Read and write function notes.
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/Streams.h"
27 #include "llvm/System/Program.h"
28 using namespace llvm;
29
30 /// These are manifest constants used by the bitcode writer. They do not need to
31 /// be kept in sync with the reader, but need to be consistent within this file.
32 enum {
33   CurVersion = 0,
34   
35   // VALUE_SYMTAB_BLOCK abbrev id's.
36   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
37   VST_ENTRY_7_ABBREV,
38   VST_ENTRY_6_ABBREV,
39   VST_BBENTRY_6_ABBREV,
40   
41   // CONSTANTS_BLOCK abbrev id's.
42   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
43   CONSTANTS_INTEGER_ABBREV,
44   CONSTANTS_CE_CAST_Abbrev,
45   CONSTANTS_NULL_Abbrev,
46   
47   // FUNCTION_BLOCK abbrev id's.
48   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
49   FUNCTION_INST_BINOP_ABBREV,
50   FUNCTION_INST_CAST_ABBREV,
51   FUNCTION_INST_RET_VOID_ABBREV,
52   FUNCTION_INST_RET_VAL_ABBREV,
53   FUNCTION_INST_UNREACHABLE_ABBREV
54 };
55
56
57 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
58   switch (Opcode) {
59   default: assert(0 && "Unknown cast instruction!");
60   case Instruction::Trunc   : return bitc::CAST_TRUNC;
61   case Instruction::ZExt    : return bitc::CAST_ZEXT;
62   case Instruction::SExt    : return bitc::CAST_SEXT;
63   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
64   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
65   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
66   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
67   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
68   case Instruction::FPExt   : return bitc::CAST_FPEXT;
69   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
70   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
71   case Instruction::BitCast : return bitc::CAST_BITCAST;
72   }
73 }
74
75 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
76   switch (Opcode) {
77   default: assert(0 && "Unknown binary instruction!");
78   case Instruction::Add:  return bitc::BINOP_ADD;
79   case Instruction::Sub:  return bitc::BINOP_SUB;
80   case Instruction::Mul:  return bitc::BINOP_MUL;
81   case Instruction::UDiv: return bitc::BINOP_UDIV;
82   case Instruction::FDiv:
83   case Instruction::SDiv: return bitc::BINOP_SDIV;
84   case Instruction::URem: return bitc::BINOP_UREM;
85   case Instruction::FRem:
86   case Instruction::SRem: return bitc::BINOP_SREM;
87   case Instruction::Shl:  return bitc::BINOP_SHL;
88   case Instruction::LShr: return bitc::BINOP_LSHR;
89   case Instruction::AShr: return bitc::BINOP_ASHR;
90   case Instruction::And:  return bitc::BINOP_AND;
91   case Instruction::Or:   return bitc::BINOP_OR;
92   case Instruction::Xor:  return bitc::BINOP_XOR;
93   }
94 }
95
96
97
98 static void WriteStringRecord(unsigned Code, const std::string &Str, 
99                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
100   SmallVector<unsigned, 64> Vals;
101   
102   // Code: [strchar x N]
103   for (unsigned i = 0, e = Str.size(); i != e; ++i)
104     Vals.push_back(Str[i]);
105     
106   // Emit the finished record.
107   Stream.EmitRecord(Code, Vals, AbbrevToUse);
108 }
109
110 // Emit information about parameter attributes.
111 static void WriteParamAttrTable(const ValueEnumerator &VE, 
112                                 BitstreamWriter &Stream) {
113   const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
114   if (Attrs.empty()) return;
115   
116   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
117
118   SmallVector<uint64_t, 64> Record;
119   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
120     const PAListPtr &A = Attrs[i];
121     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
122       const ParamAttrsWithIndex &PAWI = A.getSlot(i);
123       Record.push_back(PAWI.Index);
124       Record.push_back(PAWI.Attrs);
125     }
126     
127     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
128     Record.clear();
129   }
130   
131   Stream.ExitBlock();
132 }
133
134 /// WriteTypeTable - Write out the type table for a module.
135 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
136   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
137   
138   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
139   SmallVector<uint64_t, 64> TypeVals;
140   
141   // Abbrev for TYPE_CODE_POINTER.
142   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
143   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
144   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
145                             Log2_32_Ceil(VE.getTypes().size()+1)));
146   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
147   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
148   
149   // Abbrev for TYPE_CODE_FUNCTION.
150   Abbv = new BitCodeAbbrev();
151   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
152   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
153   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
156                             Log2_32_Ceil(VE.getTypes().size()+1)));
157   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
158   
159   // Abbrev for TYPE_CODE_STRUCT.
160   Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
164   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
165                             Log2_32_Ceil(VE.getTypes().size()+1)));
166   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
167  
168   // Abbrev for TYPE_CODE_ARRAY.
169   Abbv = new BitCodeAbbrev();
170   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173                             Log2_32_Ceil(VE.getTypes().size()+1)));
174   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
175   
176   // Emit an entry count so the reader can reserve space.
177   TypeVals.push_back(TypeList.size());
178   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
179   TypeVals.clear();
180   
181   // Loop over all of the types, emitting each in turn.
182   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
183     const Type *T = TypeList[i].first;
184     int AbbrevToUse = 0;
185     unsigned Code = 0;
186     
187     switch (T->getTypeID()) {
188     default: assert(0 && "Unknown type!");
189     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
190     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
191     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
192     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
193     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
194     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
195     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
196     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
197     case Type::IntegerTyID:
198       // INTEGER: [width]
199       Code = bitc::TYPE_CODE_INTEGER;
200       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
201       break;
202     case Type::PointerTyID: {
203       const PointerType *PTy = cast<PointerType>(T);
204       // POINTER: [pointee type, address space]
205       Code = bitc::TYPE_CODE_POINTER;
206       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
207       unsigned AddressSpace = PTy->getAddressSpace();
208       TypeVals.push_back(AddressSpace);
209       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
210       break;
211     }
212     case Type::FunctionTyID: {
213       const FunctionType *FT = cast<FunctionType>(T);
214       // FUNCTION: [isvararg, attrid, retty, paramty x N]
215       Code = bitc::TYPE_CODE_FUNCTION;
216       TypeVals.push_back(FT->isVarArg());
217       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
218       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
219       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
220         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
221       AbbrevToUse = FunctionAbbrev;
222       break;
223     }
224     case Type::StructTyID: {
225       const StructType *ST = cast<StructType>(T);
226       // STRUCT: [ispacked, eltty x N]
227       Code = bitc::TYPE_CODE_STRUCT;
228       TypeVals.push_back(ST->isPacked());
229       // Output all of the element types.
230       for (StructType::element_iterator I = ST->element_begin(),
231            E = ST->element_end(); I != E; ++I)
232         TypeVals.push_back(VE.getTypeID(*I));
233       AbbrevToUse = StructAbbrev;
234       break;
235     }
236     case Type::ArrayTyID: {
237       const ArrayType *AT = cast<ArrayType>(T);
238       // ARRAY: [numelts, eltty]
239       Code = bitc::TYPE_CODE_ARRAY;
240       TypeVals.push_back(AT->getNumElements());
241       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
242       AbbrevToUse = ArrayAbbrev;
243       break;
244     }
245     case Type::VectorTyID: {
246       const VectorType *VT = cast<VectorType>(T);
247       // VECTOR [numelts, eltty]
248       Code = bitc::TYPE_CODE_VECTOR;
249       TypeVals.push_back(VT->getNumElements());
250       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
251       break;
252     }
253     }
254
255     // Emit the finished record.
256     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
257     TypeVals.clear();
258   }
259   
260   Stream.ExitBlock();
261 }
262
263 static unsigned getEncodedLinkage(const GlobalValue *GV) {
264   switch (GV->getLinkage()) {
265   default: assert(0 && "Invalid linkage!");
266   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
267   case GlobalValue::ExternalLinkage:     return 0;
268   case GlobalValue::WeakLinkage:         return 1;
269   case GlobalValue::AppendingLinkage:    return 2;
270   case GlobalValue::InternalLinkage:     return 3;
271   case GlobalValue::LinkOnceLinkage:     return 4;
272   case GlobalValue::DLLImportLinkage:    return 5;
273   case GlobalValue::DLLExportLinkage:    return 6;
274   case GlobalValue::ExternalWeakLinkage: return 7;
275   case GlobalValue::CommonLinkage:       return 8;
276   }
277 }
278
279 static unsigned getEncodedVisibility(const GlobalValue *GV) {
280   switch (GV->getVisibility()) {
281   default: assert(0 && "Invalid visibility!");
282   case GlobalValue::DefaultVisibility:   return 0;
283   case GlobalValue::HiddenVisibility:    return 1;
284   case GlobalValue::ProtectedVisibility: return 2;
285   }
286 }
287
288 // Emit top-level description of module, including target triple, inline asm,
289 // descriptors for global variables, and function prototype info.
290 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
291                             BitstreamWriter &Stream) {
292   // Emit the list of dependent libraries for the Module.
293   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
294     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
295
296   // Emit various pieces of data attached to a module.
297   if (!M->getTargetTriple().empty())
298     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
299                       0/*TODO*/, Stream);
300   if (!M->getDataLayout().empty())
301     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
302                       0/*TODO*/, Stream);
303   if (!M->getModuleInlineAsm().empty())
304     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
305                       0/*TODO*/, Stream);
306
307   // Emit information about sections and GC, computing how many there are. Also
308   // compute the maximum alignment value.
309   std::map<std::string, unsigned> SectionMap;
310   std::map<std::string, unsigned> GCMap;
311   unsigned MaxAlignment = 0;
312   unsigned MaxGlobalType = 0;
313   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
314        GV != E; ++GV) {
315     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
316     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
317     
318     if (!GV->hasSection()) continue;
319     // Give section names unique ID's.
320     unsigned &Entry = SectionMap[GV->getSection()];
321     if (Entry != 0) continue;
322     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
323                       0/*TODO*/, Stream);
324     Entry = SectionMap.size();
325   }
326   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
327     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
328     if (F->hasSection()) {
329       // Give section names unique ID's.
330       unsigned &Entry = SectionMap[F->getSection()];
331       if (!Entry) {
332         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
333                           0/*TODO*/, Stream);
334         Entry = SectionMap.size();
335       }
336     }
337     if (F->hasGC()) {
338       // Same for GC names.
339       unsigned &Entry = GCMap[F->getGC()];
340       if (!Entry) {
341         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
342                           0/*TODO*/, Stream);
343         Entry = GCMap.size();
344       }
345     }
346   }
347   
348   // Emit abbrev for globals, now that we know # sections and max alignment.
349   unsigned SimpleGVarAbbrev = 0;
350   if (!M->global_empty()) { 
351     // Add an abbrev for common globals with no visibility or thread localness.
352     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
353     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
355                               Log2_32_Ceil(MaxGlobalType+1)));
356     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
357     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
358     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
359     if (MaxAlignment == 0)                                      // Alignment.
360       Abbv->Add(BitCodeAbbrevOp(0));
361     else {
362       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
363       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
364                                Log2_32_Ceil(MaxEncAlignment+1)));
365     }
366     if (SectionMap.empty())                                    // Section.
367       Abbv->Add(BitCodeAbbrevOp(0));
368     else
369       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
370                                Log2_32_Ceil(SectionMap.size()+1)));
371     // Don't bother emitting vis + thread local.
372     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
373   }
374   
375   // Emit the global variable information.
376   SmallVector<unsigned, 64> Vals;
377   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
378        GV != E; ++GV) {
379     unsigned AbbrevToUse = 0;
380
381     // GLOBALVAR: [type, isconst, initid, 
382     //             linkage, alignment, section, visibility, threadlocal]
383     Vals.push_back(VE.getTypeID(GV->getType()));
384     Vals.push_back(GV->isConstant());
385     Vals.push_back(GV->isDeclaration() ? 0 :
386                    (VE.getValueID(GV->getInitializer()) + 1));
387     Vals.push_back(getEncodedLinkage(GV));
388     Vals.push_back(Log2_32(GV->getAlignment())+1);
389     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
390     if (GV->isThreadLocal() || 
391         GV->getVisibility() != GlobalValue::DefaultVisibility) {
392       Vals.push_back(getEncodedVisibility(GV));
393       Vals.push_back(GV->isThreadLocal());
394     } else {
395       AbbrevToUse = SimpleGVarAbbrev;
396     }
397     
398     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
399     Vals.clear();
400   }
401
402   // Emit the function proto information.
403   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
404     // FUNCTION:  [type, callingconv, isproto, paramattr,
405     //             linkage, alignment, section, visibility, gc]
406     Vals.push_back(VE.getTypeID(F->getType()));
407     Vals.push_back(F->getCallingConv());
408     Vals.push_back(F->isDeclaration());
409     Vals.push_back(getEncodedLinkage(F));
410     Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
411     Vals.push_back(Log2_32(F->getAlignment())+1);
412     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
413     Vals.push_back(getEncodedVisibility(F));
414     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
415     Vals.push_back(F->getNotes());
416     
417     unsigned AbbrevToUse = 0;
418     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
419     Vals.clear();
420   }
421   
422   
423   // Emit the alias information.
424   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
425        AI != E; ++AI) {
426     Vals.push_back(VE.getTypeID(AI->getType()));
427     Vals.push_back(VE.getValueID(AI->getAliasee()));
428     Vals.push_back(getEncodedLinkage(AI));
429     Vals.push_back(getEncodedVisibility(AI));
430     unsigned AbbrevToUse = 0;
431     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
432     Vals.clear();
433   }
434 }
435
436
437 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
438                            const ValueEnumerator &VE,
439                            BitstreamWriter &Stream, bool isGlobal) {
440   if (FirstVal == LastVal) return;
441   
442   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
443
444   unsigned AggregateAbbrev = 0;
445   unsigned String8Abbrev = 0;
446   unsigned CString7Abbrev = 0;
447   unsigned CString6Abbrev = 0;
448   // If this is a constant pool for the module, emit module-specific abbrevs.
449   if (isGlobal) {
450     // Abbrev for CST_CODE_AGGREGATE.
451     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
452     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
455     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
456
457     // Abbrev for CST_CODE_STRING.
458     Abbv = new BitCodeAbbrev();
459     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
460     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
461     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
462     String8Abbrev = Stream.EmitAbbrev(Abbv);
463     // Abbrev for CST_CODE_CSTRING.
464     Abbv = new BitCodeAbbrev();
465     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
466     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
467     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
468     CString7Abbrev = Stream.EmitAbbrev(Abbv);
469     // Abbrev for CST_CODE_CSTRING.
470     Abbv = new BitCodeAbbrev();
471     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
472     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
473     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
474     CString6Abbrev = Stream.EmitAbbrev(Abbv);
475   }  
476   
477   SmallVector<uint64_t, 64> Record;
478
479   const ValueEnumerator::ValueList &Vals = VE.getValues();
480   const Type *LastTy = 0;
481   for (unsigned i = FirstVal; i != LastVal; ++i) {
482     const Value *V = Vals[i].first;
483     // If we need to switch types, do so now.
484     if (V->getType() != LastTy) {
485       LastTy = V->getType();
486       Record.push_back(VE.getTypeID(LastTy));
487       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
488                         CONSTANTS_SETTYPE_ABBREV);
489       Record.clear();
490     }
491     
492     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
493       Record.push_back(unsigned(IA->hasSideEffects()));
494       
495       // Add the asm string.
496       const std::string &AsmStr = IA->getAsmString();
497       Record.push_back(AsmStr.size());
498       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
499         Record.push_back(AsmStr[i]);
500       
501       // Add the constraint string.
502       const std::string &ConstraintStr = IA->getConstraintString();
503       Record.push_back(ConstraintStr.size());
504       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
505         Record.push_back(ConstraintStr[i]);
506       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
507       Record.clear();
508       continue;
509     }
510     const Constant *C = cast<Constant>(V);
511     unsigned Code = -1U;
512     unsigned AbbrevToUse = 0;
513     if (C->isNullValue()) {
514       Code = bitc::CST_CODE_NULL;
515     } else if (isa<UndefValue>(C)) {
516       Code = bitc::CST_CODE_UNDEF;
517     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
518       if (IV->getBitWidth() <= 64) {
519         int64_t V = IV->getSExtValue();
520         if (V >= 0)
521           Record.push_back(V << 1);
522         else
523           Record.push_back((-V << 1) | 1);
524         Code = bitc::CST_CODE_INTEGER;
525         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
526       } else {                             // Wide integers, > 64 bits in size.
527         // We have an arbitrary precision integer value to write whose 
528         // bit width is > 64. However, in canonical unsigned integer 
529         // format it is likely that the high bits are going to be zero.
530         // So, we only write the number of active words.
531         unsigned NWords = IV->getValue().getActiveWords(); 
532         const uint64_t *RawWords = IV->getValue().getRawData();
533         for (unsigned i = 0; i != NWords; ++i) {
534           int64_t V = RawWords[i];
535           if (V >= 0)
536             Record.push_back(V << 1);
537           else
538             Record.push_back((-V << 1) | 1);
539         }
540         Code = bitc::CST_CODE_WIDE_INTEGER;
541       }
542     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
543       Code = bitc::CST_CODE_FLOAT;
544       const Type *Ty = CFP->getType();
545       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
546         Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
547       } else if (Ty == Type::X86_FP80Ty) {
548         // api needed to prevent premature destruction
549         APInt api = CFP->getValueAPF().convertToAPInt();
550         const uint64_t *p = api.getRawData();
551         Record.push_back(p[0]);
552         Record.push_back((uint16_t)p[1]);
553       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
554         APInt api = CFP->getValueAPF().convertToAPInt();
555         const uint64_t *p = api.getRawData();
556         Record.push_back(p[0]);
557         Record.push_back(p[1]);
558       } else {
559         assert (0 && "Unknown FP type!");
560       }
561     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
562       // Emit constant strings specially.
563       unsigned NumOps = C->getNumOperands();
564       // If this is a null-terminated string, use the denser CSTRING encoding.
565       if (C->getOperand(NumOps-1)->isNullValue()) {
566         Code = bitc::CST_CODE_CSTRING;
567         --NumOps;  // Don't encode the null, which isn't allowed by char6.
568       } else {
569         Code = bitc::CST_CODE_STRING;
570         AbbrevToUse = String8Abbrev;
571       }
572       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
573       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
574       for (unsigned i = 0; i != NumOps; ++i) {
575         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
576         Record.push_back(V);
577         isCStr7 &= (V & 128) == 0;
578         if (isCStrChar6) 
579           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
580       }
581       
582       if (isCStrChar6)
583         AbbrevToUse = CString6Abbrev;
584       else if (isCStr7)
585         AbbrevToUse = CString7Abbrev;
586     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
587                isa<ConstantVector>(V)) {
588       Code = bitc::CST_CODE_AGGREGATE;
589       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
590         Record.push_back(VE.getValueID(C->getOperand(i)));
591       AbbrevToUse = AggregateAbbrev;
592     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
593       switch (CE->getOpcode()) {
594       default:
595         if (Instruction::isCast(CE->getOpcode())) {
596           Code = bitc::CST_CODE_CE_CAST;
597           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
598           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
599           Record.push_back(VE.getValueID(C->getOperand(0)));
600           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
601         } else {
602           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
603           Code = bitc::CST_CODE_CE_BINOP;
604           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
605           Record.push_back(VE.getValueID(C->getOperand(0)));
606           Record.push_back(VE.getValueID(C->getOperand(1)));
607         }
608         break;
609       case Instruction::GetElementPtr:
610         Code = bitc::CST_CODE_CE_GEP;
611         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
612           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
613           Record.push_back(VE.getValueID(C->getOperand(i)));
614         }
615         break;
616       case Instruction::Select:
617         Code = bitc::CST_CODE_CE_SELECT;
618         Record.push_back(VE.getValueID(C->getOperand(0)));
619         Record.push_back(VE.getValueID(C->getOperand(1)));
620         Record.push_back(VE.getValueID(C->getOperand(2)));
621         break;
622       case Instruction::ExtractElement:
623         Code = bitc::CST_CODE_CE_EXTRACTELT;
624         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
625         Record.push_back(VE.getValueID(C->getOperand(0)));
626         Record.push_back(VE.getValueID(C->getOperand(1)));
627         break;
628       case Instruction::InsertElement:
629         Code = bitc::CST_CODE_CE_INSERTELT;
630         Record.push_back(VE.getValueID(C->getOperand(0)));
631         Record.push_back(VE.getValueID(C->getOperand(1)));
632         Record.push_back(VE.getValueID(C->getOperand(2)));
633         break;
634       case Instruction::ShuffleVector:
635         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
636         Record.push_back(VE.getValueID(C->getOperand(0)));
637         Record.push_back(VE.getValueID(C->getOperand(1)));
638         Record.push_back(VE.getValueID(C->getOperand(2)));
639         break;
640       case Instruction::ICmp:
641       case Instruction::FCmp:
642       case Instruction::VICmp:
643       case Instruction::VFCmp:
644         Code = bitc::CST_CODE_CE_CMP;
645         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
646         Record.push_back(VE.getValueID(C->getOperand(0)));
647         Record.push_back(VE.getValueID(C->getOperand(1)));
648         Record.push_back(CE->getPredicate());
649         break;
650       }
651     } else {
652       assert(0 && "Unknown constant!");
653     }
654     Stream.EmitRecord(Code, Record, AbbrevToUse);
655     Record.clear();
656   }
657
658   Stream.ExitBlock();
659 }
660
661 static void WriteModuleConstants(const ValueEnumerator &VE,
662                                  BitstreamWriter &Stream) {
663   const ValueEnumerator::ValueList &Vals = VE.getValues();
664   
665   // Find the first constant to emit, which is the first non-globalvalue value.
666   // We know globalvalues have been emitted by WriteModuleInfo.
667   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
668     if (!isa<GlobalValue>(Vals[i].first)) {
669       WriteConstants(i, Vals.size(), VE, Stream, true);
670       return;
671     }
672   }
673 }
674
675 /// PushValueAndType - The file has to encode both the value and type id for
676 /// many values, because we need to know what type to create for forward
677 /// references.  However, most operands are not forward references, so this type
678 /// field is not needed.
679 ///
680 /// This function adds V's value ID to Vals.  If the value ID is higher than the
681 /// instruction ID, then it is a forward reference, and it also includes the
682 /// type ID.
683 static bool PushValueAndType(Value *V, unsigned InstID,
684                              SmallVector<unsigned, 64> &Vals, 
685                              ValueEnumerator &VE) {
686   unsigned ValID = VE.getValueID(V);
687   Vals.push_back(ValID);
688   if (ValID >= InstID) {
689     Vals.push_back(VE.getTypeID(V->getType()));
690     return true;
691   }
692   return false;
693 }
694
695 /// WriteInstruction - Emit an instruction to the specified stream.
696 static void WriteInstruction(const Instruction &I, unsigned InstID,
697                              ValueEnumerator &VE, BitstreamWriter &Stream,
698                              SmallVector<unsigned, 64> &Vals) {
699   unsigned Code = 0;
700   unsigned AbbrevToUse = 0;
701   switch (I.getOpcode()) {
702   default:
703     if (Instruction::isCast(I.getOpcode())) {
704       Code = bitc::FUNC_CODE_INST_CAST;
705       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
706         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
707       Vals.push_back(VE.getTypeID(I.getType()));
708       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
709     } else {
710       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
711       Code = bitc::FUNC_CODE_INST_BINOP;
712       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
713         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
714       Vals.push_back(VE.getValueID(I.getOperand(1)));
715       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
716     }
717     break;
718
719   case Instruction::GetElementPtr:
720     Code = bitc::FUNC_CODE_INST_GEP;
721     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
722       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
723     break;
724   case Instruction::ExtractValue: {
725     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
726     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
727     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
728     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
729       Vals.push_back(*i);
730     break;
731   }
732   case Instruction::InsertValue: {
733     Code = bitc::FUNC_CODE_INST_INSERTVAL;
734     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
735     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
736     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
737     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
738       Vals.push_back(*i);
739     break;
740   }
741   case Instruction::Select:
742     Code = bitc::FUNC_CODE_INST_SELECT;
743     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
744     Vals.push_back(VE.getValueID(I.getOperand(2)));
745     Vals.push_back(VE.getValueID(I.getOperand(0)));
746     break;
747   case Instruction::ExtractElement:
748     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
749     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
750     Vals.push_back(VE.getValueID(I.getOperand(1)));
751     break;
752   case Instruction::InsertElement:
753     Code = bitc::FUNC_CODE_INST_INSERTELT;
754     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
755     Vals.push_back(VE.getValueID(I.getOperand(1)));
756     Vals.push_back(VE.getValueID(I.getOperand(2)));
757     break;
758   case Instruction::ShuffleVector:
759     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
760     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
761     Vals.push_back(VE.getValueID(I.getOperand(1)));
762     Vals.push_back(VE.getValueID(I.getOperand(2)));
763     break;
764   case Instruction::ICmp:
765   case Instruction::FCmp:
766   case Instruction::VICmp:
767   case Instruction::VFCmp:
768     Code = bitc::FUNC_CODE_INST_CMP;
769     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
770     Vals.push_back(VE.getValueID(I.getOperand(1)));
771     Vals.push_back(cast<CmpInst>(I).getPredicate());
772     break;
773
774   case Instruction::Ret: 
775     {
776       Code = bitc::FUNC_CODE_INST_RET;
777       unsigned NumOperands = I.getNumOperands();
778       if (NumOperands == 0)
779         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
780       else if (NumOperands == 1) {
781         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
782           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
783       } else {
784         for (unsigned i = 0, e = NumOperands; i != e; ++i)
785           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
786       }
787     }
788     break;
789   case Instruction::Br:
790     Code = bitc::FUNC_CODE_INST_BR;
791     Vals.push_back(VE.getValueID(I.getOperand(0)));
792     if (cast<BranchInst>(I).isConditional()) {
793       Vals.push_back(VE.getValueID(I.getOperand(1)));
794       Vals.push_back(VE.getValueID(I.getOperand(2)));
795     }
796     break;
797   case Instruction::Switch:
798     Code = bitc::FUNC_CODE_INST_SWITCH;
799     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
800     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
801       Vals.push_back(VE.getValueID(I.getOperand(i)));
802     break;
803   case Instruction::Invoke: {
804     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
805     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
806     Code = bitc::FUNC_CODE_INST_INVOKE;
807     
808     const InvokeInst *II = cast<InvokeInst>(&I);
809     Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
810     Vals.push_back(II->getCallingConv());
811     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
812     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
813     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
814     
815     // Emit value #'s for the fixed parameters.
816     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
817       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
818
819     // Emit type/value pairs for varargs params.
820     if (FTy->isVarArg()) {
821       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
822            i != e; ++i)
823         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
824     }
825     break;
826   }
827   case Instruction::Unwind:
828     Code = bitc::FUNC_CODE_INST_UNWIND;
829     break;
830   case Instruction::Unreachable:
831     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
832     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
833     break;
834   
835   case Instruction::PHI:
836     Code = bitc::FUNC_CODE_INST_PHI;
837     Vals.push_back(VE.getTypeID(I.getType()));
838     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
839       Vals.push_back(VE.getValueID(I.getOperand(i)));
840     break;
841     
842   case Instruction::Malloc:
843     Code = bitc::FUNC_CODE_INST_MALLOC;
844     Vals.push_back(VE.getTypeID(I.getType()));
845     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
846     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
847     break;
848     
849   case Instruction::Free:
850     Code = bitc::FUNC_CODE_INST_FREE;
851     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
852     break;
853     
854   case Instruction::Alloca:
855     Code = bitc::FUNC_CODE_INST_ALLOCA;
856     Vals.push_back(VE.getTypeID(I.getType()));
857     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
858     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
859     break;
860     
861   case Instruction::Load:
862     Code = bitc::FUNC_CODE_INST_LOAD;
863     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
864       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
865       
866     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
867     Vals.push_back(cast<LoadInst>(I).isVolatile());
868     break;
869   case Instruction::Store:
870     Code = bitc::FUNC_CODE_INST_STORE2;
871     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
872     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
873     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
874     Vals.push_back(cast<StoreInst>(I).isVolatile());
875     break;
876   case Instruction::Call: {
877     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
878     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
879
880     Code = bitc::FUNC_CODE_INST_CALL;
881     
882     const CallInst *CI = cast<CallInst>(&I);
883     Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
884     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
885     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
886     
887     // Emit value #'s for the fixed parameters.
888     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
889       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
890       
891     // Emit type/value pairs for varargs params.
892     if (FTy->isVarArg()) {
893       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
894       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
895            i != e; ++i)
896         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
897     }
898     break;
899   }
900   case Instruction::VAArg:
901     Code = bitc::FUNC_CODE_INST_VAARG;
902     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
903     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
904     Vals.push_back(VE.getTypeID(I.getType())); // restype.
905     break;
906   }
907   
908   Stream.EmitRecord(Code, Vals, AbbrevToUse);
909   Vals.clear();
910 }
911
912 // Emit names for globals/functions etc.
913 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
914                                   const ValueEnumerator &VE,
915                                   BitstreamWriter &Stream) {
916   if (VST.empty()) return;
917   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
918
919   // FIXME: Set up the abbrev, we know how many values there are!
920   // FIXME: We know if the type names can use 7-bit ascii.
921   SmallVector<unsigned, 64> NameVals;
922   
923   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
924        SI != SE; ++SI) {
925     
926     const ValueName &Name = *SI;
927     
928     // Figure out the encoding to use for the name.
929     bool is7Bit = true;
930     bool isChar6 = true;
931     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
932          C != E; ++C) {
933       if (isChar6) 
934         isChar6 = BitCodeAbbrevOp::isChar6(*C);
935       if ((unsigned char)*C & 128) {
936         is7Bit = false;
937         break;  // don't bother scanning the rest.
938       }
939     }
940     
941     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
942     
943     // VST_ENTRY:   [valueid, namechar x N]
944     // VST_BBENTRY: [bbid, namechar x N]
945     unsigned Code;
946     if (isa<BasicBlock>(SI->getValue())) {
947       Code = bitc::VST_CODE_BBENTRY;
948       if (isChar6)
949         AbbrevToUse = VST_BBENTRY_6_ABBREV;
950     } else {
951       Code = bitc::VST_CODE_ENTRY;
952       if (isChar6)
953         AbbrevToUse = VST_ENTRY_6_ABBREV;
954       else if (is7Bit)
955         AbbrevToUse = VST_ENTRY_7_ABBREV;
956     }
957     
958     NameVals.push_back(VE.getValueID(SI->getValue()));
959     for (const char *P = Name.getKeyData(),
960          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
961       NameVals.push_back((unsigned char)*P);
962     
963     // Emit the finished record.
964     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
965     NameVals.clear();
966   }
967   Stream.ExitBlock();
968 }
969
970 /// WriteFunction - Emit a function body to the module stream.
971 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
972                           BitstreamWriter &Stream) {
973   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
974   VE.incorporateFunction(F);
975
976   SmallVector<unsigned, 64> Vals;
977   
978   // Emit the number of basic blocks, so the reader can create them ahead of
979   // time.
980   Vals.push_back(VE.getBasicBlocks().size());
981   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
982   Vals.clear();
983   
984   // If there are function-local constants, emit them now.
985   unsigned CstStart, CstEnd;
986   VE.getFunctionConstantRange(CstStart, CstEnd);
987   WriteConstants(CstStart, CstEnd, VE, Stream, false);
988   
989   // Keep a running idea of what the instruction ID is. 
990   unsigned InstID = CstEnd;
991   
992   // Finally, emit all the instructions, in order.
993   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
994     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
995          I != E; ++I) {
996       WriteInstruction(*I, InstID, VE, Stream, Vals);
997       if (I->getType() != Type::VoidTy)
998         ++InstID;
999     }
1000   
1001   // Emit names for all the instructions etc.
1002   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1003     
1004   VE.purgeFunction();
1005   Stream.ExitBlock();
1006 }
1007
1008 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1009 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1010                                  const ValueEnumerator &VE,
1011                                  BitstreamWriter &Stream) {
1012   if (TST.empty()) return;
1013   
1014   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1015   
1016   // 7-bit fixed width VST_CODE_ENTRY strings.
1017   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1018   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1019   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1020                             Log2_32_Ceil(VE.getTypes().size()+1)));
1021   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1022   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1023   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1024   
1025   SmallVector<unsigned, 64> NameVals;
1026   
1027   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1028        TI != TE; ++TI) {
1029     // TST_ENTRY: [typeid, namechar x N]
1030     NameVals.push_back(VE.getTypeID(TI->second));
1031     
1032     const std::string &Str = TI->first;
1033     bool is7Bit = true;
1034     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1035       NameVals.push_back((unsigned char)Str[i]);
1036       if (Str[i] & 128)
1037         is7Bit = false;
1038     }
1039     
1040     // Emit the finished record.
1041     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1042     NameVals.clear();
1043   }
1044   
1045   Stream.ExitBlock();
1046 }
1047
1048 // Emit blockinfo, which defines the standard abbreviations etc.
1049 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1050   // We only want to emit block info records for blocks that have multiple
1051   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1052   // blocks can defined their abbrevs inline.
1053   Stream.EnterBlockInfoBlock(2);
1054   
1055   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1056     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1057     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1058     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1059     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1060     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1061     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1062                                    Abbv) != VST_ENTRY_8_ABBREV)
1063       assert(0 && "Unexpected abbrev ordering!");
1064   }
1065   
1066   { // 7-bit fixed width VST_ENTRY strings.
1067     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1068     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1069     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1071     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1072     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1073                                    Abbv) != VST_ENTRY_7_ABBREV)
1074       assert(0 && "Unexpected abbrev ordering!");
1075   }
1076   { // 6-bit char6 VST_ENTRY strings.
1077     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1078     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1079     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1080     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1081     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1082     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1083                                    Abbv) != VST_ENTRY_6_ABBREV)
1084       assert(0 && "Unexpected abbrev ordering!");
1085   }
1086   { // 6-bit char6 VST_BBENTRY strings.
1087     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1088     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1089     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1090     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1092     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1093                                    Abbv) != VST_BBENTRY_6_ABBREV)
1094       assert(0 && "Unexpected abbrev ordering!");
1095   }
1096   
1097   
1098   
1099   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1100     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1101     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1102     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1103                               Log2_32_Ceil(VE.getTypes().size()+1)));
1104     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1105                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1106       assert(0 && "Unexpected abbrev ordering!");
1107   }
1108   
1109   { // INTEGER abbrev for CONSTANTS_BLOCK.
1110     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1111     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1112     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1113     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1114                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1115       assert(0 && "Unexpected abbrev ordering!");
1116   }
1117   
1118   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1119     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1120     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1122     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1123                               Log2_32_Ceil(VE.getTypes().size()+1)));
1124     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1125
1126     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1127                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1128       assert(0 && "Unexpected abbrev ordering!");
1129   }
1130   { // NULL abbrev for CONSTANTS_BLOCK.
1131     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1132     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1133     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1134                                    Abbv) != CONSTANTS_NULL_Abbrev)
1135       assert(0 && "Unexpected abbrev ordering!");
1136   }
1137   
1138   // FIXME: This should only use space for first class types!
1139  
1140   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1141     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1142     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1143     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1144     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1145     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1146     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1147                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1148       assert(0 && "Unexpected abbrev ordering!");
1149   }
1150   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1151     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1152     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1153     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1156     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1157                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1158       assert(0 && "Unexpected abbrev ordering!");
1159   }
1160   { // INST_CAST abbrev for FUNCTION_BLOCK.
1161     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1162     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1165                               Log2_32_Ceil(VE.getTypes().size()+1)));
1166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1167     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1168                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1169       assert(0 && "Unexpected abbrev ordering!");
1170   }
1171   
1172   { // INST_RET abbrev for FUNCTION_BLOCK.
1173     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1174     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1175     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1176                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1177       assert(0 && "Unexpected abbrev ordering!");
1178   }
1179   { // INST_RET abbrev for FUNCTION_BLOCK.
1180     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1181     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1183     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1184                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1185       assert(0 && "Unexpected abbrev ordering!");
1186   }
1187   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1188     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1189     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1190     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1191                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1192       assert(0 && "Unexpected abbrev ordering!");
1193   }
1194   
1195   Stream.ExitBlock();
1196 }
1197
1198
1199 /// WriteModule - Emit the specified module to the bitstream.
1200 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1201   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1202   
1203   // Emit the version number if it is non-zero.
1204   if (CurVersion) {
1205     SmallVector<unsigned, 1> Vals;
1206     Vals.push_back(CurVersion);
1207     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1208   }
1209   
1210   // Analyze the module, enumerating globals, functions, etc.
1211   ValueEnumerator VE(M);
1212
1213   // Emit blockinfo, which defines the standard abbreviations etc.
1214   WriteBlockInfo(VE, Stream);
1215   
1216   // Emit information about parameter attributes.
1217   WriteParamAttrTable(VE, Stream);
1218   
1219   // Emit information describing all of the types in the module.
1220   WriteTypeTable(VE, Stream);
1221   
1222   // Emit top-level description of module, including target triple, inline asm,
1223   // descriptors for global variables, and function prototype info.
1224   WriteModuleInfo(M, VE, Stream);
1225   
1226   // Emit constants.
1227   WriteModuleConstants(VE, Stream);
1228   
1229   // If we have any aggregate values in the value table, purge them - these can
1230   // only be used to initialize global variables.  Doing so makes the value
1231   // namespace smaller for code in functions.
1232   int NumNonAggregates = VE.PurgeAggregateValues();
1233   if (NumNonAggregates != -1) {
1234     SmallVector<unsigned, 1> Vals;
1235     Vals.push_back(NumNonAggregates);
1236     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1237   }
1238   
1239   // Emit function bodies.
1240   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1241     if (!I->isDeclaration())
1242       WriteFunction(*I, VE, Stream);
1243   
1244   // Emit the type symbol table information.
1245   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1246   
1247   // Emit names for globals/functions etc.
1248   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1249   
1250   Stream.ExitBlock();
1251 }
1252
1253 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1254 /// header and trailer to make it compatible with the system archiver.  To do
1255 /// this we emit the following header, and then emit a trailer that pads the
1256 /// file out to be a multiple of 16 bytes.
1257 /// 
1258 /// struct bc_header {
1259 ///   uint32_t Magic;         // 0x0B17C0DE
1260 ///   uint32_t Version;       // Version, currently always 0.
1261 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1262 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1263 ///   uint32_t CPUType;       // CPU specifier.
1264 ///   ... potentially more later ...
1265 /// };
1266 enum {
1267   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1268   DarwinBCHeaderSize = 5*4
1269 };
1270
1271 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1272                                const std::string &TT) {
1273   unsigned CPUType = ~0U;
1274   
1275   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1276   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1277   // specific constants here because they are implicitly part of the Darwin ABI.
1278   enum {
1279     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1280     DARWIN_CPU_TYPE_X86        = 7,
1281     DARWIN_CPU_TYPE_POWERPC    = 18
1282   };
1283   
1284   if (TT.find("x86_64-") == 0)
1285     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1286   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1287            TT[4] == '-' && TT[1] - '3' < 6)
1288     CPUType = DARWIN_CPU_TYPE_X86;
1289   else if (TT.find("powerpc-") == 0)
1290     CPUType = DARWIN_CPU_TYPE_POWERPC;
1291   else if (TT.find("powerpc64-") == 0)
1292     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1293   
1294   // Traditional Bitcode starts after header.
1295   unsigned BCOffset = DarwinBCHeaderSize;
1296   
1297   Stream.Emit(0x0B17C0DE, 32);
1298   Stream.Emit(0         , 32);  // Version.
1299   Stream.Emit(BCOffset  , 32);
1300   Stream.Emit(0         , 32);  // Filled in later.
1301   Stream.Emit(CPUType   , 32);
1302 }
1303
1304 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1305 /// finalize the header.
1306 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1307   // Update the size field in the header.
1308   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1309   
1310   // If the file is not a multiple of 16 bytes, insert dummy padding.
1311   while (BufferSize & 15) {
1312     Stream.Emit(0, 8);
1313     ++BufferSize;
1314   }
1315 }
1316
1317
1318 /// WriteBitcodeToFile - Write the specified module to the specified output
1319 /// stream.
1320 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1321   std::vector<unsigned char> Buffer;
1322   BitstreamWriter Stream(Buffer);
1323   
1324   Buffer.reserve(256*1024);
1325   
1326   // If this is darwin, emit a file header and trailer if needed.
1327   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1328   if (isDarwin)
1329     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1330   
1331   // Emit the file header.
1332   Stream.Emit((unsigned)'B', 8);
1333   Stream.Emit((unsigned)'C', 8);
1334   Stream.Emit(0x0, 4);
1335   Stream.Emit(0xC, 4);
1336   Stream.Emit(0xE, 4);
1337   Stream.Emit(0xD, 4);
1338
1339   // Emit the module.
1340   WriteModule(M, Stream);
1341
1342   if (isDarwin)
1343     EmitDarwinBCTrailer(Stream, Buffer.size());
1344
1345   
1346   // If writing to stdout, set binary mode.
1347   if (llvm::cout == Out)
1348     sys::Program::ChangeStdoutToBinary();
1349
1350   // Write the generated bitstream to "Out".
1351   Out.write((char*)&Buffer.front(), Buffer.size());
1352   
1353   // Make sure it hits disk now.
1354   Out.flush();
1355 }