperand(1)));
522         Record.push_back(VE.getValueID(C->getOperand(2)));
523         break;
524       case Instruction::ExtractElement:
525         Code = bitc::CST_CODE_CE_EXTRACTELT;
526         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
527         Record.push_back(VE.getValueID(C->getOperand(0)));
528         Record.push_back(VE.getValueID(C->getOperand(1)));
529         break;
530       case Instruction::InsertElement:
531         Code = bitc::CST_CODE_CE_INSERTELT;
532         Record.push_back(VE.getValueID(C->getOperand(0)));
533         Record.push_back(VE.getValueID(C->getOperand(1)));
534         Record.push_back(VE.getValueID(C->getOperand(2)));
535         break;
536       case Instruction::ShuffleVector:
537         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
538         Record.push_back(VE.getValueID(C->getOperand(0)));
539         Record.push_back(VE.getValueID(C->getOperand(1)));
540         Record.push_back(VE.getValueID(C->getOperand(2)));
541         break;
542       case Instruction::ICmp:
543       case Instruction::FCmp:
544         Code = bitc::CST_CODE_CE_CMP;
545         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
546         Record.push_back(VE.getValueID(C->getOperand(0)));
547         Record.push_back(VE.getValueID(C->getOperand(1)));
548         Record.push_back(CE->getPredicate());
549         break;
550       }
551     } else {
552       assert(0 && "Unknown constant!");
553     }
554     Stream.EmitRecord(Code, Record, AbbrevToUse);
555     Record.clear();
556   }
557
558   Stream.ExitBlock();
559 }
560
561 static void WriteModuleConstants(const ValueEnumerator &VE,
562                                  BitstreamWriter &Stream) {
563   const ValueEnumerator::ValueList &Vals = VE.getValues();
564   
565   // Find the first constant to emit, which is the first non-globalvalue value.
566   // We know globalvalues have been emitted by WriteModuleInfo.
567   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
568     if (!isa<GlobalValue>(Vals[i].first)) {
569       WriteConstants(i, Vals.size(), VE, Stream, true);
570       return;
571     }
572   }
573 }
574
575 /// PushValueAndType - The file has to encode both the value and type id for
576 /// many values, because we need to know what type to create for forward
577 /// references.  However, most operands are not forward references, so this type
578 /// field is not needed.
579 ///
580 /// This function adds V's value ID to Vals.  If the value ID is higher than the
581 /// instruction ID, then it is a forward reference, and it also includes the
582 /// type ID.
583 static bool PushValueAndType(Value *V, unsigned InstID,
584                              SmallVector<unsigned, 64> &Vals, 
585                              ValueEnumerator &VE) {
586   unsigned ValID = VE.getValueID(V);
587   Vals.push_back(ValID);
588   if (ValID >= InstID) {
589     Vals.push_back(VE.getTypeID(V->getType()));
590     return true;
591   }
592   return false;
593 }
594
595 /// WriteInstruction - Emit an instruction to the specified stream.
596 static void WriteInstruction(const Instruction &I, unsigned InstID,
597                              ValueEnumerator &VE, BitstreamWriter &Stream,
598                              SmallVector<unsigned, 64> &Vals) {
599   unsigned Code = 0;
600   unsigned AbbrevToUse = 0;
601   switch (I.getOpcode()) {
602   default:
603     if (Instruction::isCast(I.getOpcode())) {
604       Code = bitc::FUNC_CODE_INST_CAST;
605       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
606       Vals.push_back(VE.getTypeID(I.getType()));
607       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
608     } else {
609       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
610       Code = bitc::FUNC_CODE_INST_BINOP;
611       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
612       Vals.push_back(VE.getValueID(I.getOperand(1)));
613       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
614     }
615     break;
616
617   case Instruction::GetElementPtr:
618     Code = bitc::FUNC_CODE_INST_GEP;
619     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
620       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
621     break;
622   case Instruction::Select:
623     Code = bitc::FUNC_CODE_INST_SELECT;
624     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
625     Vals.push_back(VE.getValueID(I.getOperand(2)));
626     Vals.push_back(VE.getValueID(I.getOperand(0)));
627     break;
628   case Instruction::ExtractElement:
629     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
630     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
631     Vals.push_back(VE.getValueID(I.getOperand(1)));
632     break;
633   case Instruction::InsertElement:
634     Code = bitc::FUNC_CODE_INST_INSERTELT;
635     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
636     Vals.push_back(VE.getValueID(I.getOperand(1)));
637     Vals.push_back(VE.getValueID(I.getOperand(2)));
638     break;
639   case Instruction::ShuffleVector:
640     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
641     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
642     Vals.push_back(VE.getValueID(I.getOperand(1)));
643     Vals.push_back(VE.getValueID(I.getOperand(2)));
644     break;
645   case Instruction::ICmp:
646   case Instruction::FCmp:
647     Code = bitc::FUNC_CODE_INST_CMP;
648     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
649     Vals.push_back(VE.getValueID(I.getOperand(1)));
650     Vals.push_back(cast<CmpInst>(I).getPredicate());
651     break;
652
653   case Instruction::Ret:
654     Code = bitc::FUNC_CODE_INST_RET;
655     if (I.getNumOperands())
656       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
657     break;
658   case Instruction::Br:
659     Code = bitc::FUNC_CODE_INST_BR;
660     Vals.push_back(VE.getValueID(I.getOperand(0)));
661     if (cast<BranchInst>(I).isConditional()) {
662       Vals.push_back(VE.getValueID(I.getOperand(1)));
663       Vals.push_back(VE.getValueID(I.getOperand(2)));
664     }
665     break;
666   case Instruction::Switch:
667     Code = bitc::FUNC_CODE_INST_SWITCH;
668     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
669     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
670       Vals.push_back(VE.getValueID(I.getOperand(i)));
671     break;
672   case Instruction::Invoke: {
673     Code = bitc::FUNC_CODE_INST_INVOKE;
674     Vals.push_back(cast<InvokeInst>(I).getCallingConv());
675     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
676     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
677     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
678     
679     // Emit value #'s for the fixed parameters.
680     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
681     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
682     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
683       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
684
685     // Emit type/value pairs for varargs params.
686     if (FTy->isVarArg()) {
687       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
688            i != e; ++i)
689         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
690     }
691     break;
692   }
693   case Instruction::Unwind:
694     Code = bitc::FUNC_CODE_INST_UNWIND;
695     break;
696   case Instruction::Unreachable:
697     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
698     break;
699   
700   case Instruction::PHI:
701     Code = bitc::FUNC_CODE_INST_PHI;
702     Vals.push_back(VE.getTypeID(I.getType()));
703     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
704       Vals.push_back(VE.getValueID(I.getOperand(i)));
705     break;
706     
707   case Instruction::Malloc:
708     Code = bitc::FUNC_CODE_INST_MALLOC;
709     Vals.push_back(VE.getTypeID(I.getType()));
710     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
711     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
712     break;
713     
714   case Instruction::Free:
715     Code = bitc::FUNC_CODE_INST_FREE;
716     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
717     break;
718     
719   case Instruction::Alloca:
720     Code = bitc::FUNC_CODE_INST_ALLOCA;
721     Vals.push_back(VE.getTypeID(I.getType()));
722     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
723     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
724     break;
725     
726   case Instruction::Load:
727     Code = bitc::FUNC_CODE_INST_LOAD;
728     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
729       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
730       
731     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
732     Vals.push_back(cast<LoadInst>(I).isVolatile());
733     break;
734   case Instruction::Store:
735     Code = bitc::FUNC_CODE_INST_STORE;
736     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
737     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
738     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
739     Vals.push_back(cast<StoreInst>(I).isVolatile());
740     break;
741   case Instruction::Call: {
742     Code = bitc::FUNC_CODE_INST_CALL;
743     Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
744                    cast<CallInst>(I).isTailCall());
745     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // Callee
746     
747     // Emit value #'s for the fixed parameters.
748     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
749     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
750     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
751       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
752       
753     // Emit type/value pairs for varargs params.
754     if (FTy->isVarArg()) {
755       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
756       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
757            i != e; ++i)
758         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
759     }
760     break;
761   }
762   case Instruction::VAArg:
763     Code = bitc::FUNC_CODE_INST_VAARG;
764     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
765     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
766     Vals.push_back(VE.getTypeID(I.getType())); // restype.
767     break;
768   }
769   
770   Stream.EmitRecord(Code, Vals, AbbrevToUse);
771   Vals.clear();
772 }
773
774 // Emit names for globals/functions etc.
775 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
776                                   const ValueEnumerator &VE,
777                                   BitstreamWriter &Stream) {
778   if (VST.empty()) return;
779   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
780
781   // FIXME: Set up the abbrev, we know how many values there are!
782   // FIXME: We know if the type names can use 7-bit ascii.
783   SmallVector<unsigned, 64> NameVals;
784   
785   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
786        SI != SE; ++SI) {
787     
788     const ValueName &Name = *SI;
789     
790     // Figure out the encoding to use for the name.
791     bool is7Bit = true;
792     bool isChar6 = true;
793     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
794          C != E; ++C) {
795       if (isChar6) 
796         isChar6 = BitCodeAbbrevOp::isChar6(*C);
797       if ((unsigned char)*C & 128) {
798         is7Bit = false;
799         break;  // don't bother scanning the rest.
800       }
801     }
802     
803     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
804     
805     // VST_ENTRY:   [valueid, namechar x N]
806     // VST_BBENTRY: [bbid, namechar x N]
807     unsigned Code;
808     if (isa<BasicBlock>(SI->getValue())) {
809       Code = bitc::VST_CODE_BBENTRY;
810       if (isChar6)
811         AbbrevToUse = VST_BBENTRY_6_ABBREV;
812     } else {
813       Code = bitc::VST_CODE_ENTRY;
814       if (isChar6)
815         AbbrevToUse = VST_ENTRY_6_ABBREV;
816       else if (is7Bit)
817         AbbrevToUse = VST_ENTRY_7_ABBREV;
818     }
819     
820     NameVals.push_back(VE.getValueID(SI->getValue()));
821     for (const char *P = Name.getKeyData(),
822          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
823       NameVals.push_back((unsigned char)*P);
824     
825     // Emit the finished record.
826     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
827     NameVals.clear();
828   }
829   Stream.ExitBlock();
830 }
831
832 /// WriteFunction - Emit a function body to the module stream.
833 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
834                           BitstreamWriter &Stream) {
835   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3);
836   VE.incorporateFunction(F);
837
838   SmallVector<unsigned, 64> Vals;
839   
840   // Emit the number of basic blocks, so the reader can create them ahead of
841   // time.
842   Vals.push_back(VE.getBasicBlocks().size());
843   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
844   Vals.clear();
845   
846   // FIXME: Function attributes?
847   
848   // If there are function-local constants, emit them now.
849   unsigned CstStart, CstEnd;
850   VE.getFunctionConstantRange(CstStart, CstEnd);
851   WriteConstants(CstStart, CstEnd, VE, Stream, false);
852   
853   // Keep a running idea of what the instruction ID is. 
854   unsigned InstID = CstEnd;
855   
856   // Finally, emit all the instructions, in order.
857   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
858     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
859          I != E; ++I) {
860       WriteInstruction(*I, InstID, VE, Stream, Vals);
861       if (I->getType() != Type::VoidTy)
862         ++InstID;
863     }
864   
865   // Emit names for all the instructions etc.
866   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
867     
868   VE.purgeFunction();
869   Stream.ExitBlock();
870 }
871
872 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
873 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
874                                  const ValueEnumerator &VE,
875                                  BitstreamWriter &Stream) {
876   if (TST.empty()) return;
877   
878   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
879   
880   // 7-bit fixed width VST_CODE_ENTRY strings.
881   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
882   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
883   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
884                             Log2_32_Ceil(VE.getTypes().size()+1)));
885   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
886   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
887   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
888   
889   SmallVector<unsigned, 64> NameVals;
890   
891   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
892        TI != TE; ++TI) {
893     // TST_ENTRY: [typeid, namechar x N]
894     NameVals.push_back(VE.getTypeID(TI->second));
895     
896     const std::string &Str = TI->first;
897     bool is7Bit = true;
898     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
899       NameVals.push_back((unsigned char)Str[i]);
900       if (Str[i] & 128)
901         is7Bit = false;
902     }
903     
904     // Emit the finished record.
905     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
906     NameVals.clear();
907   }
908   
909   Stream.ExitBlock();
910 }
911
912 // Emit blockinfo, which defines the standard abbreviations etc.
913 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
914   // We only want to emit block info records for blocks that have multiple
915   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
916   // blocks can defined their abbrevs inline.
917   Stream.EnterBlockInfoBlock(2);
918   
919   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
920     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
921     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
922     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
923     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
925     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
926                                    Abbv) != VST_ENTRY_8_ABBREV)
927       assert(0 && "Unexpected abbrev ordering!");
928   }
929   
930   { // 7-bit fixed width VST_ENTRY strings.
931     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
932     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
933     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
934     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
935     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
936     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
937                                    Abbv) != VST_ENTRY_7_ABBREV)
938       assert(0 && "Unexpected abbrev ordering!");
939   }
940   { // 6-bit char6 VST_ENTRY strings.
941     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
942     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
943     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
944     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
946     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
947                                    Abbv) != VST_ENTRY_6_ABBREV)
948       assert(0 && "Unexpected abbrev ordering!");
949   }
950   { // 6-bit char6 VST_BBENTRY strings.
951     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
952     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
953     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
954     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
956     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
957                                    Abbv) != VST_BBENTRY_6_ABBREV)
958       assert(0 && "Unexpected abbrev ordering!");
959   }
960   
961   
962   
963   { // SETTYPE abbrev for CONSTANTS_BLOCK.
964     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
965     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
966     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
967                               Log2_32_Ceil(VE.getTypes().size()+1)));
968     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
969                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
970       assert(0 && "Unexpected abbrev ordering!");
971   }
972   
973   { // INTEGER abbrev for CONSTANTS_BLOCK.
974     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
975     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
976     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
977     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
978                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
979       assert(0 && "Unexpected abbrev ordering!");
980   }
981   
982   { // CE_CAST abbrev for CONSTANTS_BLOCK.
983     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
984     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
985     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
986     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
987                               Log2_32_Ceil(VE.getTypes().size()+1)));
988     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
989
990     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
991                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
992       assert(0 && "Unexpected abbrev ordering!");
993   }
994   { // NULL abbrev for CONSTANTS_BLOCK.
995     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
996     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
997     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
998                                    Abbv) != CONSTANTS_NULL_Abbrev)
999       assert(0 && "Unexpected abbrev ordering!");
1000   }
1001   
1002   // FIXME: This should only use space for first class types!
1003  
1004   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1005     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1006     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1008     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1009     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1010     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1011                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1012       assert(0 && "Unexpected abbrev ordering!");
1013   }
1014   
1015   Stream.ExitBlock();
1016 }
1017
1018
1019 /// WriteModule - Emit the specified module to the bitstream.
1020 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1021   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1022   
1023   // Emit the version number if it is non-zero.
1024   if (CurVersion) {
1025     SmallVector<unsigned, 1> Vals;
1026     Vals.push_back(CurVersion);
1027     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1028   }
1029   
1030   // Analyze the module, enumerating globals, functions, etc.
1031   ValueEnumerator VE(M);
1032
1033   // Emit blockinfo, which defines the standard abbreviations etc.
1034   WriteBlockInfo(VE, Stream);
1035   
1036   // Emit information about parameter attributes.
1037   WriteParamAttrTable(VE, Stream);
1038   
1039   // Emit information describing all of the types in the module.
1040   WriteTypeTable(VE, Stream);
1041   
1042   // Emit top-level description of module, including target triple, inline asm,
1043   // descriptors for global variables, and function prototype info.
1044   WriteModuleInfo(M, VE, Stream);
1045   
1046   // Emit constants.
1047   WriteModuleConstants(VE, Stream);
1048   
1049   // If we have any aggregate values in the value table, purge them - these can
1050   // only be used to initialize global variables.  Doing so makes the value
1051   // namespace smaller for code in functions.
1052   int NumNonAggregates = VE.PurgeAggregateValues();
1053   if (NumNonAggregates != -1) {
1054     SmallVector<unsigned, 1> Vals;
1055     Vals.push_back(NumNonAggregates);
1056     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1057   }
1058   
1059   // Emit function bodies.
1060   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1061     if (!I->isDeclaration())
1062       WriteFunction(*I, VE, Stream);
1063   
1064   // Emit the type symbol table information.
1065   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1066   
1067   // Emit names for globals/functions etc.
1068   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1069   
1070   Stream.ExitBlock();
1071 }
1072
1073
1074 /// WriteBitcodeToFile - Write the specified module to the specified output
1075 /// stream.
1076 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1077   std::vector<unsigned char> Buffer;
1078   BitstreamWriter Stream(Buffer);
1079   
1080   Buffer.reserve(256*1024);
1081   
1082   // Emit the file header.
1083   Stream.Emit((unsigned)'B', 8);
1084   Stream.Emit((unsigned)'C', 8);
1085   Stream.Emit(0x0, 4);
1086   Stream.Emit(0xC, 4);
1087   Stream.Emit(0xE, 4);
1088   Stream.Emit(0xD, 4);
1089
1090   // Emit the module.
1091   WriteModule(M, Stream);
1092   
1093   // Write the generated bitstream to "Out".
1094   Out.write((char*)&Buffer.front(), Buffer.size());
1095 }