Next PPC long double bits. First cut at constants.
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/ParameterAttributes.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 /// These are manifest constants used by the bitcode writer. They do not need to
30 /// be kept in sync with the reader, but need to be consistent within this file.
31 enum {
32   CurVersion = 0,
33   
34   // VALUE_SYMTAB_BLOCK abbrev id's.
35   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36   VST_ENTRY_7_ABBREV,
37   VST_ENTRY_6_ABBREV,
38   VST_BBENTRY_6_ABBREV,
39   
40   // CONSTANTS_BLOCK abbrev id's.
41   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   CONSTANTS_INTEGER_ABBREV,
43   CONSTANTS_CE_CAST_Abbrev,
44   CONSTANTS_NULL_Abbrev,
45   
46   // FUNCTION_BLOCK abbrev id's.
47   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   FUNCTION_INST_BINOP_ABBREV,
49   FUNCTION_INST_CAST_ABBREV,
50   FUNCTION_INST_RET_VOID_ABBREV,
51   FUNCTION_INST_RET_VAL_ABBREV,
52   FUNCTION_INST_UNREACHABLE_ABBREV
53 };
54
55
56 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57   switch (Opcode) {
58   default: assert(0 && "Unknown cast instruction!");
59   case Instruction::Trunc   : return bitc::CAST_TRUNC;
60   case Instruction::ZExt    : return bitc::CAST_ZEXT;
61   case Instruction::SExt    : return bitc::CAST_SEXT;
62   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
63   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
64   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
65   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
66   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67   case Instruction::FPExt   : return bitc::CAST_FPEXT;
68   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70   case Instruction::BitCast : return bitc::CAST_BITCAST;
71   }
72 }
73
74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75   switch (Opcode) {
76   default: assert(0 && "Unknown binary instruction!");
77   case Instruction::Add:  return bitc::BINOP_ADD;
78   case Instruction::Sub:  return bitc::BINOP_SUB;
79   case Instruction::Mul:  return bitc::BINOP_MUL;
80   case Instruction::UDiv: return bitc::BINOP_UDIV;
81   case Instruction::FDiv:
82   case Instruction::SDiv: return bitc::BINOP_SDIV;
83   case Instruction::URem: return bitc::BINOP_UREM;
84   case Instruction::FRem:
85   case Instruction::SRem: return bitc::BINOP_SREM;
86   case Instruction::Shl:  return bitc::BINOP_SHL;
87   case Instruction::LShr: return bitc::BINOP_LSHR;
88   case Instruction::AShr: return bitc::BINOP_ASHR;
89   case Instruction::And:  return bitc::BINOP_AND;
90   case Instruction::Or:   return bitc::BINOP_OR;
91   case Instruction::Xor:  return bitc::BINOP_XOR;
92   }
93 }
94
95
96
97 static void WriteStringRecord(unsigned Code, const std::string &Str, 
98                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
99   SmallVector<unsigned, 64> Vals;
100   
101   // Code: [strchar x N]
102   for (unsigned i = 0, e = Str.size(); i != e; ++i)
103     Vals.push_back(Str[i]);
104     
105   // Emit the finished record.
106   Stream.EmitRecord(Code, Vals, AbbrevToUse);
107 }
108
109 // Emit information about parameter attributes.
110 static void WriteParamAttrTable(const ValueEnumerator &VE, 
111                                 BitstreamWriter &Stream) {
112   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113   if (Attrs.empty()) return;
114   
115   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117   SmallVector<uint64_t, 64> Record;
118   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119     const ParamAttrsList *A = Attrs[i];
120     for (unsigned op = 0, e = A->size(); op != e; ++op) {
121       Record.push_back(A->getParamIndex(op));
122       Record.push_back(A->getParamAttrsAtIndex(op));
123     }
124     
125     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126     Record.clear();
127   }
128   
129   Stream.ExitBlock();
130 }
131
132 /// WriteTypeTable - Write out the type table for a module.
133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135   
136   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137   SmallVector<uint64_t, 64> TypeVals;
138   
139   // Abbrev for TYPE_CODE_POINTER.
140   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143                             Log2_32_Ceil(VE.getTypes().size()+1)));
144   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
145   
146   // Abbrev for TYPE_CODE_FUNCTION.
147   Abbv = new BitCodeAbbrev();
148   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
150   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
151                             Log2_32_Ceil(VE.getParamAttrs().size()+1)));
152   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154                             Log2_32_Ceil(VE.getTypes().size()+1)));
155   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156   
157   // Abbrev for TYPE_CODE_STRUCT.
158   Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165  
166   // Abbrev for TYPE_CODE_ARRAY.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                             Log2_32_Ceil(VE.getTypes().size()+1)));
172   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173   
174   // Emit an entry count so the reader can reserve space.
175   TypeVals.push_back(TypeList.size());
176   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177   TypeVals.clear();
178   
179   // Loop over all of the types, emitting each in turn.
180   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181     const Type *T = TypeList[i].first;
182     int AbbrevToUse = 0;
183     unsigned Code = 0;
184     
185     switch (T->getTypeID()) {
186     default: assert(0 && "Unknown type!");
187     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
188     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
189     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
190     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
191     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
192     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
193     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
194     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
195     case Type::IntegerTyID:
196       // INTEGER: [width]
197       Code = bitc::TYPE_CODE_INTEGER;
198       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
199       break;
200     case Type::PointerTyID:
201       // POINTER: [pointee type]
202       Code = bitc::TYPE_CODE_POINTER;
203       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
204       AbbrevToUse = PtrAbbrev;
205       break;
206
207     case Type::FunctionTyID: {
208       const FunctionType *FT = cast<FunctionType>(T);
209       // FUNCTION: [isvararg, attrid, retty, paramty x N]
210       Code = bitc::TYPE_CODE_FUNCTION;
211       TypeVals.push_back(FT->isVarArg());
212       TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
213       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
214       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
215         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
216       AbbrevToUse = FunctionAbbrev;
217       break;
218     }
219     case Type::StructTyID: {
220       const StructType *ST = cast<StructType>(T);
221       // STRUCT: [ispacked, eltty x N]
222       Code = bitc::TYPE_CODE_STRUCT;
223       TypeVals.push_back(ST->isPacked());
224       // Output all of the element types.
225       for (StructType::element_iterator I = ST->element_begin(),
226            E = ST->element_end(); I != E; ++I)
227         TypeVals.push_back(VE.getTypeID(*I));
228       AbbrevToUse = StructAbbrev;
229       break;
230     }
231     case Type::ArrayTyID: {
232       const ArrayType *AT = cast<ArrayType>(T);
233       // ARRAY: [numelts, eltty]
234       Code = bitc::TYPE_CODE_ARRAY;
235       TypeVals.push_back(AT->getNumElements());
236       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
237       AbbrevToUse = ArrayAbbrev;
238       break;
239     }
240     case Type::VectorTyID: {
241       const VectorType *VT = cast<VectorType>(T);
242       // VECTOR [numelts, eltty]
243       Code = bitc::TYPE_CODE_VECTOR;
244       TypeVals.push_back(VT->getNumElements());
245       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
246       break;
247     }
248     }
249
250     // Emit the finished record.
251     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
252     TypeVals.clear();
253   }
254   
255   Stream.ExitBlock();
256 }
257
258 static unsigned getEncodedLinkage(const GlobalValue *GV) {
259   switch (GV->getLinkage()) {
260   default: assert(0 && "Invalid linkage!");
261   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
262   case GlobalValue::ExternalLinkage:     return 0;
263   case GlobalValue::WeakLinkage:         return 1;
264   case GlobalValue::AppendingLinkage:    return 2;
265   case GlobalValue::InternalLinkage:     return 3;
266   case GlobalValue::LinkOnceLinkage:     return 4;
267   case GlobalValue::DLLImportLinkage:    return 5;
268   case GlobalValue::DLLExportLinkage:    return 6;
269   case GlobalValue::ExternalWeakLinkage: return 7;
270   }
271 }
272
273 static unsigned getEncodedVisibility(const GlobalValue *GV) {
274   switch (GV->getVisibility()) {
275   default: assert(0 && "Invalid visibility!");
276   case GlobalValue::DefaultVisibility:   return 0;
277   case GlobalValue::HiddenVisibility:    return 1;
278   case GlobalValue::ProtectedVisibility: return 2;
279   }
280 }
281
282 // Emit top-level description of module, including target triple, inline asm,
283 // descriptors for global variables, and function prototype info.
284 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
285                             BitstreamWriter &Stream) {
286   // Emit the list of dependent libraries for the Module.
287   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
288     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
289
290   // Emit various pieces of data attached to a module.
291   if (!M->getTargetTriple().empty())
292     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
293                       0/*TODO*/, Stream);
294   if (!M->getDataLayout().empty())
295     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
296                       0/*TODO*/, Stream);
297   if (!M->getModuleInlineAsm().empty())
298     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
299                       0/*TODO*/, Stream);
300
301   // Emit information about sections, computing how many there are.  Also
302   // compute the maximum alignment value.
303   std::map<std::string, unsigned> SectionMap;
304   unsigned MaxAlignment = 0;
305   unsigned MaxGlobalType = 0;
306   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
307        GV != E; ++GV) {
308     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
309     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
310     
311     if (!GV->hasSection()) continue;
312     // Give section names unique ID's.
313     unsigned &Entry = SectionMap[GV->getSection()];
314     if (Entry != 0) continue;
315     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
316                       0/*TODO*/, Stream);
317     Entry = SectionMap.size();
318   }
319   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
320     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
321     if (!F->hasSection()) continue;
322     // Give section names unique ID's.
323     unsigned &Entry = SectionMap[F->getSection()];
324     if (Entry != 0) continue;
325     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
326                       0/*TODO*/, Stream);
327     Entry = SectionMap.size();
328   }
329   
330   // Emit abbrev for globals, now that we know # sections and max alignment.
331   unsigned SimpleGVarAbbrev = 0;
332   if (!M->global_empty()) { 
333     // Add an abbrev for common globals with no visibility or thread localness.
334     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
335     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
337                               Log2_32_Ceil(MaxGlobalType+1)));
338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
339     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
340     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
341     if (MaxAlignment == 0)                                      // Alignment.
342       Abbv->Add(BitCodeAbbrevOp(0));
343     else {
344       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
345       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
346                                Log2_32_Ceil(MaxEncAlignment+1)));
347     }
348     if (SectionMap.empty())                                    // Section.
349       Abbv->Add(BitCodeAbbrevOp(0));
350     else
351       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
352                                Log2_32_Ceil(SectionMap.size()+1)));
353     // Don't bother emitting vis + thread local.
354     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
355   }
356   
357   // Emit the global variable information.
358   SmallVector<unsigned, 64> Vals;
359   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
360        GV != E; ++GV) {
361     unsigned AbbrevToUse = 0;
362
363     // GLOBALVAR: [type, isconst, initid, 
364     //             linkage, alignment, section, visibility, threadlocal]
365     Vals.push_back(VE.getTypeID(GV->getType()));
366     Vals.push_back(GV->isConstant());
367     Vals.push_back(GV->isDeclaration() ? 0 :
368                    (VE.getValueID(GV->getInitializer()) + 1));
369     Vals.push_back(getEncodedLinkage(GV));
370     Vals.push_back(Log2_32(GV->getAlignment())+1);
371     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
372     if (GV->isThreadLocal() || 
373         GV->getVisibility() != GlobalValue::DefaultVisibility) {
374       Vals.push_back(getEncodedVisibility(GV));
375       Vals.push_back(GV->isThreadLocal());
376     } else {
377       AbbrevToUse = SimpleGVarAbbrev;
378     }
379     
380     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
381     Vals.clear();
382   }
383
384   // Emit the function proto information.
385   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
386     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
387     //             visibility]
388     Vals.push_back(VE.getTypeID(F->getType()));
389     Vals.push_back(F->getCallingConv());
390     Vals.push_back(F->isDeclaration());
391     Vals.push_back(getEncodedLinkage(F));
392     
393     // Note: we emit the param attr ID number for the function type of this
394     // function.  In the future, we intend for attrs to be properties of
395     // functions, instead of on the type.  This is to support this future work.
396     Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs()));
397     
398     Vals.push_back(Log2_32(F->getAlignment())+1);
399     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
400     Vals.push_back(getEncodedVisibility(F));
401     
402     unsigned AbbrevToUse = 0;
403     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
404     Vals.clear();
405   }
406   
407   
408   // Emit the alias information.
409   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
410        AI != E; ++AI) {
411     Vals.push_back(VE.getTypeID(AI->getType()));
412     Vals.push_back(VE.getValueID(AI->getAliasee()));
413     Vals.push_back(getEncodedLinkage(AI));
414     unsigned AbbrevToUse = 0;
415     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
416     Vals.clear();
417   }
418 }
419
420
421 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
422                            const ValueEnumerator &VE,
423                            BitstreamWriter &Stream, bool isGlobal) {
424   if (FirstVal == LastVal) return;
425   
426   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
427
428   unsigned AggregateAbbrev = 0;
429   unsigned String8Abbrev = 0;
430   unsigned CString7Abbrev = 0;
431   unsigned CString6Abbrev = 0;
432   // If this is a constant pool for the module, emit module-specific abbrevs.
433   if (isGlobal) {
434     // Abbrev for CST_CODE_AGGREGATE.
435     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
436     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
437     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
438     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
439     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
440
441     // Abbrev for CST_CODE_STRING.
442     Abbv = new BitCodeAbbrev();
443     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
445     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
446     String8Abbrev = Stream.EmitAbbrev(Abbv);
447     // Abbrev for CST_CODE_CSTRING.
448     Abbv = new BitCodeAbbrev();
449     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
450     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
452     CString7Abbrev = Stream.EmitAbbrev(Abbv);
453     // Abbrev for CST_CODE_CSTRING.
454     Abbv = new BitCodeAbbrev();
455     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
457     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
458     CString6Abbrev = Stream.EmitAbbrev(Abbv);
459   }  
460   
461   SmallVector<uint64_t, 64> Record;
462
463   const ValueEnumerator::ValueList &Vals = VE.getValues();
464   const Type *LastTy = 0;
465   for (unsigned i = FirstVal; i != LastVal; ++i) {
466     const Value *V = Vals[i].first;
467     // If we need to switch types, do so now.
468     if (V->getType() != LastTy) {
469       LastTy = V->getType();
470       Record.push_back(VE.getTypeID(LastTy));
471       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
472                         CONSTANTS_SETTYPE_ABBREV);
473       Record.clear();
474     }
475     
476     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
477       Record.push_back(unsigned(IA->hasSideEffects()));
478       
479       // Add the asm string.
480       const std::string &AsmStr = IA->getAsmString();
481       Record.push_back(AsmStr.size());
482       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
483         Record.push_back(AsmStr[i]);
484       
485       // Add the constraint string.
486       const std::string &ConstraintStr = IA->getConstraintString();
487       Record.push_back(ConstraintStr.size());
488       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
489         Record.push_back(ConstraintStr[i]);
490       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
491       Record.clear();
492       continue;
493     }
494     const Constant *C = cast<Constant>(V);
495     unsigned Code = -1U;
496     unsigned AbbrevToUse = 0;
497     if (C->isNullValue()) {
498       Code = bitc::CST_CODE_NULL;
499     } else if (isa<UndefValue>(C)) {
500       Code = bitc::CST_CODE_UNDEF;
501     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
502       if (IV->getBitWidth() <= 64) {
503         int64_t V = IV->getSExtValue();
504         if (V >= 0)
505           Record.push_back(V << 1);
506         else
507           Record.push_back((-V << 1) | 1);
508         Code = bitc::CST_CODE_INTEGER;
509         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
510       } else {                             // Wide integers, > 64 bits in size.
511         // We have an arbitrary precision integer value to write whose 
512         // bit width is > 64. However, in canonical unsigned integer 
513         // format it is likely that the high bits are going to be zero.
514         // So, we only write the number of active words.
515         unsigned NWords = IV->getValue().getActiveWords(); 
516         const uint64_t *RawWords = IV->getValue().getRawData();
517         for (unsigned i = 0; i != NWords; ++i) {
518           int64_t V = RawWords[i];
519           if (V >= 0)
520             Record.push_back(V << 1);
521           else
522             Record.push_back((-V << 1) | 1);
523         }
524         Code = bitc::CST_CODE_WIDE_INTEGER;
525       }
526     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
527       Code = bitc::CST_CODE_FLOAT;
528       const Type *Ty = CFP->getType();
529       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
530         Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
531       } else if (Ty == Type::X86_FP80Ty) {
532         // api needed to prevent premature destruction
533         APInt api = CFP->getValueAPF().convertToAPInt();
534         const uint64_t *p = api.getRawData();
535         Record.push_back(p[0]);
536         Record.push_back((uint16_t)p[1]);
537       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
538         APInt api = CFP->getValueAPF().convertToAPInt();
539         const uint64_t *p = api.getRawData();
540         Record.push_back(p[0]);
541         Record.push_back(p[1]);
542       } else {
543         assert (0 && "Unknown FP type!");
544       }
545     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
546       // Emit constant strings specially.
547       unsigned NumOps = C->getNumOperands();
548       // If this is a null-terminated string, use the denser CSTRING encoding.
549       if (C->getOperand(NumOps-1)->isNullValue()) {
550         Code = bitc::CST_CODE_CSTRING;
551         --NumOps;  // Don't encode the null, which isn't allowed by char6.
552       } else {
553         Code = bitc::CST_CODE_STRING;
554         AbbrevToUse = String8Abbrev;
555       }
556       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
557       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
558       for (unsigned i = 0; i != NumOps; ++i) {
559         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
560         Record.push_back(V);
561         isCStr7 &= (V & 128) == 0;
562         if (isCStrChar6) 
563           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
564       }
565       
566       if (isCStrChar6)
567         AbbrevToUse = CString6Abbrev;
568       else if (isCStr7)
569         AbbrevToUse = CString7Abbrev;
570     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
571                isa<ConstantVector>(V)) {
572       Code = bitc::CST_CODE_AGGREGATE;
573       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
574         Record.push_back(VE.getValueID(C->getOperand(i)));
575       AbbrevToUse = AggregateAbbrev;
576     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
577       switch (CE->getOpcode()) {
578       default:
579         if (Instruction::isCast(CE->getOpcode())) {
580           Code = bitc::CST_CODE_CE_CAST;
581           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
582           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
583           Record.push_back(VE.getValueID(C->getOperand(0)));
584           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
585         } else {
586           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
587           Code = bitc::CST_CODE_CE_BINOP;
588           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
589           Record.push_back(VE.getValueID(C->getOperand(0)));
590           Record.push_back(VE.getValueID(C->getOperand(1)));
591         }
592         break;
593       case Instruction::GetElementPtr:
594         Code = bitc::CST_CODE_CE_GEP;
595         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
596           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
597           Record.push_back(VE.getValueID(C->getOperand(i)));
598         }
599         break;
600       case Instruction::Select:
601         Code = bitc::CST_CODE_CE_SELECT;
602         Record.push_back(VE.getValueID(C->getOperand(0)));
603         Record.push_back(VE.getValueID(C->getOperand(1)));
604         Record.push_back(VE.getValueID(C->getOperand(2)));
605         break;
606       case Instruction::ExtractElement:
607         Code = bitc::CST_CODE_CE_EXTRACTELT;
608         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
609         Record.push_back(VE.getValueID(C->getOperand(0)));
610         Record.push_back(VE.getValueID(C->getOperand(1)));
611         break;
612       case Instruction::InsertElement:
613         Code = bitc::CST_CODE_CE_INSERTELT;
614         Record.push_back(VE.getValueID(C->getOperand(0)));
615         Record.push_back(VE.getValueID(C->getOperand(1)));
616         Record.push_back(VE.getValueID(C->getOperand(2)));
617         break;
618       case Instruction::ShuffleVector:
619         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
620         Record.push_back(VE.getValueID(C->getOperand(0)));
621         Record.push_back(VE.getValueID(C->getOperand(1)));
622         Record.push_back(VE.getValueID(C->getOperand(2)));
623         break;
624       case Instruction::ICmp:
625       case Instruction::FCmp:
626         Code = bitc::CST_CODE_CE_CMP;
627         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
628         Record.push_back(VE.getValueID(C->getOperand(0)));
629         Record.push_back(VE.getValueID(C->getOperand(1)));
630         Record.push_back(CE->getPredicate());
631         break;
632       }
633     } else {
634       assert(0 && "Unknown constant!");
635     }
636     Stream.EmitRecord(Code, Record, AbbrevToUse);
637     Record.clear();
638   }
639
640   Stream.ExitBlock();
641 }
642
643 static void WriteModuleConstants(const ValueEnumerator &VE,
644                                  BitstreamWriter &Stream) {
645   const ValueEnumerator::ValueList &Vals = VE.getValues();
646   
647   // Find the first constant to emit, which is the first non-globalvalue value.
648   // We know globalvalues have been emitted by WriteModuleInfo.
649   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
650     if (!isa<GlobalValue>(Vals[i].first)) {
651       WriteConstants(i, Vals.size(), VE, Stream, true);
652       return;
653     }
654   }
655 }
656
657 /// PushValueAndType - The file has to encode both the value and type id for
658 /// many values, because we need to know what type to create for forward
659 /// references.  However, most operands are not forward references, so this type
660 /// field is not needed.
661 ///
662 /// This function adds V's value ID to Vals.  If the value ID is higher than the
663 /// instruction ID, then it is a forward reference, and it also includes the
664 /// type ID.
665 static bool PushValueAndType(Value *V, unsigned InstID,
666                              SmallVector<unsigned, 64> &Vals, 
667                              ValueEnumerator &VE) {
668   unsigned ValID = VE.getValueID(V);
669   Vals.push_back(ValID);
670   if (ValID >= InstID) {
671     Vals.push_back(VE.getTypeID(V->getType()));
672     return true;
673   }
674   return false;
675 }
676
677 /// WriteInstruction - Emit an instruction to the specified stream.
678 static void WriteInstruction(const Instruction &I, unsigned InstID,
679                              ValueEnumerator &VE, BitstreamWriter &Stream,
680                              SmallVector<unsigned, 64> &Vals) {
681   unsigned Code = 0;
682   unsigned AbbrevToUse = 0;
683   switch (I.getOpcode()) {
684   default:
685     if (Instruction::isCast(I.getOpcode())) {
686       Code = bitc::FUNC_CODE_INST_CAST;
687       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
688         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
689       Vals.push_back(VE.getTypeID(I.getType()));
690       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
691     } else {
692       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
693       Code = bitc::FUNC_CODE_INST_BINOP;
694       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
695         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
696       Vals.push_back(VE.getValueID(I.getOperand(1)));
697       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
698     }
699     break;
700
701   case Instruction::GetElementPtr:
702     Code = bitc::FUNC_CODE_INST_GEP;
703     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
704       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
705     break;
706   case Instruction::Select:
707     Code = bitc::FUNC_CODE_INST_SELECT;
708     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
709     Vals.push_back(VE.getValueID(I.getOperand(2)));
710     Vals.push_back(VE.getValueID(I.getOperand(0)));
711     break;
712   case Instruction::ExtractElement:
713     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
714     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
715     Vals.push_back(VE.getValueID(I.getOperand(1)));
716     break;
717   case Instruction::InsertElement:
718     Code = bitc::FUNC_CODE_INST_INSERTELT;
719     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
720     Vals.push_back(VE.getValueID(I.getOperand(1)));
721     Vals.push_back(VE.getValueID(I.getOperand(2)));
722     break;
723   case Instruction::ShuffleVector:
724     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
725     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
726     Vals.push_back(VE.getValueID(I.getOperand(1)));
727     Vals.push_back(VE.getValueID(I.getOperand(2)));
728     break;
729   case Instruction::ICmp:
730   case Instruction::FCmp:
731     Code = bitc::FUNC_CODE_INST_CMP;
732     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
733     Vals.push_back(VE.getValueID(I.getOperand(1)));
734     Vals.push_back(cast<CmpInst>(I).getPredicate());
735     break;
736
737   case Instruction::Ret:
738     Code = bitc::FUNC_CODE_INST_RET;
739     if (!I.getNumOperands())
740       AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
741     else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
742       AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
743     break;
744   case Instruction::Br:
745     Code = bitc::FUNC_CODE_INST_BR;
746     Vals.push_back(VE.getValueID(I.getOperand(0)));
747     if (cast<BranchInst>(I).isConditional()) {
748       Vals.push_back(VE.getValueID(I.getOperand(1)));
749       Vals.push_back(VE.getValueID(I.getOperand(2)));
750     }
751     break;
752   case Instruction::Switch:
753     Code = bitc::FUNC_CODE_INST_SWITCH;
754     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
755     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
756       Vals.push_back(VE.getValueID(I.getOperand(i)));
757     break;
758   case Instruction::Invoke: {
759     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
760     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
761     Code = bitc::FUNC_CODE_INST_INVOKE;
762     
763     // Note: we emit the param attr ID number for the function type of this
764     // function.  In the future, we intend for attrs to be properties of
765     // functions, instead of on the type.  This is to support this future work.
766     Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
767     
768     Vals.push_back(cast<InvokeInst>(I).getCallingConv());
769     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
770     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
771     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
772     
773     // Emit value #'s for the fixed parameters.
774     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
775       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
776
777     // Emit type/value pairs for varargs params.
778     if (FTy->isVarArg()) {
779       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
780            i != e; ++i)
781         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
782     }
783     break;
784   }
785   case Instruction::Unwind:
786     Code = bitc::FUNC_CODE_INST_UNWIND;
787     break;
788   case Instruction::Unreachable:
789     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
790     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
791     break;
792   
793   case Instruction::PHI:
794     Code = bitc::FUNC_CODE_INST_PHI;
795     Vals.push_back(VE.getTypeID(I.getType()));
796     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
797       Vals.push_back(VE.getValueID(I.getOperand(i)));
798     break;
799     
800   case Instruction::Malloc:
801     Code = bitc::FUNC_CODE_INST_MALLOC;
802     Vals.push_back(VE.getTypeID(I.getType()));
803     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
804     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
805     break;
806     
807   case Instruction::Free:
808     Code = bitc::FUNC_CODE_INST_FREE;
809     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
810     break;
811     
812   case Instruction::Alloca:
813     Code = bitc::FUNC_CODE_INST_ALLOCA;
814     Vals.push_back(VE.getTypeID(I.getType()));
815     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
816     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
817     break;
818     
819   case Instruction::Load:
820     Code = bitc::FUNC_CODE_INST_LOAD;
821     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
822       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
823       
824     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
825     Vals.push_back(cast<LoadInst>(I).isVolatile());
826     break;
827   case Instruction::Store:
828     Code = bitc::FUNC_CODE_INST_STORE;
829     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
830     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
831     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
832     Vals.push_back(cast<StoreInst>(I).isVolatile());
833     break;
834   case Instruction::Call: {
835     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
836     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
837
838     Code = bitc::FUNC_CODE_INST_CALL;
839     
840     // Note: we emit the param attr ID number for the function type of this
841     // function.  In the future, we intend for attrs to be properties of
842     // functions, instead of on the type.  This is to support this future work.
843     Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
844     
845     Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
846                    unsigned(cast<CallInst>(I).isTailCall()));
847     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // Callee
848     
849     // Emit value #'s for the fixed parameters.
850     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
851       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
852       
853     // Emit type/value pairs for varargs params.
854     if (FTy->isVarArg()) {
855       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
856       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
857            i != e; ++i)
858         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
859     }
860     break;
861   }
862   case Instruction::VAArg:
863     Code = bitc::FUNC_CODE_INST_VAARG;
864     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
865     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
866     Vals.push_back(VE.getTypeID(I.getType())); // restype.
867     break;
868   }
869   
870   Stream.EmitRecord(Code, Vals, AbbrevToUse);
871   Vals.clear();
872 }
873
874 // Emit names for globals/functions etc.
875 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
876                                   const ValueEnumerator &VE,
877                                   BitstreamWriter &Stream) {
878   if (VST.empty()) return;
879   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
880
881   // FIXME: Set up the abbrev, we know how many values there are!
882   // FIXME: We know if the type names can use 7-bit ascii.
883   SmallVector<unsigned, 64> NameVals;
884   
885   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
886        SI != SE; ++SI) {
887     
888     const ValueName &Name = *SI;
889     
890     // Figure out the encoding to use for the name.
891     bool is7Bit = true;
892     bool isChar6 = true;
893     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
894          C != E; ++C) {
895       if (isChar6) 
896         isChar6 = BitCodeAbbrevOp::isChar6(*C);
897       if ((unsigned char)*C & 128) {
898         is7Bit = false;
899         break;  // don't bother scanning the rest.
900       }
901     }
902     
903     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
904     
905     // VST_ENTRY:   [valueid, namechar x N]
906     // VST_BBENTRY: [bbid, namechar x N]
907     unsigned Code;
908     if (isa<BasicBlock>(SI->getValue())) {
909       Code = bitc::VST_CODE_BBENTRY;
910       if (isChar6)
911         AbbrevToUse = VST_BBENTRY_6_ABBREV;
912     } else {
913       Code = bitc::VST_CODE_ENTRY;
914       if (isChar6)
915         AbbrevToUse = VST_ENTRY_6_ABBREV;
916       else if (is7Bit)
917         AbbrevToUse = VST_ENTRY_7_ABBREV;
918     }
919     
920     NameVals.push_back(VE.getValueID(SI->getValue()));
921     for (const char *P = Name.getKeyData(),
922          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
923       NameVals.push_back((unsigned char)*P);
924     
925     // Emit the finished record.
926     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
927     NameVals.clear();
928   }
929   Stream.ExitBlock();
930 }
931
932 /// WriteFunction - Emit a function body to the module stream.
933 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
934                           BitstreamWriter &Stream) {
935   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
936   VE.incorporateFunction(F);
937
938   SmallVector<unsigned, 64> Vals;
939   
940   // Emit the number of basic blocks, so the reader can create them ahead of
941   // time.
942   Vals.push_back(VE.getBasicBlocks().size());
943   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
944   Vals.clear();
945   
946   // If there are function-local constants, emit them now.
947   unsigned CstStart, CstEnd;
948   VE.getFunctionConstantRange(CstStart, CstEnd);
949   WriteConstants(CstStart, CstEnd, VE, Stream, false);
950   
951   // Keep a running idea of what the instruction ID is. 
952   unsigned InstID = CstEnd;
953   
954   // Finally, emit all the instructions, in order.
955   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
956     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
957          I != E; ++I) {
958       WriteInstruction(*I, InstID, VE, Stream, Vals);
959       if (I->getType() != Type::VoidTy)
960         ++InstID;
961     }
962   
963   // Emit names for all the instructions etc.
964   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
965     
966   VE.purgeFunction();
967   Stream.ExitBlock();
968 }
969
970 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
971 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
972                                  const ValueEnumerator &VE,
973                                  BitstreamWriter &Stream) {
974   if (TST.empty()) return;
975   
976   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
977   
978   // 7-bit fixed width VST_CODE_ENTRY strings.
979   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
980   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
981   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
982                             Log2_32_Ceil(VE.getTypes().size()+1)));
983   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
984   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
985   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
986   
987   SmallVector<unsigned, 64> NameVals;
988   
989   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
990        TI != TE; ++TI) {
991     // TST_ENTRY: [typeid, namechar x N]
992     NameVals.push_back(VE.getTypeID(TI->second));
993     
994     const std::string &Str = TI->first;
995     bool is7Bit = true;
996     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
997       NameVals.push_back((unsigned char)Str[i]);
998       if (Str[i] & 128)
999         is7Bit = false;
1000     }
1001     
1002     // Emit the finished record.
1003     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1004     NameVals.clear();
1005   }
1006   
1007   Stream.ExitBlock();
1008 }
1009
1010 // Emit blockinfo, which defines the standard abbreviations etc.
1011 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1012   // We only want to emit block info records for blocks that have multiple
1013   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1014   // blocks can defined their abbrevs inline.
1015   Stream.EnterBlockInfoBlock(2);
1016   
1017   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1018     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1022     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1023     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1024                                    Abbv) != VST_ENTRY_8_ABBREV)
1025       assert(0 && "Unexpected abbrev ordering!");
1026   }
1027   
1028   { // 7-bit fixed width VST_ENTRY strings.
1029     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1030     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1031     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1033     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1034     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1035                                    Abbv) != VST_ENTRY_7_ABBREV)
1036       assert(0 && "Unexpected abbrev ordering!");
1037   }
1038   { // 6-bit char6 VST_ENTRY strings.
1039     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1040     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1041     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1042     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1044     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1045                                    Abbv) != VST_ENTRY_6_ABBREV)
1046       assert(0 && "Unexpected abbrev ordering!");
1047   }
1048   { // 6-bit char6 VST_BBENTRY strings.
1049     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1050     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1051     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1052     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1054     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1055                                    Abbv) != VST_BBENTRY_6_ABBREV)
1056       assert(0 && "Unexpected abbrev ordering!");
1057   }
1058   
1059   
1060   
1061   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1062     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1063     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1064     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1065                               Log2_32_Ceil(VE.getTypes().size()+1)));
1066     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1067                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1068       assert(0 && "Unexpected abbrev ordering!");
1069   }
1070   
1071   { // INTEGER abbrev for CONSTANTS_BLOCK.
1072     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1073     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1074     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1075     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1076                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1077       assert(0 && "Unexpected abbrev ordering!");
1078   }
1079   
1080   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1081     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1082     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1083     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1084     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1085                               Log2_32_Ceil(VE.getTypes().size()+1)));
1086     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1087
1088     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1089                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1090       assert(0 && "Unexpected abbrev ordering!");
1091   }
1092   { // NULL abbrev for CONSTANTS_BLOCK.
1093     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1094     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1095     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1096                                    Abbv) != CONSTANTS_NULL_Abbrev)
1097       assert(0 && "Unexpected abbrev ordering!");
1098   }
1099   
1100   // FIXME: This should only use space for first class types!
1101  
1102   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1103     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1104     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1105     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1106     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1107     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1108     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1109                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1110       assert(0 && "Unexpected abbrev ordering!");
1111   }
1112   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1113     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1114     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1115     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1116     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1117     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1118     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1119                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1120       assert(0 && "Unexpected abbrev ordering!");
1121   }
1122   { // INST_CAST abbrev for FUNCTION_BLOCK.
1123     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1124     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1127                               Log2_32_Ceil(VE.getTypes().size()+1)));
1128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1129     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1130                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1131       assert(0 && "Unexpected abbrev ordering!");
1132   }
1133   
1134   { // INST_RET abbrev for FUNCTION_BLOCK.
1135     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1136     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1137     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1138                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1139       assert(0 && "Unexpected abbrev ordering!");
1140   }
1141   { // INST_RET abbrev for FUNCTION_BLOCK.
1142     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1143     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1144     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1145     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1146                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1147       assert(0 && "Unexpected abbrev ordering!");
1148   }
1149   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1150     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1151     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1152     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1153                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1154       assert(0 && "Unexpected abbrev ordering!");
1155   }
1156   
1157   Stream.ExitBlock();
1158 }
1159
1160
1161 /// WriteModule - Emit the specified module to the bitstream.
1162 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1163   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1164   
1165   // Emit the version number if it is non-zero.
1166   if (CurVersion) {
1167     SmallVector<unsigned, 1> Vals;
1168     Vals.push_back(CurVersion);
1169     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1170   }
1171   
1172   // Analyze the module, enumerating globals, functions, etc.
1173   ValueEnumerator VE(M);
1174
1175   // Emit blockinfo, which defines the standard abbreviations etc.
1176   WriteBlockInfo(VE, Stream);
1177   
1178   // Emit information about parameter attributes.
1179   WriteParamAttrTable(VE, Stream);
1180   
1181   // Emit information describing all of the types in the module.
1182   WriteTypeTable(VE, Stream);
1183   
1184   // Emit top-level description of module, including target triple, inline asm,
1185   // descriptors for global variables, and function prototype info.
1186   WriteModuleInfo(M, VE, Stream);
1187   
1188   // Emit constants.
1189   WriteModuleConstants(VE, Stream);
1190   
1191   // If we have any aggregate values in the value table, purge them - these can
1192   // only be used to initialize global variables.  Doing so makes the value
1193   // namespace smaller for code in functions.
1194   int NumNonAggregates = VE.PurgeAggregateValues();
1195   if (NumNonAggregates != -1) {
1196     SmallVector<unsigned, 1> Vals;
1197     Vals.push_back(NumNonAggregates);
1198     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1199   }
1200   
1201   // Emit function bodies.
1202   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1203     if (!I->isDeclaration())
1204       WriteFunction(*I, VE, Stream);
1205   
1206   // Emit the type symbol table information.
1207   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1208   
1209   // Emit names for globals/functions etc.
1210   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1211   
1212   Stream.ExitBlock();
1213 }
1214
1215
1216 /// WriteBitcodeToFile - Write the specified module to the specified output
1217 /// stream.
1218 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1219   std::vector<unsigned char> Buffer;
1220   BitstreamWriter Stream(Buffer);
1221   
1222   Buffer.reserve(256*1024);
1223   
1224   // Emit the file header.
1225   Stream.Emit((unsigned)'B', 8);
1226   Stream.Emit((unsigned)'C', 8);
1227   Stream.Emit(0x0, 4);
1228   Stream.Emit(0xC, 4);
1229   Stream.Emit(0xE, 4);
1230   Stream.Emit(0xD, 4);
1231
1232   // Emit the module.
1233   WriteModule(M, Stream);
1234   
1235   // Write the generated bitstream to "Out".
1236   Out.write((char*)&Buffer.front(), Buffer.size());
1237   
1238   // Make sure it hits disk now.
1239   Out.flush();
1240 }