Make a preemptive bitcode format change to support PR1146. This lets us do
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/ParameterAttributes.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 /// These are manifest constants used by the bitcode writer. They do not need to
30 /// be kept in sync with the reader, but need to be consistent within this file.
31 enum {
32   CurVersion = 0,
33   
34   // VALUE_SYMTAB_BLOCK abbrev id's.
35   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36   VST_ENTRY_7_ABBREV,
37   VST_ENTRY_6_ABBREV,
38   VST_BBENTRY_6_ABBREV,
39   
40   // CONSTANTS_BLOCK abbrev id's.
41   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   CONSTANTS_INTEGER_ABBREV,
43   CONSTANTS_CE_CAST_Abbrev,
44   CONSTANTS_NULL_Abbrev,
45   
46   // FUNCTION_BLOCK abbrev id's.
47   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   FUNCTION_INST_BINOP_ABBREV,
49   FUNCTION_INST_CAST_ABBREV,
50   FUNCTION_INST_RET_VOID_ABBREV,
51   FUNCTION_INST_RET_VAL_ABBREV,
52   FUNCTION_INST_UNREACHABLE_ABBREV
53 };
54
55
56 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57   switch (Opcode) {
58   default: assert(0 && "Unknown cast instruction!");
59   case Instruction::Trunc   : return bitc::CAST_TRUNC;
60   case Instruction::ZExt    : return bitc::CAST_ZEXT;
61   case Instruction::SExt    : return bitc::CAST_SEXT;
62   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
63   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
64   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
65   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
66   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67   case Instruction::FPExt   : return bitc::CAST_FPEXT;
68   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70   case Instruction::BitCast : return bitc::CAST_BITCAST;
71   }
72 }
73
74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75   switch (Opcode) {
76   default: assert(0 && "Unknown binary instruction!");
77   case Instruction::Add:  return bitc::BINOP_ADD;
78   case Instruction::Sub:  return bitc::BINOP_SUB;
79   case Instruction::Mul:  return bitc::BINOP_MUL;
80   case Instruction::UDiv: return bitc::BINOP_UDIV;
81   case Instruction::FDiv:
82   case Instruction::SDiv: return bitc::BINOP_SDIV;
83   case Instruction::URem: return bitc::BINOP_UREM;
84   case Instruction::FRem:
85   case Instruction::SRem: return bitc::BINOP_SREM;
86   case Instruction::Shl:  return bitc::BINOP_SHL;
87   case Instruction::LShr: return bitc::BINOP_LSHR;
88   case Instruction::AShr: return bitc::BINOP_ASHR;
89   case Instruction::And:  return bitc::BINOP_AND;
90   case Instruction::Or:   return bitc::BINOP_OR;
91   case Instruction::Xor:  return bitc::BINOP_XOR;
92   }
93 }
94
95
96
97 static void WriteStringRecord(unsigned Code, const std::string &Str, 
98                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
99   SmallVector<unsigned, 64> Vals;
100   
101   // Code: [strchar x N]
102   for (unsigned i = 0, e = Str.size(); i != e; ++i)
103     Vals.push_back(Str[i]);
104     
105   // Emit the finished record.
106   Stream.EmitRecord(Code, Vals, AbbrevToUse);
107 }
108
109 // Emit information about parameter attributes.
110 static void WriteParamAttrTable(const ValueEnumerator &VE, 
111                                 BitstreamWriter &Stream) {
112   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113   if (Attrs.empty()) return;
114   
115   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117   SmallVector<uint64_t, 64> Record;
118   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119     const ParamAttrsList *A = Attrs[i];
120     for (unsigned op = 0, e = A->size(); op != e; ++op) {
121       Record.push_back(A->getParamIndex(op));
122       Record.push_back(A->getParamAttrsAtIndex(op));
123     }
124     
125     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126     Record.clear();
127   }
128   
129   Stream.ExitBlock();
130 }
131
132 /// WriteTypeTable - Write out the type table for a module.
133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135   
136   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137   SmallVector<uint64_t, 64> TypeVals;
138   
139   // Abbrev for TYPE_CODE_POINTER.
140   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143                             Log2_32_Ceil(VE.getTypes().size()+1)));
144   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
145   
146   // Abbrev for TYPE_CODE_FUNCTION.
147   Abbv = new BitCodeAbbrev();
148   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
150   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
151                             Log2_32_Ceil(VE.getParamAttrs().size()+1)));
152   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154                             Log2_32_Ceil(VE.getTypes().size()+1)));
155   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156   
157   // Abbrev for TYPE_CODE_STRUCT.
158   Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165  
166   // Abbrev for TYPE_CODE_ARRAY.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                             Log2_32_Ceil(VE.getTypes().size()+1)));
172   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173   
174   // Emit an entry count so the reader can reserve space.
175   TypeVals.push_back(TypeList.size());
176   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177   TypeVals.clear();
178   
179   // Loop over all of the types, emitting each in turn.
180   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181     const Type *T = TypeList[i].first;
182     int AbbrevToUse = 0;
183     unsigned Code = 0;
184     
185     switch (T->getTypeID()) {
186     case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
187     default: assert(0 && "Unknown type!");
188     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
189     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
190     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
191     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
192     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
193     case Type::IntegerTyID:
194       // INTEGER: [width]
195       Code = bitc::TYPE_CODE_INTEGER;
196       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
197       break;
198     case Type::PointerTyID:
199       // POINTER: [pointee type]
200       Code = bitc::TYPE_CODE_POINTER;
201       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
202       AbbrevToUse = PtrAbbrev;
203       break;
204
205     case Type::FunctionTyID: {
206       const FunctionType *FT = cast<FunctionType>(T);
207       // FUNCTION: [isvararg, attrid, retty, paramty x N]
208       Code = bitc::TYPE_CODE_FUNCTION;
209       TypeVals.push_back(FT->isVarArg());
210       TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
211       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
212       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
213         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
214       AbbrevToUse = FunctionAbbrev;
215       break;
216     }
217     case Type::StructTyID: {
218       const StructType *ST = cast<StructType>(T);
219       // STRUCT: [ispacked, eltty x N]
220       Code = bitc::TYPE_CODE_STRUCT;
221       TypeVals.push_back(ST->isPacked());
222       // Output all of the element types.
223       for (StructType::element_iterator I = ST->element_begin(),
224            E = ST->element_end(); I != E; ++I)
225         TypeVals.push_back(VE.getTypeID(*I));
226       AbbrevToUse = StructAbbrev;
227       break;
228     }
229     case Type::ArrayTyID: {
230       const ArrayType *AT = cast<ArrayType>(T);
231       // ARRAY: [numelts, eltty]
232       Code = bitc::TYPE_CODE_ARRAY;
233       TypeVals.push_back(AT->getNumElements());
234       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
235       AbbrevToUse = ArrayAbbrev;
236       break;
237     }
238     case Type::VectorTyID: {
239       const VectorType *VT = cast<VectorType>(T);
240       // VECTOR [numelts, eltty]
241       Code = bitc::TYPE_CODE_VECTOR;
242       TypeVals.push_back(VT->getNumElements());
243       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
244       break;
245     }
246     }
247
248     // Emit the finished record.
249     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
250     TypeVals.clear();
251   }
252   
253   Stream.ExitBlock();
254 }
255
256 static unsigned getEncodedLinkage(const GlobalValue *GV) {
257   switch (GV->getLinkage()) {
258   default: assert(0 && "Invalid linkage!");
259   case GlobalValue::ExternalLinkage:     return 0;
260   case GlobalValue::WeakLinkage:         return 1;
261   case GlobalValue::AppendingLinkage:    return 2;
262   case GlobalValue::InternalLinkage:     return 3;
263   case GlobalValue::LinkOnceLinkage:     return 4;
264   case GlobalValue::DLLImportLinkage:    return 5;
265   case GlobalValue::DLLExportLinkage:    return 6;
266   case GlobalValue::ExternalWeakLinkage: return 7;
267   }
268 }
269
270 static unsigned getEncodedVisibility(const GlobalValue *GV) {
271   switch (GV->getVisibility()) {
272   default: assert(0 && "Invalid visibility!");
273   case GlobalValue::DefaultVisibility:   return 0;
274   case GlobalValue::HiddenVisibility:    return 1;
275   case GlobalValue::ProtectedVisibility: return 2;
276   }
277 }
278
279 // Emit top-level description of module, including target triple, inline asm,
280 // descriptors for global variables, and function prototype info.
281 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
282                             BitstreamWriter &Stream) {
283   // Emit the list of dependent libraries for the Module.
284   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
285     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
286
287   // Emit various pieces of data attached to a module.
288   if (!M->getTargetTriple().empty())
289     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
290                       0/*TODO*/, Stream);
291   if (!M->getDataLayout().empty())
292     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
293                       0/*TODO*/, Stream);
294   if (!M->getModuleInlineAsm().empty())
295     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
296                       0/*TODO*/, Stream);
297
298   // Emit information about sections, computing how many there are.  Also
299   // compute the maximum alignment value.
300   std::map<std::string, unsigned> SectionMap;
301   unsigned MaxAlignment = 0;
302   unsigned MaxGlobalType = 0;
303   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
304        GV != E; ++GV) {
305     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
306     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
307     
308     if (!GV->hasSection()) continue;
309     // Give section names unique ID's.
310     unsigned &Entry = SectionMap[GV->getSection()];
311     if (Entry != 0) continue;
312     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
313                       0/*TODO*/, Stream);
314     Entry = SectionMap.size();
315   }
316   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
317     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
318     if (!F->hasSection()) continue;
319     // Give section names unique ID's.
320     unsigned &Entry = SectionMap[F->getSection()];
321     if (Entry != 0) continue;
322     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
323                       0/*TODO*/, Stream);
324     Entry = SectionMap.size();
325   }
326   
327   // Emit abbrev for globals, now that we know # sections and max alignment.
328   unsigned SimpleGVarAbbrev = 0;
329   if (!M->global_empty()) { 
330     // Add an abbrev for common globals with no visibility or thread localness.
331     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
332     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
334                               Log2_32_Ceil(MaxGlobalType+1)));
335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
338     if (MaxAlignment == 0)                                      // Alignment.
339       Abbv->Add(BitCodeAbbrevOp(0));
340     else {
341       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
342       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343                                Log2_32_Ceil(MaxEncAlignment+1)));
344     }
345     if (SectionMap.empty())                                    // Section.
346       Abbv->Add(BitCodeAbbrevOp(0));
347     else
348       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
349                                Log2_32_Ceil(SectionMap.size()+1)));
350     // Don't bother emitting vis + thread local.
351     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
352   }
353   
354   // Emit the global variable information.
355   SmallVector<unsigned, 64> Vals;
356   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
357        GV != E; ++GV) {
358     unsigned AbbrevToUse = 0;
359
360     // GLOBALVAR: [type, isconst, initid, 
361     //             linkage, alignment, section, visibility, threadlocal]
362     Vals.push_back(VE.getTypeID(GV->getType()));
363     Vals.push_back(GV->isConstant());
364     Vals.push_back(GV->isDeclaration() ? 0 :
365                    (VE.getValueID(GV->getInitializer()) + 1));
366     Vals.push_back(getEncodedLinkage(GV));
367     Vals.push_back(Log2_32(GV->getAlignment())+1);
368     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
369     if (GV->isThreadLocal() || 
370         GV->getVisibility() != GlobalValue::DefaultVisibility) {
371       Vals.push_back(getEncodedVisibility(GV));
372       Vals.push_back(GV->isThreadLocal());
373     } else {
374       AbbrevToUse = SimpleGVarAbbrev;
375     }
376     
377     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
378     Vals.clear();
379   }
380
381   // Emit the function proto information.
382   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
383     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
384     //             visibility]
385     Vals.push_back(VE.getTypeID(F->getType()));
386     Vals.push_back(F->getCallingConv());
387     Vals.push_back(F->isDeclaration());
388     Vals.push_back(getEncodedLinkage(F));
389     
390     // Note: we emit the param attr ID number for the function type of this
391     // function.  In the future, we intend for attrs to be properties of
392     // functions, instead of on the type.  This is to support this future work.
393     Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs()));
394     
395     Vals.push_back(Log2_32(F->getAlignment())+1);
396     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
397     Vals.push_back(getEncodedVisibility(F));
398     
399     unsigned AbbrevToUse = 0;
400     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
401     Vals.clear();
402   }
403   
404   
405   // Emit the alias information.
406   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
407        AI != E; ++AI) {
408     Vals.push_back(VE.getTypeID(AI->getType()));
409     Vals.push_back(VE.getValueID(AI->getAliasee()));
410     Vals.push_back(getEncodedLinkage(AI));
411     unsigned AbbrevToUse = 0;
412     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
413     Vals.clear();
414   }
415 }
416
417
418 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
419                            const ValueEnumerator &VE,
420                            BitstreamWriter &Stream, bool isGlobal) {
421   if (FirstVal == LastVal) return;
422   
423   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
424
425   unsigned AggregateAbbrev = 0;
426   unsigned String8Abbrev = 0;
427   unsigned CString7Abbrev = 0;
428   unsigned CString6Abbrev = 0;
429   // If this is a constant pool for the module, emit module-specific abbrevs.
430   if (isGlobal) {
431     // Abbrev for CST_CODE_AGGREGATE.
432     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
433     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
436     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
437
438     // Abbrev for CST_CODE_STRING.
439     Abbv = new BitCodeAbbrev();
440     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
441     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
443     String8Abbrev = Stream.EmitAbbrev(Abbv);
444     // Abbrev for CST_CODE_CSTRING.
445     Abbv = new BitCodeAbbrev();
446     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
447     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
449     CString7Abbrev = Stream.EmitAbbrev(Abbv);
450     // Abbrev for CST_CODE_CSTRING.
451     Abbv = new BitCodeAbbrev();
452     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
455     CString6Abbrev = Stream.EmitAbbrev(Abbv);
456   }  
457   
458   SmallVector<uint64_t, 64> Record;
459
460   const ValueEnumerator::ValueList &Vals = VE.getValues();
461   const Type *LastTy = 0;
462   for (unsigned i = FirstVal; i != LastVal; ++i) {
463     const Value *V = Vals[i].first;
464     // If we need to switch types, do so now.
465     if (V->getType() != LastTy) {
466       LastTy = V->getType();
467       Record.push_back(VE.getTypeID(LastTy));
468       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
469                         CONSTANTS_SETTYPE_ABBREV);
470       Record.clear();
471     }
472     
473     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
474       Record.push_back(unsigned(IA->hasSideEffects()));
475       
476       // Add the asm string.
477       const std::string &AsmStr = IA->getAsmString();
478       Record.push_back(AsmStr.size());
479       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
480         Record.push_back(AsmStr[i]);
481       
482       // Add the constraint string.
483       const std::string &ConstraintStr = IA->getConstraintString();
484       Record.push_back(ConstraintStr.size());
485       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
486         Record.push_back(ConstraintStr[i]);
487       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
488       Record.clear();
489       continue;
490     }
491     const Constant *C = cast<Constant>(V);
492     unsigned Code = -1U;
493     unsigned AbbrevToUse = 0;
494     if (C->isNullValue()) {
495       Code = bitc::CST_CODE_NULL;
496     } else if (isa<UndefValue>(C)) {
497       Code = bitc::CST_CODE_UNDEF;
498     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
499       if (IV->getBitWidth() <= 64) {
500         int64_t V = IV->getSExtValue();
501         if (V >= 0)
502           Record.push_back(V << 1);
503         else
504           Record.push_back((-V << 1) | 1);
505         Code = bitc::CST_CODE_INTEGER;
506         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
507       } else {                             // Wide integers, > 64 bits in size.
508         // We have an arbitrary precision integer value to write whose 
509         // bit width is > 64. However, in canonical unsigned integer 
510         // format it is likely that the high bits are going to be zero.
511         // So, we only write the number of active words.
512         unsigned NWords = IV->getValue().getActiveWords(); 
513         const uint64_t *RawWords = IV->getValue().getRawData();
514         for (unsigned i = 0; i != NWords; ++i) {
515           int64_t V = RawWords[i];
516           if (V >= 0)
517             Record.push_back(V << 1);
518           else
519             Record.push_back((-V << 1) | 1);
520         }
521         Code = bitc::CST_CODE_WIDE_INTEGER;
522       }
523     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
524       Code = bitc::CST_CODE_FLOAT;
525       if (CFP->getType() == Type::FloatTy) {
526         Record.push_back(FloatToBits((float)CFP->getValue()));
527       } else {
528         assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
529         Record.push_back(DoubleToBits((double)CFP->getValue()));
530       }
531     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
532       // Emit constant strings specially.
533       unsigned NumOps = C->getNumOperands();
534       // If this is a null-terminated string, use the denser CSTRING encoding.
535       if (C->getOperand(NumOps-1)->isNullValue()) {
536         Code = bitc::CST_CODE_CSTRING;
537         --NumOps;  // Don't encode the null, which isn't allowed by char6.
538       } else {
539         Code = bitc::CST_CODE_STRING;
540         AbbrevToUse = String8Abbrev;
541       }
542       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
543       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
544       for (unsigned i = 0; i != NumOps; ++i) {
545         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
546         Record.push_back(V);
547         isCStr7 &= (V & 128) == 0;
548         if (isCStrChar6) 
549           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
550       }
551       
552       if (isCStrChar6)
553         AbbrevToUse = CString6Abbrev;
554       else if (isCStr7)
555         AbbrevToUse = CString7Abbrev;
556     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
557                isa<ConstantVector>(V)) {
558       Code = bitc::CST_CODE_AGGREGATE;
559       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
560         Record.push_back(VE.getValueID(C->getOperand(i)));
561       AbbrevToUse = AggregateAbbrev;
562     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
563       switch (CE->getOpcode()) {
564       default:
565         if (Instruction::isCast(CE->getOpcode())) {
566           Code = bitc::CST_CODE_CE_CAST;
567           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
568           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
569           Record.push_back(VE.getValueID(C->getOperand(0)));
570           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
571         } else {
572           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
573           Code = bitc::CST_CODE_CE_BINOP;
574           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
575           Record.push_back(VE.getValueID(C->getOperand(0)));
576           Record.push_back(VE.getValueID(C->getOperand(1)));
577         }
578         break;
579       case Instruction::GetElementPtr:
580         Code = bitc::CST_CODE_CE_GEP;
581         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
582           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
583           Record.push_back(VE.getValueID(C->getOperand(i)));
584         }
585         break;
586       case Instruction::Select:
587         Code = bitc::CST_CODE_CE_SELECT;
588         Record.push_back(VE.getValueID(C->getOperand(0)));
589         Record.push_back(VE.getValueID(C->getOperand(1)));
590         Record.push_back(VE.getValueID(C->getOperand(2)));
591         break;
592       case Instruction::ExtractElement:
593         Code = bitc::CST_CODE_CE_EXTRACTELT;
594         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
595         Record.push_back(VE.getValueID(C->getOperand(0)));
596         Record.push_back(VE.getValueID(C->getOperand(1)));
597         break;
598       case Instruction::InsertElement:
599         Code = bitc::CST_CODE_CE_INSERTELT;
600         Record.push_back(VE.getValueID(C->getOperand(0)));
601         Record.push_back(VE.getValueID(C->getOperand(1)));
602         Record.push_back(VE.getValueID(C->getOperand(2)));
603         break;
604       case Instruction::ShuffleVector:
605         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
606         Record.push_back(VE.getValueID(C->getOperand(0)));
607         Record.push_back(VE.getValueID(C->getOperand(1)));
608         Record.push_back(VE.getValueID(C->getOperand(2)));
609         break;
610       case Instruction::ICmp:
611       case Instruction::FCmp:
612         Code = bitc::CST_CODE_CE_CMP;
613         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
614         Record.push_back(VE.getValueID(C->getOperand(0)));
615         Record.push_back(VE.getValueID(C->getOperand(1)));
616         Record.push_back(CE->getPredicate());
617         break;
618       }
619     } else {
620       assert(0 && "Unknown constant!");
621     }
622     Stream.EmitRecord(Code, Record, AbbrevToUse);
623     Record.clear();
624   }
625
626   Stream.ExitBlock();
627 }
628
629 static void WriteModuleConstants(const ValueEnumerator &VE,
630                                  BitstreamWriter &Stream) {
631   const ValueEnumerator::ValueList &Vals = VE.getValues();
632   
633   // Find the first constant to emit, which is the first non-globalvalue value.
634   // We know globalvalues have been emitted by WriteModuleInfo.
635   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
636     if (!isa<GlobalValue>(Vals[i].first)) {
637       WriteConstants(i, Vals.size(), VE, Stream, true);
638       return;
639     }
640   }
641 }
642
643 /// PushValueAndType - The file has to encode both the value and type id for
644 /// many values, because we need to know what type to create for forward
645 /// references.  However, most operands are not forward references, so this type
646 /// field is not needed.
647 ///
648 /// This function adds V's value ID to Vals.  If the value ID is higher than the
649 /// instruction ID, then it is a forward reference, and it also includes the
650 /// type ID.
651 static bool PushValueAndType(Value *V, unsigned InstID,
652                              SmallVector<unsigned, 64> &Vals, 
653                              ValueEnumerator &VE) {
654   unsigned ValID = VE.getValueID(V);
655   Vals.push_back(ValID);
656   if (ValID >= InstID) {
657     Vals.push_back(VE.getTypeID(V->getType()));
658     return true;
659   }
660   return false;
661 }
662
663 /// WriteInstruction - Emit an instruction to the specified stream.
664 static void WriteInstruction(const Instruction &I, unsigned InstID,
665                              ValueEnumerator &VE, BitstreamWriter &Stream,
666                              SmallVector<unsigned, 64> &Vals) {
667   unsigned Code = 0;
668   unsigned AbbrevToUse = 0;
669   switch (I.getOpcode()) {
670   default:
671     if (Instruction::isCast(I.getOpcode())) {
672       Code = bitc::FUNC_CODE_INST_CAST;
673       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
674         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
675       Vals.push_back(VE.getTypeID(I.getType()));
676       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
677     } else {
678       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
679       Code = bitc::FUNC_CODE_INST_BINOP;
680       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
681         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
682       Vals.push_back(VE.getValueID(I.getOperand(1)));
683       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
684     }
685     break;
686
687   case Instruction::GetElementPtr:
688     Code = bitc::FUNC_CODE_INST_GEP;
689     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
690       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
691     break;
692   case Instruction::Select:
693     Code = bitc::FUNC_CODE_INST_SELECT;
694     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
695     Vals.push_back(VE.getValueID(I.getOperand(2)));
696     Vals.push_back(VE.getValueID(I.getOperand(0)));
697     break;
698   case Instruction::ExtractElement:
699     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
700     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
701     Vals.push_back(VE.getValueID(I.getOperand(1)));
702     break;
703   case Instruction::InsertElement:
704     Code = bitc::FUNC_CODE_INST_INSERTELT;
705     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
706     Vals.push_back(VE.getValueID(I.getOperand(1)));
707     Vals.push_back(VE.getValueID(I.getOperand(2)));
708     break;
709   case Instruction::ShuffleVector:
710     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
711     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
712     Vals.push_back(VE.getValueID(I.getOperand(1)));
713     Vals.push_back(VE.getValueID(I.getOperand(2)));
714     break;
715   case Instruction::ICmp:
716   case Instruction::FCmp:
717     Code = bitc::FUNC_CODE_INST_CMP;
718     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
719     Vals.push_back(VE.getValueID(I.getOperand(1)));
720     Vals.push_back(cast<CmpInst>(I).getPredicate());
721     break;
722
723   case Instruction::Ret:
724     Code = bitc::FUNC_CODE_INST_RET;
725     if (!I.getNumOperands())
726       AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
727     else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
728       AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
729     break;
730   case Instruction::Br:
731     Code = bitc::FUNC_CODE_INST_BR;
732     Vals.push_back(VE.getValueID(I.getOperand(0)));
733     if (cast<BranchInst>(I).isConditional()) {
734       Vals.push_back(VE.getValueID(I.getOperand(1)));
735       Vals.push_back(VE.getValueID(I.getOperand(2)));
736     }
737     break;
738   case Instruction::Switch:
739     Code = bitc::FUNC_CODE_INST_SWITCH;
740     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
741     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
742       Vals.push_back(VE.getValueID(I.getOperand(i)));
743     break;
744   case Instruction::Invoke: {
745     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
746     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
747     Code = bitc::FUNC_CODE_INST_INVOKE;
748     
749     // Note: we emit the param attr ID number for the function type of this
750     // function.  In the future, we intend for attrs to be properties of
751     // functions, instead of on the type.  This is to support this future work.
752     Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
753     
754     Vals.push_back(cast<InvokeInst>(I).getCallingConv());
755     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
756     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
757     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
758     
759     // Emit value #'s for the fixed parameters.
760     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
761       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
762
763     // Emit type/value pairs for varargs params.
764     if (FTy->isVarArg()) {
765       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
766            i != e; ++i)
767         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
768     }
769     break;
770   }
771   case Instruction::Unwind:
772     Code = bitc::FUNC_CODE_INST_UNWIND;
773     break;
774   case Instruction::Unreachable:
775     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
776     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
777     break;
778   
779   case Instruction::PHI:
780     Code = bitc::FUNC_CODE_INST_PHI;
781     Vals.push_back(VE.getTypeID(I.getType()));
782     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
783       Vals.push_back(VE.getValueID(I.getOperand(i)));
784     break;
785     
786   case Instruction::Malloc:
787     Code = bitc::FUNC_CODE_INST_MALLOC;
788     Vals.push_back(VE.getTypeID(I.getType()));
789     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
790     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
791     break;
792     
793   case Instruction::Free:
794     Code = bitc::FUNC_CODE_INST_FREE;
795     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
796     break;
797     
798   case Instruction::Alloca:
799     Code = bitc::FUNC_CODE_INST_ALLOCA;
800     Vals.push_back(VE.getTypeID(I.getType()));
801     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
802     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
803     break;
804     
805   case Instruction::Load:
806     Code = bitc::FUNC_CODE_INST_LOAD;
807     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
808       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
809       
810     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
811     Vals.push_back(cast<LoadInst>(I).isVolatile());
812     break;
813   case Instruction::Store:
814     Code = bitc::FUNC_CODE_INST_STORE;
815     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
816     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
817     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
818     Vals.push_back(cast<StoreInst>(I).isVolatile());
819     break;
820   case Instruction::Call: {
821     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
822     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
823
824     Code = bitc::FUNC_CODE_INST_CALL;
825     
826     // Note: we emit the param attr ID number for the function type of this
827     // function.  In the future, we intend for attrs to be properties of
828     // functions, instead of on the type.  This is to support this future work.
829     Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
830     
831     Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
832                    unsigned(cast<CallInst>(I).isTailCall()));
833     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // Callee
834     
835     // Emit value #'s for the fixed parameters.
836     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
837       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
838       
839     // Emit type/value pairs for varargs params.
840     if (FTy->isVarArg()) {
841       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
842       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
843            i != e; ++i)
844         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
845     }
846     break;
847   }
848   case Instruction::VAArg:
849     Code = bitc::FUNC_CODE_INST_VAARG;
850     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
851     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
852     Vals.push_back(VE.getTypeID(I.getType())); // restype.
853     break;
854   }
855   
856   Stream.EmitRecord(Code, Vals, AbbrevToUse);
857   Vals.clear();
858 }
859
860 // Emit names for globals/functions etc.
861 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
862                                   const ValueEnumerator &VE,
863                                   BitstreamWriter &Stream) {
864   if (VST.empty()) return;
865   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
866
867   // FIXME: Set up the abbrev, we know how many values there are!
868   // FIXME: We know if the type names can use 7-bit ascii.
869   SmallVector<unsigned, 64> NameVals;
870   
871   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
872        SI != SE; ++SI) {
873     
874     const ValueName &Name = *SI;
875     
876     // Figure out the encoding to use for the name.
877     bool is7Bit = true;
878     bool isChar6 = true;
879     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
880          C != E; ++C) {
881       if (isChar6) 
882         isChar6 = BitCodeAbbrevOp::isChar6(*C);
883       if ((unsigned char)*C & 128) {
884         is7Bit = false;
885         break;  // don't bother scanning the rest.
886       }
887     }
888     
889     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
890     
891     // VST_ENTRY:   [valueid, namechar x N]
892     // VST_BBENTRY: [bbid, namechar x N]
893     unsigned Code;
894     if (isa<BasicBlock>(SI->getValue())) {
895       Code = bitc::VST_CODE_BBENTRY;
896       if (isChar6)
897         AbbrevToUse = VST_BBENTRY_6_ABBREV;
898     } else {
899       Code = bitc::VST_CODE_ENTRY;
900       if (isChar6)
901         AbbrevToUse = VST_ENTRY_6_ABBREV;
902       else if (is7Bit)
903         AbbrevToUse = VST_ENTRY_7_ABBREV;
904     }
905     
906     NameVals.push_back(VE.getValueID(SI->getValue()));
907     for (const char *P = Name.getKeyData(),
908          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
909       NameVals.push_back((unsigned char)*P);
910     
911     // Emit the finished record.
912     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
913     NameVals.clear();
914   }
915   Stream.ExitBlock();
916 }
917
918 /// WriteFunction - Emit a function body to the module stream.
919 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
920                           BitstreamWriter &Stream) {
921   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
922   VE.incorporateFunction(F);
923
924   SmallVector<unsigned, 64> Vals;
925   
926   // Emit the number of basic blocks, so the reader can create them ahead of
927   // time.
928   Vals.push_back(VE.getBasicBlocks().size());
929   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
930   Vals.clear();
931   
932   // If there are function-local constants, emit them now.
933   unsigned CstStart, CstEnd;
934   VE.getFunctionConstantRange(CstStart, CstEnd);
935   WriteConstants(CstStart, CstEnd, VE, Stream, false);
936   
937   // Keep a running idea of what the instruction ID is. 
938   unsigned InstID = CstEnd;
939   
940   // Finally, emit all the instructions, in order.
941   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
942     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
943          I != E; ++I) {
944       WriteInstruction(*I, InstID, VE, Stream, Vals);
945       if (I->getType() != Type::VoidTy)
946         ++InstID;
947     }
948   
949   // Emit names for all the instructions etc.
950   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
951     
952   VE.purgeFunction();
953   Stream.ExitBlock();
954 }
955
956 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
957 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
958                                  const ValueEnumerator &VE,
959                                  BitstreamWriter &Stream) {
960   if (TST.empty()) return;
961   
962   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
963   
964   // 7-bit fixed width VST_CODE_ENTRY strings.
965   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
966   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
967   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
968                             Log2_32_Ceil(VE.getTypes().size()+1)));
969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
971   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
972   
973   SmallVector<unsigned, 64> NameVals;
974   
975   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
976        TI != TE; ++TI) {
977     // TST_ENTRY: [typeid, namechar x N]
978     NameVals.push_back(VE.getTypeID(TI->second));
979     
980     const std::string &Str = TI->first;
981     bool is7Bit = true;
982     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
983       NameVals.push_back((unsigned char)Str[i]);
984       if (Str[i] & 128)
985         is7Bit = false;
986     }
987     
988     // Emit the finished record.
989     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
990     NameVals.clear();
991   }
992   
993   Stream.ExitBlock();
994 }
995
996 // Emit blockinfo, which defines the standard abbreviations etc.
997 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
998   // We only want to emit block info records for blocks that have multiple
999   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1000   // blocks can defined their abbrevs inline.
1001   Stream.EnterBlockInfoBlock(2);
1002   
1003   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1004     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1005     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1008     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1009     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1010                                    Abbv) != VST_ENTRY_8_ABBREV)
1011       assert(0 && "Unexpected abbrev ordering!");
1012   }
1013   
1014   { // 7-bit fixed width VST_ENTRY strings.
1015     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1016     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1017     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1018     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1020     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1021                                    Abbv) != VST_ENTRY_7_ABBREV)
1022       assert(0 && "Unexpected abbrev ordering!");
1023   }
1024   { // 6-bit char6 VST_ENTRY strings.
1025     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1026     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1027     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1028     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1029     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1030     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1031                                    Abbv) != VST_ENTRY_6_ABBREV)
1032       assert(0 && "Unexpected abbrev ordering!");
1033   }
1034   { // 6-bit char6 VST_BBENTRY strings.
1035     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1036     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1039     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1040     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1041                                    Abbv) != VST_BBENTRY_6_ABBREV)
1042       assert(0 && "Unexpected abbrev ordering!");
1043   }
1044   
1045   
1046   
1047   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1048     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1049     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1050     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1051                               Log2_32_Ceil(VE.getTypes().size()+1)));
1052     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1053                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1054       assert(0 && "Unexpected abbrev ordering!");
1055   }
1056   
1057   { // INTEGER abbrev for CONSTANTS_BLOCK.
1058     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1059     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1060     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1061     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1062                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1063       assert(0 && "Unexpected abbrev ordering!");
1064   }
1065   
1066   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1067     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1068     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1069     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1071                               Log2_32_Ceil(VE.getTypes().size()+1)));
1072     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1073
1074     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1075                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1076       assert(0 && "Unexpected abbrev ordering!");
1077   }
1078   { // NULL abbrev for CONSTANTS_BLOCK.
1079     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1080     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1081     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1082                                    Abbv) != CONSTANTS_NULL_Abbrev)
1083       assert(0 && "Unexpected abbrev ordering!");
1084   }
1085   
1086   // FIXME: This should only use space for first class types!
1087  
1088   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1089     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1090     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1093     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1094     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1095                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1096       assert(0 && "Unexpected abbrev ordering!");
1097   }
1098   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1099     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1100     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1102     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1104     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1105                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1106       assert(0 && "Unexpected abbrev ordering!");
1107   }
1108   { // INST_CAST abbrev for FUNCTION_BLOCK.
1109     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1110     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1112     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1113                               Log2_32_Ceil(VE.getTypes().size()+1)));
1114     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1115     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1116                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1117       assert(0 && "Unexpected abbrev ordering!");
1118   }
1119   
1120   { // INST_RET abbrev for FUNCTION_BLOCK.
1121     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1122     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1123     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1124                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1125       assert(0 && "Unexpected abbrev ordering!");
1126   }
1127   { // INST_RET abbrev for FUNCTION_BLOCK.
1128     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1129     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1131     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1132                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1133       assert(0 && "Unexpected abbrev ordering!");
1134   }
1135   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1136     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1137     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1138     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1139                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1140       assert(0 && "Unexpected abbrev ordering!");
1141   }
1142   
1143   Stream.ExitBlock();
1144 }
1145
1146
1147 /// WriteModule - Emit the specified module to the bitstream.
1148 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1149   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1150   
1151   // Emit the version number if it is non-zero.
1152   if (CurVersion) {
1153     SmallVector<unsigned, 1> Vals;
1154     Vals.push_back(CurVersion);
1155     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1156   }
1157   
1158   // Analyze the module, enumerating globals, functions, etc.
1159   ValueEnumerator VE(M);
1160
1161   // Emit blockinfo, which defines the standard abbreviations etc.
1162   WriteBlockInfo(VE, Stream);
1163   
1164   // Emit information about parameter attributes.
1165   WriteParamAttrTable(VE, Stream);
1166   
1167   // Emit information describing all of the types in the module.
1168   WriteTypeTable(VE, Stream);
1169   
1170   // Emit top-level description of module, including target triple, inline asm,
1171   // descriptors for global variables, and function prototype info.
1172   WriteModuleInfo(M, VE, Stream);
1173   
1174   // Emit constants.
1175   WriteModuleConstants(VE, Stream);
1176   
1177   // If we have any aggregate values in the value table, purge them - these can
1178   // only be used to initialize global variables.  Doing so makes the value
1179   // namespace smaller for code in functions.
1180   int NumNonAggregates = VE.PurgeAggregateValues();
1181   if (NumNonAggregates != -1) {
1182     SmallVector<unsigned, 1> Vals;
1183     Vals.push_back(NumNonAggregates);
1184     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1185   }
1186   
1187   // Emit function bodies.
1188   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1189     if (!I->isDeclaration())
1190       WriteFunction(*I, VE, Stream);
1191   
1192   // Emit the type symbol table information.
1193   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1194   
1195   // Emit names for globals/functions etc.
1196   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1197   
1198   Stream.ExitBlock();
1199 }
1200
1201
1202 /// WriteBitcodeToFile - Write the specified module to the specified output
1203 /// stream.
1204 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1205   std::vector<unsigned char> Buffer;
1206   BitstreamWriter Stream(Buffer);
1207   
1208   Buffer.reserve(256*1024);
1209   
1210   // Emit the file header.
1211   Stream.Emit((unsigned)'B', 8);
1212   Stream.Emit((unsigned)'C', 8);
1213   Stream.Emit(0x0, 4);
1214   Stream.Emit(0xC, 4);
1215   Stream.Emit(0xE, 4);
1216   Stream.Emit(0xD, 4);
1217
1218   // Emit the module.
1219   WriteModule(M, Stream);
1220   
1221   // Write the generated bitstream to "Out".
1222   Out.write((char*)&Buffer.front(), Buffer.size());
1223   
1224   // Make sure it hits disk now.
1225   Out.flush();
1226 }