IR: Assembly and bitcode for GenericDebugNode
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV
60 };
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
78   }
79 }
80
81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104
105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121
122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125   case Unordered: return bitc::ORDERING_UNORDERED;
126   case Monotonic: return bitc::ORDERING_MONOTONIC;
127   case Acquire: return bitc::ORDERING_ACQUIRE;
128   case Release: return bitc::ORDERING_RELEASE;
129   case AcquireRelease: return bitc::ORDERING_ACQREL;
130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131   }
132   llvm_unreachable("Invalid ordering");
133 }
134
135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139   }
140   llvm_unreachable("Invalid synch scope");
141 }
142
143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
159   switch (Kind) {
160   case Attribute::Alignment:
161     return bitc::ATTR_KIND_ALIGNMENT;
162   case Attribute::AlwaysInline:
163     return bitc::ATTR_KIND_ALWAYS_INLINE;
164   case Attribute::Builtin:
165     return bitc::ATTR_KIND_BUILTIN;
166   case Attribute::ByVal:
167     return bitc::ATTR_KIND_BY_VAL;
168   case Attribute::InAlloca:
169     return bitc::ATTR_KIND_IN_ALLOCA;
170   case Attribute::Cold:
171     return bitc::ATTR_KIND_COLD;
172   case Attribute::InlineHint:
173     return bitc::ATTR_KIND_INLINE_HINT;
174   case Attribute::InReg:
175     return bitc::ATTR_KIND_IN_REG;
176   case Attribute::JumpTable:
177     return bitc::ATTR_KIND_JUMP_TABLE;
178   case Attribute::MinSize:
179     return bitc::ATTR_KIND_MIN_SIZE;
180   case Attribute::Naked:
181     return bitc::ATTR_KIND_NAKED;
182   case Attribute::Nest:
183     return bitc::ATTR_KIND_NEST;
184   case Attribute::NoAlias:
185     return bitc::ATTR_KIND_NO_ALIAS;
186   case Attribute::NoBuiltin:
187     return bitc::ATTR_KIND_NO_BUILTIN;
188   case Attribute::NoCapture:
189     return bitc::ATTR_KIND_NO_CAPTURE;
190   case Attribute::NoDuplicate:
191     return bitc::ATTR_KIND_NO_DUPLICATE;
192   case Attribute::NoImplicitFloat:
193     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
194   case Attribute::NoInline:
195     return bitc::ATTR_KIND_NO_INLINE;
196   case Attribute::NonLazyBind:
197     return bitc::ATTR_KIND_NON_LAZY_BIND;
198   case Attribute::NonNull:
199     return bitc::ATTR_KIND_NON_NULL;
200   case Attribute::Dereferenceable:
201     return bitc::ATTR_KIND_DEREFERENCEABLE;
202   case Attribute::NoRedZone:
203     return bitc::ATTR_KIND_NO_RED_ZONE;
204   case Attribute::NoReturn:
205     return bitc::ATTR_KIND_NO_RETURN;
206   case Attribute::NoUnwind:
207     return bitc::ATTR_KIND_NO_UNWIND;
208   case Attribute::OptimizeForSize:
209     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
210   case Attribute::OptimizeNone:
211     return bitc::ATTR_KIND_OPTIMIZE_NONE;
212   case Attribute::ReadNone:
213     return bitc::ATTR_KIND_READ_NONE;
214   case Attribute::ReadOnly:
215     return bitc::ATTR_KIND_READ_ONLY;
216   case Attribute::Returned:
217     return bitc::ATTR_KIND_RETURNED;
218   case Attribute::ReturnsTwice:
219     return bitc::ATTR_KIND_RETURNS_TWICE;
220   case Attribute::SExt:
221     return bitc::ATTR_KIND_S_EXT;
222   case Attribute::StackAlignment:
223     return bitc::ATTR_KIND_STACK_ALIGNMENT;
224   case Attribute::StackProtect:
225     return bitc::ATTR_KIND_STACK_PROTECT;
226   case Attribute::StackProtectReq:
227     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
228   case Attribute::StackProtectStrong:
229     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
230   case Attribute::StructRet:
231     return bitc::ATTR_KIND_STRUCT_RET;
232   case Attribute::SanitizeAddress:
233     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
234   case Attribute::SanitizeThread:
235     return bitc::ATTR_KIND_SANITIZE_THREAD;
236   case Attribute::SanitizeMemory:
237     return bitc::ATTR_KIND_SANITIZE_MEMORY;
238   case Attribute::UWTable:
239     return bitc::ATTR_KIND_UW_TABLE;
240   case Attribute::ZExt:
241     return bitc::ATTR_KIND_Z_EXT;
242   case Attribute::EndAttrKinds:
243     llvm_unreachable("Can not encode end-attribute kinds marker.");
244   case Attribute::None:
245     llvm_unreachable("Can not encode none-attribute.");
246   }
247
248   llvm_unreachable("Trying to encode unknown attribute");
249 }
250
251 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
252                                      BitstreamWriter &Stream) {
253   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
254   if (AttrGrps.empty()) return;
255
256   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
257
258   SmallVector<uint64_t, 64> Record;
259   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
260     AttributeSet AS = AttrGrps[i];
261     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
262       AttributeSet A = AS.getSlotAttributes(i);
263
264       Record.push_back(VE.getAttributeGroupID(A));
265       Record.push_back(AS.getSlotIndex(i));
266
267       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
268            I != E; ++I) {
269         Attribute Attr = *I;
270         if (Attr.isEnumAttribute()) {
271           Record.push_back(0);
272           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
273         } else if (Attr.isIntAttribute()) {
274           Record.push_back(1);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276           Record.push_back(Attr.getValueAsInt());
277         } else {
278           StringRef Kind = Attr.getKindAsString();
279           StringRef Val = Attr.getValueAsString();
280
281           Record.push_back(Val.empty() ? 3 : 4);
282           Record.append(Kind.begin(), Kind.end());
283           Record.push_back(0);
284           if (!Val.empty()) {
285             Record.append(Val.begin(), Val.end());
286             Record.push_back(0);
287           }
288         }
289       }
290
291       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
292       Record.clear();
293     }
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static void WriteAttributeTable(const ValueEnumerator &VE,
300                                 BitstreamWriter &Stream) {
301   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
302   if (Attrs.empty()) return;
303
304   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
305
306   SmallVector<uint64_t, 64> Record;
307   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
308     const AttributeSet &A = Attrs[i];
309     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
310       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
311
312     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
313     Record.clear();
314   }
315
316   Stream.ExitBlock();
317 }
318
319 /// WriteTypeTable - Write out the type table for a module.
320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
321   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
322
323   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
324   SmallVector<uint64_t, 64> TypeVals;
325
326   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
327
328   // Abbrev for TYPE_CODE_POINTER.
329   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
330   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
332   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
333   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
334
335   // Abbrev for TYPE_CODE_FUNCTION.
336   Abbv = new BitCodeAbbrev();
337   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341
342   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_STRUCT_ANON.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_NAME.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
358   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
359
360   // Abbrev for TYPE_CODE_STRUCT_NAMED.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366
367   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_ARRAY.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374
375   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
376
377   // Emit an entry count so the reader can reserve space.
378   TypeVals.push_back(TypeList.size());
379   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
380   TypeVals.clear();
381
382   // Loop over all of the types, emitting each in turn.
383   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
384     Type *T = TypeList[i];
385     int AbbrevToUse = 0;
386     unsigned Code = 0;
387
388     switch (T->getTypeID()) {
389     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
390     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
391     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
392     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
393     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
394     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
395     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
396     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
397     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
398     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
399     case Type::IntegerTyID:
400       // INTEGER: [width]
401       Code = bitc::TYPE_CODE_INTEGER;
402       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
403       break;
404     case Type::PointerTyID: {
405       PointerType *PTy = cast<PointerType>(T);
406       // POINTER: [pointee type, address space]
407       Code = bitc::TYPE_CODE_POINTER;
408       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
409       unsigned AddressSpace = PTy->getAddressSpace();
410       TypeVals.push_back(AddressSpace);
411       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
412       break;
413     }
414     case Type::FunctionTyID: {
415       FunctionType *FT = cast<FunctionType>(T);
416       // FUNCTION: [isvararg, retty, paramty x N]
417       Code = bitc::TYPE_CODE_FUNCTION;
418       TypeVals.push_back(FT->isVarArg());
419       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
420       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
421         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
422       AbbrevToUse = FunctionAbbrev;
423       break;
424     }
425     case Type::StructTyID: {
426       StructType *ST = cast<StructType>(T);
427       // STRUCT: [ispacked, eltty x N]
428       TypeVals.push_back(ST->isPacked());
429       // Output all of the element types.
430       for (StructType::element_iterator I = ST->element_begin(),
431            E = ST->element_end(); I != E; ++I)
432         TypeVals.push_back(VE.getTypeID(*I));
433
434       if (ST->isLiteral()) {
435         Code = bitc::TYPE_CODE_STRUCT_ANON;
436         AbbrevToUse = StructAnonAbbrev;
437       } else {
438         if (ST->isOpaque()) {
439           Code = bitc::TYPE_CODE_OPAQUE;
440         } else {
441           Code = bitc::TYPE_CODE_STRUCT_NAMED;
442           AbbrevToUse = StructNamedAbbrev;
443         }
444
445         // Emit the name if it is present.
446         if (!ST->getName().empty())
447           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
448                             StructNameAbbrev, Stream);
449       }
450       break;
451     }
452     case Type::ArrayTyID: {
453       ArrayType *AT = cast<ArrayType>(T);
454       // ARRAY: [numelts, eltty]
455       Code = bitc::TYPE_CODE_ARRAY;
456       TypeVals.push_back(AT->getNumElements());
457       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
458       AbbrevToUse = ArrayAbbrev;
459       break;
460     }
461     case Type::VectorTyID: {
462       VectorType *VT = cast<VectorType>(T);
463       // VECTOR [numelts, eltty]
464       Code = bitc::TYPE_CODE_VECTOR;
465       TypeVals.push_back(VT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
467       break;
468     }
469     }
470
471     // Emit the finished record.
472     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
473     TypeVals.clear();
474   }
475
476   Stream.ExitBlock();
477 }
478
479 static unsigned getEncodedLinkage(const GlobalValue &GV) {
480   switch (GV.getLinkage()) {
481   case GlobalValue::ExternalLinkage:
482     return 0;
483   case GlobalValue::WeakAnyLinkage:
484     return 16;
485   case GlobalValue::AppendingLinkage:
486     return 2;
487   case GlobalValue::InternalLinkage:
488     return 3;
489   case GlobalValue::LinkOnceAnyLinkage:
490     return 18;
491   case GlobalValue::ExternalWeakLinkage:
492     return 7;
493   case GlobalValue::CommonLinkage:
494     return 8;
495   case GlobalValue::PrivateLinkage:
496     return 9;
497   case GlobalValue::WeakODRLinkage:
498     return 17;
499   case GlobalValue::LinkOnceODRLinkage:
500     return 19;
501   case GlobalValue::AvailableExternallyLinkage:
502     return 12;
503   }
504   llvm_unreachable("Invalid linkage");
505 }
506
507 static unsigned getEncodedVisibility(const GlobalValue &GV) {
508   switch (GV.getVisibility()) {
509   case GlobalValue::DefaultVisibility:   return 0;
510   case GlobalValue::HiddenVisibility:    return 1;
511   case GlobalValue::ProtectedVisibility: return 2;
512   }
513   llvm_unreachable("Invalid visibility");
514 }
515
516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
517   switch (GV.getDLLStorageClass()) {
518   case GlobalValue::DefaultStorageClass:   return 0;
519   case GlobalValue::DLLImportStorageClass: return 1;
520   case GlobalValue::DLLExportStorageClass: return 2;
521   }
522   llvm_unreachable("Invalid DLL storage class");
523 }
524
525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
526   switch (GV.getThreadLocalMode()) {
527     case GlobalVariable::NotThreadLocal:         return 0;
528     case GlobalVariable::GeneralDynamicTLSModel: return 1;
529     case GlobalVariable::LocalDynamicTLSModel:   return 2;
530     case GlobalVariable::InitialExecTLSModel:    return 3;
531     case GlobalVariable::LocalExecTLSModel:      return 4;
532   }
533   llvm_unreachable("Invalid TLS model");
534 }
535
536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
537   switch (C.getSelectionKind()) {
538   case Comdat::Any:
539     return bitc::COMDAT_SELECTION_KIND_ANY;
540   case Comdat::ExactMatch:
541     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
542   case Comdat::Largest:
543     return bitc::COMDAT_SELECTION_KIND_LARGEST;
544   case Comdat::NoDuplicates:
545     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
546   case Comdat::SameSize:
547     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
548   }
549   llvm_unreachable("Invalid selection kind");
550 }
551
552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
553   SmallVector<uint16_t, 64> Vals;
554   for (const Comdat *C : VE.getComdats()) {
555     // COMDAT: [selection_kind, name]
556     Vals.push_back(getEncodedComdatSelectionKind(*C));
557     size_t Size = C->getName().size();
558     assert(isUInt<16>(Size));
559     Vals.push_back(Size);
560     for (char Chr : C->getName())
561       Vals.push_back((unsigned char)Chr);
562     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
563     Vals.clear();
564   }
565 }
566
567 // Emit top-level description of module, including target triple, inline asm,
568 // descriptors for global variables, and function prototype info.
569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
570                             BitstreamWriter &Stream) {
571   // Emit various pieces of data attached to a module.
572   if (!M->getTargetTriple().empty())
573     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
574                       0/*TODO*/, Stream);
575   const std::string &DL = M->getDataLayoutStr();
576   if (!DL.empty())
577     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
578   if (!M->getModuleInlineAsm().empty())
579     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
580                       0/*TODO*/, Stream);
581
582   // Emit information about sections and GC, computing how many there are. Also
583   // compute the maximum alignment value.
584   std::map<std::string, unsigned> SectionMap;
585   std::map<std::string, unsigned> GCMap;
586   unsigned MaxAlignment = 0;
587   unsigned MaxGlobalType = 0;
588   for (const GlobalValue &GV : M->globals()) {
589     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
590     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
591     if (GV.hasSection()) {
592       // Give section names unique ID's.
593       unsigned &Entry = SectionMap[GV.getSection()];
594       if (!Entry) {
595         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
596                           0/*TODO*/, Stream);
597         Entry = SectionMap.size();
598       }
599     }
600   }
601   for (const Function &F : *M) {
602     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
603     if (F.hasSection()) {
604       // Give section names unique ID's.
605       unsigned &Entry = SectionMap[F.getSection()];
606       if (!Entry) {
607         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
608                           0/*TODO*/, Stream);
609         Entry = SectionMap.size();
610       }
611     }
612     if (F.hasGC()) {
613       // Same for GC names.
614       unsigned &Entry = GCMap[F.getGC()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
617                           0/*TODO*/, Stream);
618         Entry = GCMap.size();
619       }
620     }
621   }
622
623   // Emit abbrev for globals, now that we know # sections and max alignment.
624   unsigned SimpleGVarAbbrev = 0;
625   if (!M->global_empty()) {
626     // Add an abbrev for common globals with no visibility or thread localness.
627     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
628     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
630                               Log2_32_Ceil(MaxGlobalType+1)));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
634     if (MaxAlignment == 0)                                      // Alignment.
635       Abbv->Add(BitCodeAbbrevOp(0));
636     else {
637       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
638       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                                Log2_32_Ceil(MaxEncAlignment+1)));
640     }
641     if (SectionMap.empty())                                    // Section.
642       Abbv->Add(BitCodeAbbrevOp(0));
643     else
644       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
645                                Log2_32_Ceil(SectionMap.size()+1)));
646     // Don't bother emitting vis + thread local.
647     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
648   }
649
650   // Emit the global variable information.
651   SmallVector<unsigned, 64> Vals;
652   for (const GlobalVariable &GV : M->globals()) {
653     unsigned AbbrevToUse = 0;
654
655     // GLOBALVAR: [type, isconst, initid,
656     //             linkage, alignment, section, visibility, threadlocal,
657     //             unnamed_addr, externally_initialized, dllstorageclass]
658     Vals.push_back(VE.getTypeID(GV.getType()));
659     Vals.push_back(GV.isConstant());
660     Vals.push_back(GV.isDeclaration() ? 0 :
661                    (VE.getValueID(GV.getInitializer()) + 1));
662     Vals.push_back(getEncodedLinkage(GV));
663     Vals.push_back(Log2_32(GV.getAlignment())+1);
664     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
665     if (GV.isThreadLocal() ||
666         GV.getVisibility() != GlobalValue::DefaultVisibility ||
667         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
668         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
669         GV.hasComdat()) {
670       Vals.push_back(getEncodedVisibility(GV));
671       Vals.push_back(getEncodedThreadLocalMode(GV));
672       Vals.push_back(GV.hasUnnamedAddr());
673       Vals.push_back(GV.isExternallyInitialized());
674       Vals.push_back(getEncodedDLLStorageClass(GV));
675       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
676     } else {
677       AbbrevToUse = SimpleGVarAbbrev;
678     }
679
680     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
681     Vals.clear();
682   }
683
684   // Emit the function proto information.
685   for (const Function &F : *M) {
686     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
687     //             section, visibility, gc, unnamed_addr, prologuedata,
688     //             dllstorageclass, comdat, prefixdata]
689     Vals.push_back(VE.getTypeID(F.getType()));
690     Vals.push_back(F.getCallingConv());
691     Vals.push_back(F.isDeclaration());
692     Vals.push_back(getEncodedLinkage(F));
693     Vals.push_back(VE.getAttributeID(F.getAttributes()));
694     Vals.push_back(Log2_32(F.getAlignment())+1);
695     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
696     Vals.push_back(getEncodedVisibility(F));
697     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
698     Vals.push_back(F.hasUnnamedAddr());
699     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
700                                        : 0);
701     Vals.push_back(getEncodedDLLStorageClass(F));
702     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
703     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
704                                      : 0);
705
706     unsigned AbbrevToUse = 0;
707     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
708     Vals.clear();
709   }
710
711   // Emit the alias information.
712   for (const GlobalAlias &A : M->aliases()) {
713     // ALIAS: [alias type, aliasee val#, linkage, visibility]
714     Vals.push_back(VE.getTypeID(A.getType()));
715     Vals.push_back(VE.getValueID(A.getAliasee()));
716     Vals.push_back(getEncodedLinkage(A));
717     Vals.push_back(getEncodedVisibility(A));
718     Vals.push_back(getEncodedDLLStorageClass(A));
719     Vals.push_back(getEncodedThreadLocalMode(A));
720     Vals.push_back(A.hasUnnamedAddr());
721     unsigned AbbrevToUse = 0;
722     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
723     Vals.clear();
724   }
725 }
726
727 static uint64_t GetOptimizationFlags(const Value *V) {
728   uint64_t Flags = 0;
729
730   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
731     if (OBO->hasNoSignedWrap())
732       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
733     if (OBO->hasNoUnsignedWrap())
734       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
735   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
736     if (PEO->isExact())
737       Flags |= 1 << bitc::PEO_EXACT;
738   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
739     if (FPMO->hasUnsafeAlgebra())
740       Flags |= FastMathFlags::UnsafeAlgebra;
741     if (FPMO->hasNoNaNs())
742       Flags |= FastMathFlags::NoNaNs;
743     if (FPMO->hasNoInfs())
744       Flags |= FastMathFlags::NoInfs;
745     if (FPMO->hasNoSignedZeros())
746       Flags |= FastMathFlags::NoSignedZeros;
747     if (FPMO->hasAllowReciprocal())
748       Flags |= FastMathFlags::AllowReciprocal;
749   }
750
751   return Flags;
752 }
753
754 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
755                                  const ValueEnumerator &VE,
756                                  BitstreamWriter &Stream,
757                                  SmallVectorImpl<uint64_t> &Record) {
758   // Mimic an MDNode with a value as one operand.
759   Value *V = MD->getValue();
760   Record.push_back(VE.getTypeID(V->getType()));
761   Record.push_back(VE.getValueID(V));
762   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
763   Record.clear();
764 }
765
766 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
767                          BitstreamWriter &Stream,
768                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
769   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
770     Metadata *MD = N->getOperand(i);
771     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
772            "Unexpected function-local metadata");
773     Record.push_back(VE.getMetadataOrNullID(MD));
774   }
775   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
776                                     : bitc::METADATA_NODE,
777                     Record, Abbrev);
778   Record.clear();
779 }
780
781 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
782                             BitstreamWriter &Stream,
783                             SmallVectorImpl<uint64_t> &Record,
784                             unsigned Abbrev) {
785   Record.push_back(N->isDistinct());
786   Record.push_back(N->getLine());
787   Record.push_back(N->getColumn());
788   Record.push_back(VE.getMetadataID(N->getScope()));
789   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
790
791   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
792   Record.clear();
793 }
794
795 static void WriteGenericDebugNode(const GenericDebugNode *N,
796                                   const ValueEnumerator &VE,
797                                   BitstreamWriter &Stream,
798                                   SmallVectorImpl<uint64_t> &Record,
799                                   unsigned Abbrev) {
800   Record.push_back(N->isDistinct());
801   Record.push_back(N->getTag());
802   Record.push_back(0); // Per-tag version field; unused for now.
803
804   for (auto &I : N->operands())
805     Record.push_back(VE.getMetadataOrNullID(I));
806
807   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
808   Record.clear();
809 }
810
811 static void WriteModuleMetadata(const Module *M,
812                                 const ValueEnumerator &VE,
813                                 BitstreamWriter &Stream) {
814   const auto &MDs = VE.getMDs();
815   if (MDs.empty() && M->named_metadata_empty())
816     return;
817
818   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
819
820   unsigned MDSAbbrev = 0;
821   if (VE.hasMDString()) {
822     // Abbrev for METADATA_STRING.
823     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
824     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
825     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
826     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
827     MDSAbbrev = Stream.EmitAbbrev(Abbv);
828   }
829
830   unsigned MDLocationAbbrev = 0;
831   if (VE.hasMDLocation()) {
832     // Abbrev for METADATA_LOCATION.
833     //
834     // Assume the column is usually under 128, and always output the inlined-at
835     // location (it's never more expensive than building an array size 1).
836     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
837     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
838     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
840     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
843     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
844   }
845
846   unsigned GenericDebugNodeAbbrev = 0;
847   if (VE.hasGenericDebugNode()) {
848     // Abbrev for METADATA_GENERIC_DEBUG.
849     //
850     // Assume the column is usually under 128, and always output the inlined-at
851     // location (it's never more expensive than building an array size 1).
852     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
853     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
854     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
855     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
856     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
857     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
858     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
859     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
860     GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
861   }
862
863   unsigned NameAbbrev = 0;
864   if (!M->named_metadata_empty()) {
865     // Abbrev for METADATA_NAME.
866     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
867     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
868     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
869     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
870     NameAbbrev = Stream.EmitAbbrev(Abbv);
871   }
872
873   unsigned MDTupleAbbrev = 0;
874   SmallVector<uint64_t, 64> Record;
875   for (const Metadata *MD : MDs) {
876     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
877       switch (N->getMetadataID()) {
878       default:
879         llvm_unreachable("Invalid MDNode subclass");
880 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
881   case Metadata::CLASS##Kind:                                                  \
882     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
883     continue;
884 #include "llvm/IR/Metadata.def"
885       }
886     }
887     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
888       WriteValueAsMetadata(MDC, VE, Stream, Record);
889       continue;
890     }
891     const MDString *MDS = cast<MDString>(MD);
892     // Code: [strchar x N]
893     Record.append(MDS->bytes_begin(), MDS->bytes_end());
894
895     // Emit the finished record.
896     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
897     Record.clear();
898   }
899
900   // Write named metadata.
901   for (const NamedMDNode &NMD : M->named_metadata()) {
902     // Write name.
903     StringRef Str = NMD.getName();
904     Record.append(Str.bytes_begin(), Str.bytes_end());
905     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
906     Record.clear();
907
908     // Write named metadata operands.
909     for (const MDNode *N : NMD.operands())
910       Record.push_back(VE.getMetadataID(N));
911     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
912     Record.clear();
913   }
914
915   Stream.ExitBlock();
916 }
917
918 static void WriteFunctionLocalMetadata(const Function &F,
919                                        const ValueEnumerator &VE,
920                                        BitstreamWriter &Stream) {
921   bool StartedMetadataBlock = false;
922   SmallVector<uint64_t, 64> Record;
923   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
924       VE.getFunctionLocalMDs();
925   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
926     assert(MDs[i] && "Expected valid function-local metadata");
927     if (!StartedMetadataBlock) {
928       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
929       StartedMetadataBlock = true;
930     }
931     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
932   }
933
934   if (StartedMetadataBlock)
935     Stream.ExitBlock();
936 }
937
938 static void WriteMetadataAttachment(const Function &F,
939                                     const ValueEnumerator &VE,
940                                     BitstreamWriter &Stream) {
941   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
942
943   SmallVector<uint64_t, 64> Record;
944
945   // Write metadata attachments
946   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
947   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
948
949   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
950     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
951          I != E; ++I) {
952       MDs.clear();
953       I->getAllMetadataOtherThanDebugLoc(MDs);
954
955       // If no metadata, ignore instruction.
956       if (MDs.empty()) continue;
957
958       Record.push_back(VE.getInstructionID(I));
959
960       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
961         Record.push_back(MDs[i].first);
962         Record.push_back(VE.getMetadataID(MDs[i].second));
963       }
964       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
965       Record.clear();
966     }
967
968   Stream.ExitBlock();
969 }
970
971 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
972   SmallVector<uint64_t, 64> Record;
973
974   // Write metadata kinds
975   // METADATA_KIND - [n x [id, name]]
976   SmallVector<StringRef, 8> Names;
977   M->getMDKindNames(Names);
978
979   if (Names.empty()) return;
980
981   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
982
983   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
984     Record.push_back(MDKindID);
985     StringRef KName = Names[MDKindID];
986     Record.append(KName.begin(), KName.end());
987
988     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
989     Record.clear();
990   }
991
992   Stream.ExitBlock();
993 }
994
995 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
996   if ((int64_t)V >= 0)
997     Vals.push_back(V << 1);
998   else
999     Vals.push_back((-V << 1) | 1);
1000 }
1001
1002 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1003                            const ValueEnumerator &VE,
1004                            BitstreamWriter &Stream, bool isGlobal) {
1005   if (FirstVal == LastVal) return;
1006
1007   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1008
1009   unsigned AggregateAbbrev = 0;
1010   unsigned String8Abbrev = 0;
1011   unsigned CString7Abbrev = 0;
1012   unsigned CString6Abbrev = 0;
1013   // If this is a constant pool for the module, emit module-specific abbrevs.
1014   if (isGlobal) {
1015     // Abbrev for CST_CODE_AGGREGATE.
1016     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1017     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1018     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1020     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1021
1022     // Abbrev for CST_CODE_STRING.
1023     Abbv = new BitCodeAbbrev();
1024     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1025     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1026     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1027     String8Abbrev = Stream.EmitAbbrev(Abbv);
1028     // Abbrev for CST_CODE_CSTRING.
1029     Abbv = new BitCodeAbbrev();
1030     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1031     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1033     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1034     // Abbrev for CST_CODE_CSTRING.
1035     Abbv = new BitCodeAbbrev();
1036     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1039     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1040   }
1041
1042   SmallVector<uint64_t, 64> Record;
1043
1044   const ValueEnumerator::ValueList &Vals = VE.getValues();
1045   Type *LastTy = nullptr;
1046   for (unsigned i = FirstVal; i != LastVal; ++i) {
1047     const Value *V = Vals[i].first;
1048     // If we need to switch types, do so now.
1049     if (V->getType() != LastTy) {
1050       LastTy = V->getType();
1051       Record.push_back(VE.getTypeID(LastTy));
1052       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1053                         CONSTANTS_SETTYPE_ABBREV);
1054       Record.clear();
1055     }
1056
1057     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1058       Record.push_back(unsigned(IA->hasSideEffects()) |
1059                        unsigned(IA->isAlignStack()) << 1 |
1060                        unsigned(IA->getDialect()&1) << 2);
1061
1062       // Add the asm string.
1063       const std::string &AsmStr = IA->getAsmString();
1064       Record.push_back(AsmStr.size());
1065       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1066         Record.push_back(AsmStr[i]);
1067
1068       // Add the constraint string.
1069       const std::string &ConstraintStr = IA->getConstraintString();
1070       Record.push_back(ConstraintStr.size());
1071       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1072         Record.push_back(ConstraintStr[i]);
1073       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1074       Record.clear();
1075       continue;
1076     }
1077     const Constant *C = cast<Constant>(V);
1078     unsigned Code = -1U;
1079     unsigned AbbrevToUse = 0;
1080     if (C->isNullValue()) {
1081       Code = bitc::CST_CODE_NULL;
1082     } else if (isa<UndefValue>(C)) {
1083       Code = bitc::CST_CODE_UNDEF;
1084     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1085       if (IV->getBitWidth() <= 64) {
1086         uint64_t V = IV->getSExtValue();
1087         emitSignedInt64(Record, V);
1088         Code = bitc::CST_CODE_INTEGER;
1089         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1090       } else {                             // Wide integers, > 64 bits in size.
1091         // We have an arbitrary precision integer value to write whose
1092         // bit width is > 64. However, in canonical unsigned integer
1093         // format it is likely that the high bits are going to be zero.
1094         // So, we only write the number of active words.
1095         unsigned NWords = IV->getValue().getActiveWords();
1096         const uint64_t *RawWords = IV->getValue().getRawData();
1097         for (unsigned i = 0; i != NWords; ++i) {
1098           emitSignedInt64(Record, RawWords[i]);
1099         }
1100         Code = bitc::CST_CODE_WIDE_INTEGER;
1101       }
1102     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1103       Code = bitc::CST_CODE_FLOAT;
1104       Type *Ty = CFP->getType();
1105       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1106         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1107       } else if (Ty->isX86_FP80Ty()) {
1108         // api needed to prevent premature destruction
1109         // bits are not in the same order as a normal i80 APInt, compensate.
1110         APInt api = CFP->getValueAPF().bitcastToAPInt();
1111         const uint64_t *p = api.getRawData();
1112         Record.push_back((p[1] << 48) | (p[0] >> 16));
1113         Record.push_back(p[0] & 0xffffLL);
1114       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1115         APInt api = CFP->getValueAPF().bitcastToAPInt();
1116         const uint64_t *p = api.getRawData();
1117         Record.push_back(p[0]);
1118         Record.push_back(p[1]);
1119       } else {
1120         assert (0 && "Unknown FP type!");
1121       }
1122     } else if (isa<ConstantDataSequential>(C) &&
1123                cast<ConstantDataSequential>(C)->isString()) {
1124       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1125       // Emit constant strings specially.
1126       unsigned NumElts = Str->getNumElements();
1127       // If this is a null-terminated string, use the denser CSTRING encoding.
1128       if (Str->isCString()) {
1129         Code = bitc::CST_CODE_CSTRING;
1130         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1131       } else {
1132         Code = bitc::CST_CODE_STRING;
1133         AbbrevToUse = String8Abbrev;
1134       }
1135       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1136       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1137       for (unsigned i = 0; i != NumElts; ++i) {
1138         unsigned char V = Str->getElementAsInteger(i);
1139         Record.push_back(V);
1140         isCStr7 &= (V & 128) == 0;
1141         if (isCStrChar6)
1142           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1143       }
1144
1145       if (isCStrChar6)
1146         AbbrevToUse = CString6Abbrev;
1147       else if (isCStr7)
1148         AbbrevToUse = CString7Abbrev;
1149     } else if (const ConstantDataSequential *CDS =
1150                   dyn_cast<ConstantDataSequential>(C)) {
1151       Code = bitc::CST_CODE_DATA;
1152       Type *EltTy = CDS->getType()->getElementType();
1153       if (isa<IntegerType>(EltTy)) {
1154         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1155           Record.push_back(CDS->getElementAsInteger(i));
1156       } else if (EltTy->isFloatTy()) {
1157         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1158           union { float F; uint32_t I; };
1159           F = CDS->getElementAsFloat(i);
1160           Record.push_back(I);
1161         }
1162       } else {
1163         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1164         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1165           union { double F; uint64_t I; };
1166           F = CDS->getElementAsDouble(i);
1167           Record.push_back(I);
1168         }
1169       }
1170     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1171                isa<ConstantVector>(C)) {
1172       Code = bitc::CST_CODE_AGGREGATE;
1173       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1174         Record.push_back(VE.getValueID(C->getOperand(i)));
1175       AbbrevToUse = AggregateAbbrev;
1176     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1177       switch (CE->getOpcode()) {
1178       default:
1179         if (Instruction::isCast(CE->getOpcode())) {
1180           Code = bitc::CST_CODE_CE_CAST;
1181           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1182           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1183           Record.push_back(VE.getValueID(C->getOperand(0)));
1184           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1185         } else {
1186           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1187           Code = bitc::CST_CODE_CE_BINOP;
1188           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1189           Record.push_back(VE.getValueID(C->getOperand(0)));
1190           Record.push_back(VE.getValueID(C->getOperand(1)));
1191           uint64_t Flags = GetOptimizationFlags(CE);
1192           if (Flags != 0)
1193             Record.push_back(Flags);
1194         }
1195         break;
1196       case Instruction::GetElementPtr:
1197         Code = bitc::CST_CODE_CE_GEP;
1198         if (cast<GEPOperator>(C)->isInBounds())
1199           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1200         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1201           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1202           Record.push_back(VE.getValueID(C->getOperand(i)));
1203         }
1204         break;
1205       case Instruction::Select:
1206         Code = bitc::CST_CODE_CE_SELECT;
1207         Record.push_back(VE.getValueID(C->getOperand(0)));
1208         Record.push_back(VE.getValueID(C->getOperand(1)));
1209         Record.push_back(VE.getValueID(C->getOperand(2)));
1210         break;
1211       case Instruction::ExtractElement:
1212         Code = bitc::CST_CODE_CE_EXTRACTELT;
1213         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1214         Record.push_back(VE.getValueID(C->getOperand(0)));
1215         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1216         Record.push_back(VE.getValueID(C->getOperand(1)));
1217         break;
1218       case Instruction::InsertElement:
1219         Code = bitc::CST_CODE_CE_INSERTELT;
1220         Record.push_back(VE.getValueID(C->getOperand(0)));
1221         Record.push_back(VE.getValueID(C->getOperand(1)));
1222         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1223         Record.push_back(VE.getValueID(C->getOperand(2)));
1224         break;
1225       case Instruction::ShuffleVector:
1226         // If the return type and argument types are the same, this is a
1227         // standard shufflevector instruction.  If the types are different,
1228         // then the shuffle is widening or truncating the input vectors, and
1229         // the argument type must also be encoded.
1230         if (C->getType() == C->getOperand(0)->getType()) {
1231           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1232         } else {
1233           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1234           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1235         }
1236         Record.push_back(VE.getValueID(C->getOperand(0)));
1237         Record.push_back(VE.getValueID(C->getOperand(1)));
1238         Record.push_back(VE.getValueID(C->getOperand(2)));
1239         break;
1240       case Instruction::ICmp:
1241       case Instruction::FCmp:
1242         Code = bitc::CST_CODE_CE_CMP;
1243         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1244         Record.push_back(VE.getValueID(C->getOperand(0)));
1245         Record.push_back(VE.getValueID(C->getOperand(1)));
1246         Record.push_back(CE->getPredicate());
1247         break;
1248       }
1249     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1250       Code = bitc::CST_CODE_BLOCKADDRESS;
1251       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1252       Record.push_back(VE.getValueID(BA->getFunction()));
1253       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1254     } else {
1255 #ifndef NDEBUG
1256       C->dump();
1257 #endif
1258       llvm_unreachable("Unknown constant!");
1259     }
1260     Stream.EmitRecord(Code, Record, AbbrevToUse);
1261     Record.clear();
1262   }
1263
1264   Stream.ExitBlock();
1265 }
1266
1267 static void WriteModuleConstants(const ValueEnumerator &VE,
1268                                  BitstreamWriter &Stream) {
1269   const ValueEnumerator::ValueList &Vals = VE.getValues();
1270
1271   // Find the first constant to emit, which is the first non-globalvalue value.
1272   // We know globalvalues have been emitted by WriteModuleInfo.
1273   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1274     if (!isa<GlobalValue>(Vals[i].first)) {
1275       WriteConstants(i, Vals.size(), VE, Stream, true);
1276       return;
1277     }
1278   }
1279 }
1280
1281 /// PushValueAndType - The file has to encode both the value and type id for
1282 /// many values, because we need to know what type to create for forward
1283 /// references.  However, most operands are not forward references, so this type
1284 /// field is not needed.
1285 ///
1286 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1287 /// instruction ID, then it is a forward reference, and it also includes the
1288 /// type ID.  The value ID that is written is encoded relative to the InstID.
1289 static bool PushValueAndType(const Value *V, unsigned InstID,
1290                              SmallVectorImpl<unsigned> &Vals,
1291                              ValueEnumerator &VE) {
1292   unsigned ValID = VE.getValueID(V);
1293   // Make encoding relative to the InstID.
1294   Vals.push_back(InstID - ValID);
1295   if (ValID >= InstID) {
1296     Vals.push_back(VE.getTypeID(V->getType()));
1297     return true;
1298   }
1299   return false;
1300 }
1301
1302 /// pushValue - Like PushValueAndType, but where the type of the value is
1303 /// omitted (perhaps it was already encoded in an earlier operand).
1304 static void pushValue(const Value *V, unsigned InstID,
1305                       SmallVectorImpl<unsigned> &Vals,
1306                       ValueEnumerator &VE) {
1307   unsigned ValID = VE.getValueID(V);
1308   Vals.push_back(InstID - ValID);
1309 }
1310
1311 static void pushValueSigned(const Value *V, unsigned InstID,
1312                             SmallVectorImpl<uint64_t> &Vals,
1313                             ValueEnumerator &VE) {
1314   unsigned ValID = VE.getValueID(V);
1315   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1316   emitSignedInt64(Vals, diff);
1317 }
1318
1319 /// WriteInstruction - Emit an instruction to the specified stream.
1320 static void WriteInstruction(const Instruction &I, unsigned InstID,
1321                              ValueEnumerator &VE, BitstreamWriter &Stream,
1322                              SmallVectorImpl<unsigned> &Vals) {
1323   unsigned Code = 0;
1324   unsigned AbbrevToUse = 0;
1325   VE.setInstructionID(&I);
1326   switch (I.getOpcode()) {
1327   default:
1328     if (Instruction::isCast(I.getOpcode())) {
1329       Code = bitc::FUNC_CODE_INST_CAST;
1330       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1331         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1332       Vals.push_back(VE.getTypeID(I.getType()));
1333       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1334     } else {
1335       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1336       Code = bitc::FUNC_CODE_INST_BINOP;
1337       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1338         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1339       pushValue(I.getOperand(1), InstID, Vals, VE);
1340       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1341       uint64_t Flags = GetOptimizationFlags(&I);
1342       if (Flags != 0) {
1343         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1344           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1345         Vals.push_back(Flags);
1346       }
1347     }
1348     break;
1349
1350   case Instruction::GetElementPtr:
1351     Code = bitc::FUNC_CODE_INST_GEP;
1352     if (cast<GEPOperator>(&I)->isInBounds())
1353       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1354     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1355       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1356     break;
1357   case Instruction::ExtractValue: {
1358     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1359     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1360     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1361     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1362       Vals.push_back(*i);
1363     break;
1364   }
1365   case Instruction::InsertValue: {
1366     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1367     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1368     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1369     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1370     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1371       Vals.push_back(*i);
1372     break;
1373   }
1374   case Instruction::Select:
1375     Code = bitc::FUNC_CODE_INST_VSELECT;
1376     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1377     pushValue(I.getOperand(2), InstID, Vals, VE);
1378     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1379     break;
1380   case Instruction::ExtractElement:
1381     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1382     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1383     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1384     break;
1385   case Instruction::InsertElement:
1386     Code = bitc::FUNC_CODE_INST_INSERTELT;
1387     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1388     pushValue(I.getOperand(1), InstID, Vals, VE);
1389     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1390     break;
1391   case Instruction::ShuffleVector:
1392     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1393     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1394     pushValue(I.getOperand(1), InstID, Vals, VE);
1395     pushValue(I.getOperand(2), InstID, Vals, VE);
1396     break;
1397   case Instruction::ICmp:
1398   case Instruction::FCmp:
1399     // compare returning Int1Ty or vector of Int1Ty
1400     Code = bitc::FUNC_CODE_INST_CMP2;
1401     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1402     pushValue(I.getOperand(1), InstID, Vals, VE);
1403     Vals.push_back(cast<CmpInst>(I).getPredicate());
1404     break;
1405
1406   case Instruction::Ret:
1407     {
1408       Code = bitc::FUNC_CODE_INST_RET;
1409       unsigned NumOperands = I.getNumOperands();
1410       if (NumOperands == 0)
1411         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1412       else if (NumOperands == 1) {
1413         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1414           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1415       } else {
1416         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1417           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1418       }
1419     }
1420     break;
1421   case Instruction::Br:
1422     {
1423       Code = bitc::FUNC_CODE_INST_BR;
1424       const BranchInst &II = cast<BranchInst>(I);
1425       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1426       if (II.isConditional()) {
1427         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1428         pushValue(II.getCondition(), InstID, Vals, VE);
1429       }
1430     }
1431     break;
1432   case Instruction::Switch:
1433     {
1434       Code = bitc::FUNC_CODE_INST_SWITCH;
1435       const SwitchInst &SI = cast<SwitchInst>(I);
1436       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1437       pushValue(SI.getCondition(), InstID, Vals, VE);
1438       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1439       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1440            i != e; ++i) {
1441         Vals.push_back(VE.getValueID(i.getCaseValue()));
1442         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1443       }
1444     }
1445     break;
1446   case Instruction::IndirectBr:
1447     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1448     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1449     // Encode the address operand as relative, but not the basic blocks.
1450     pushValue(I.getOperand(0), InstID, Vals, VE);
1451     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1452       Vals.push_back(VE.getValueID(I.getOperand(i)));
1453     break;
1454
1455   case Instruction::Invoke: {
1456     const InvokeInst *II = cast<InvokeInst>(&I);
1457     const Value *Callee(II->getCalledValue());
1458     PointerType *PTy = cast<PointerType>(Callee->getType());
1459     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1460     Code = bitc::FUNC_CODE_INST_INVOKE;
1461
1462     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1463     Vals.push_back(II->getCallingConv());
1464     Vals.push_back(VE.getValueID(II->getNormalDest()));
1465     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1466     PushValueAndType(Callee, InstID, Vals, VE);
1467
1468     // Emit value #'s for the fixed parameters.
1469     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1470       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1471
1472     // Emit type/value pairs for varargs params.
1473     if (FTy->isVarArg()) {
1474       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1475            i != e; ++i)
1476         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1477     }
1478     break;
1479   }
1480   case Instruction::Resume:
1481     Code = bitc::FUNC_CODE_INST_RESUME;
1482     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1483     break;
1484   case Instruction::Unreachable:
1485     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1486     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1487     break;
1488
1489   case Instruction::PHI: {
1490     const PHINode &PN = cast<PHINode>(I);
1491     Code = bitc::FUNC_CODE_INST_PHI;
1492     // With the newer instruction encoding, forward references could give
1493     // negative valued IDs.  This is most common for PHIs, so we use
1494     // signed VBRs.
1495     SmallVector<uint64_t, 128> Vals64;
1496     Vals64.push_back(VE.getTypeID(PN.getType()));
1497     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1498       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1499       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1500     }
1501     // Emit a Vals64 vector and exit.
1502     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1503     Vals64.clear();
1504     return;
1505   }
1506
1507   case Instruction::LandingPad: {
1508     const LandingPadInst &LP = cast<LandingPadInst>(I);
1509     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1510     Vals.push_back(VE.getTypeID(LP.getType()));
1511     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1512     Vals.push_back(LP.isCleanup());
1513     Vals.push_back(LP.getNumClauses());
1514     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1515       if (LP.isCatch(I))
1516         Vals.push_back(LandingPadInst::Catch);
1517       else
1518         Vals.push_back(LandingPadInst::Filter);
1519       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1520     }
1521     break;
1522   }
1523
1524   case Instruction::Alloca: {
1525     Code = bitc::FUNC_CODE_INST_ALLOCA;
1526     Vals.push_back(VE.getTypeID(I.getType()));
1527     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1528     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1529     const AllocaInst &AI = cast<AllocaInst>(I);
1530     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1531     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1532            "not enough bits for maximum alignment");
1533     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1534     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1535     Vals.push_back(AlignRecord);
1536     break;
1537   }
1538
1539   case Instruction::Load:
1540     if (cast<LoadInst>(I).isAtomic()) {
1541       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1542       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1543     } else {
1544       Code = bitc::FUNC_CODE_INST_LOAD;
1545       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1546         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1547     }
1548     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1549     Vals.push_back(cast<LoadInst>(I).isVolatile());
1550     if (cast<LoadInst>(I).isAtomic()) {
1551       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1552       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1553     }
1554     break;
1555   case Instruction::Store:
1556     if (cast<StoreInst>(I).isAtomic())
1557       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1558     else
1559       Code = bitc::FUNC_CODE_INST_STORE;
1560     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1561     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1562     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1563     Vals.push_back(cast<StoreInst>(I).isVolatile());
1564     if (cast<StoreInst>(I).isAtomic()) {
1565       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1566       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1567     }
1568     break;
1569   case Instruction::AtomicCmpXchg:
1570     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1571     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1572     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1573     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1574     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1575     Vals.push_back(GetEncodedOrdering(
1576                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1577     Vals.push_back(GetEncodedSynchScope(
1578                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1579     Vals.push_back(GetEncodedOrdering(
1580                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1581     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1582     break;
1583   case Instruction::AtomicRMW:
1584     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1585     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1586     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1587     Vals.push_back(GetEncodedRMWOperation(
1588                      cast<AtomicRMWInst>(I).getOperation()));
1589     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1590     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1591     Vals.push_back(GetEncodedSynchScope(
1592                      cast<AtomicRMWInst>(I).getSynchScope()));
1593     break;
1594   case Instruction::Fence:
1595     Code = bitc::FUNC_CODE_INST_FENCE;
1596     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1597     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1598     break;
1599   case Instruction::Call: {
1600     const CallInst &CI = cast<CallInst>(I);
1601     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1602     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1603
1604     Code = bitc::FUNC_CODE_INST_CALL;
1605
1606     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1607     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1608                    unsigned(CI.isMustTailCall()) << 14);
1609     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1610
1611     // Emit value #'s for the fixed parameters.
1612     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1613       // Check for labels (can happen with asm labels).
1614       if (FTy->getParamType(i)->isLabelTy())
1615         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1616       else
1617         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1618     }
1619
1620     // Emit type/value pairs for varargs params.
1621     if (FTy->isVarArg()) {
1622       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1623            i != e; ++i)
1624         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1625     }
1626     break;
1627   }
1628   case Instruction::VAArg:
1629     Code = bitc::FUNC_CODE_INST_VAARG;
1630     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1631     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1632     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1633     break;
1634   }
1635
1636   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1637   Vals.clear();
1638 }
1639
1640 // Emit names for globals/functions etc.
1641 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1642                                   const ValueEnumerator &VE,
1643                                   BitstreamWriter &Stream) {
1644   if (VST.empty()) return;
1645   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1646
1647   // FIXME: Set up the abbrev, we know how many values there are!
1648   // FIXME: We know if the type names can use 7-bit ascii.
1649   SmallVector<unsigned, 64> NameVals;
1650
1651   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1652        SI != SE; ++SI) {
1653
1654     const ValueName &Name = *SI;
1655
1656     // Figure out the encoding to use for the name.
1657     bool is7Bit = true;
1658     bool isChar6 = true;
1659     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1660          C != E; ++C) {
1661       if (isChar6)
1662         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1663       if ((unsigned char)*C & 128) {
1664         is7Bit = false;
1665         break;  // don't bother scanning the rest.
1666       }
1667     }
1668
1669     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1670
1671     // VST_ENTRY:   [valueid, namechar x N]
1672     // VST_BBENTRY: [bbid, namechar x N]
1673     unsigned Code;
1674     if (isa<BasicBlock>(SI->getValue())) {
1675       Code = bitc::VST_CODE_BBENTRY;
1676       if (isChar6)
1677         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1678     } else {
1679       Code = bitc::VST_CODE_ENTRY;
1680       if (isChar6)
1681         AbbrevToUse = VST_ENTRY_6_ABBREV;
1682       else if (is7Bit)
1683         AbbrevToUse = VST_ENTRY_7_ABBREV;
1684     }
1685
1686     NameVals.push_back(VE.getValueID(SI->getValue()));
1687     for (const char *P = Name.getKeyData(),
1688          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1689       NameVals.push_back((unsigned char)*P);
1690
1691     // Emit the finished record.
1692     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1693     NameVals.clear();
1694   }
1695   Stream.ExitBlock();
1696 }
1697
1698 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1699                          BitstreamWriter &Stream) {
1700   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1701   unsigned Code;
1702   if (isa<BasicBlock>(Order.V))
1703     Code = bitc::USELIST_CODE_BB;
1704   else
1705     Code = bitc::USELIST_CODE_DEFAULT;
1706
1707   SmallVector<uint64_t, 64> Record;
1708   for (unsigned I : Order.Shuffle)
1709     Record.push_back(I);
1710   Record.push_back(VE.getValueID(Order.V));
1711   Stream.EmitRecord(Code, Record);
1712 }
1713
1714 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1715                               BitstreamWriter &Stream) {
1716   auto hasMore = [&]() {
1717     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1718   };
1719   if (!hasMore())
1720     // Nothing to do.
1721     return;
1722
1723   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1724   while (hasMore()) {
1725     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1726     VE.UseListOrders.pop_back();
1727   }
1728   Stream.ExitBlock();
1729 }
1730
1731 /// WriteFunction - Emit a function body to the module stream.
1732 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1733                           BitstreamWriter &Stream) {
1734   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1735   VE.incorporateFunction(F);
1736
1737   SmallVector<unsigned, 64> Vals;
1738
1739   // Emit the number of basic blocks, so the reader can create them ahead of
1740   // time.
1741   Vals.push_back(VE.getBasicBlocks().size());
1742   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1743   Vals.clear();
1744
1745   // If there are function-local constants, emit them now.
1746   unsigned CstStart, CstEnd;
1747   VE.getFunctionConstantRange(CstStart, CstEnd);
1748   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1749
1750   // If there is function-local metadata, emit it now.
1751   WriteFunctionLocalMetadata(F, VE, Stream);
1752
1753   // Keep a running idea of what the instruction ID is.
1754   unsigned InstID = CstEnd;
1755
1756   bool NeedsMetadataAttachment = false;
1757
1758   DebugLoc LastDL;
1759
1760   // Finally, emit all the instructions, in order.
1761   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1762     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1763          I != E; ++I) {
1764       WriteInstruction(*I, InstID, VE, Stream, Vals);
1765
1766       if (!I->getType()->isVoidTy())
1767         ++InstID;
1768
1769       // If the instruction has metadata, write a metadata attachment later.
1770       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1771
1772       // If the instruction has a debug location, emit it.
1773       DebugLoc DL = I->getDebugLoc();
1774       if (DL.isUnknown()) {
1775         // nothing todo.
1776       } else if (DL == LastDL) {
1777         // Just repeat the same debug loc as last time.
1778         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1779       } else {
1780         MDNode *Scope, *IA;
1781         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1782         assert(Scope && "Expected valid scope");
1783
1784         Vals.push_back(DL.getLine());
1785         Vals.push_back(DL.getCol());
1786         Vals.push_back(VE.getMetadataOrNullID(Scope));
1787         Vals.push_back(VE.getMetadataOrNullID(IA));
1788         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1789         Vals.clear();
1790
1791         LastDL = DL;
1792       }
1793     }
1794
1795   // Emit names for all the instructions etc.
1796   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1797
1798   if (NeedsMetadataAttachment)
1799     WriteMetadataAttachment(F, VE, Stream);
1800   if (shouldPreserveBitcodeUseListOrder())
1801     WriteUseListBlock(&F, VE, Stream);
1802   VE.purgeFunction();
1803   Stream.ExitBlock();
1804 }
1805
1806 // Emit blockinfo, which defines the standard abbreviations etc.
1807 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1808   // We only want to emit block info records for blocks that have multiple
1809   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1810   // Other blocks can define their abbrevs inline.
1811   Stream.EnterBlockInfoBlock(2);
1812
1813   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1814     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1815     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1816     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1818     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1819     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1820                                    Abbv) != VST_ENTRY_8_ABBREV)
1821       llvm_unreachable("Unexpected abbrev ordering!");
1822   }
1823
1824   { // 7-bit fixed width VST_ENTRY strings.
1825     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1826     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1827     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1830     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1831                                    Abbv) != VST_ENTRY_7_ABBREV)
1832       llvm_unreachable("Unexpected abbrev ordering!");
1833   }
1834   { // 6-bit char6 VST_ENTRY strings.
1835     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1836     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1837     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1838     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1840     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1841                                    Abbv) != VST_ENTRY_6_ABBREV)
1842       llvm_unreachable("Unexpected abbrev ordering!");
1843   }
1844   { // 6-bit char6 VST_BBENTRY strings.
1845     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1846     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1847     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1848     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1849     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1850     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1851                                    Abbv) != VST_BBENTRY_6_ABBREV)
1852       llvm_unreachable("Unexpected abbrev ordering!");
1853   }
1854
1855
1856
1857   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1858     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1859     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1860     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1861                               Log2_32_Ceil(VE.getTypes().size()+1)));
1862     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1863                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1864       llvm_unreachable("Unexpected abbrev ordering!");
1865   }
1866
1867   { // INTEGER abbrev for CONSTANTS_BLOCK.
1868     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1869     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1870     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1871     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1872                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1873       llvm_unreachable("Unexpected abbrev ordering!");
1874   }
1875
1876   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1877     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1878     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1879     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1880     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1881                               Log2_32_Ceil(VE.getTypes().size()+1)));
1882     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1883
1884     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1885                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1886       llvm_unreachable("Unexpected abbrev ordering!");
1887   }
1888   { // NULL abbrev for CONSTANTS_BLOCK.
1889     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1890     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1891     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1892                                    Abbv) != CONSTANTS_NULL_Abbrev)
1893       llvm_unreachable("Unexpected abbrev ordering!");
1894   }
1895
1896   // FIXME: This should only use space for first class types!
1897
1898   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1899     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1900     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1901     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1902     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1903     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1904     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1905                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1906       llvm_unreachable("Unexpected abbrev ordering!");
1907   }
1908   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1909     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1910     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1911     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1912     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1913     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1914     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1915                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1916       llvm_unreachable("Unexpected abbrev ordering!");
1917   }
1918   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1919     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1920     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1921     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1922     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1923     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1925     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1926                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1927       llvm_unreachable("Unexpected abbrev ordering!");
1928   }
1929   { // INST_CAST abbrev for FUNCTION_BLOCK.
1930     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1931     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1932     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1933     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1934                               Log2_32_Ceil(VE.getTypes().size()+1)));
1935     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1936     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1937                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1938       llvm_unreachable("Unexpected abbrev ordering!");
1939   }
1940
1941   { // INST_RET abbrev for FUNCTION_BLOCK.
1942     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1943     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1944     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1945                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1946       llvm_unreachable("Unexpected abbrev ordering!");
1947   }
1948   { // INST_RET abbrev for FUNCTION_BLOCK.
1949     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1950     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1951     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1952     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1953                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1954       llvm_unreachable("Unexpected abbrev ordering!");
1955   }
1956   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1957     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1958     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1959     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1960                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1961       llvm_unreachable("Unexpected abbrev ordering!");
1962   }
1963
1964   Stream.ExitBlock();
1965 }
1966
1967 /// WriteModule - Emit the specified module to the bitstream.
1968 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1969   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1970
1971   SmallVector<unsigned, 1> Vals;
1972   unsigned CurVersion = 1;
1973   Vals.push_back(CurVersion);
1974   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1975
1976   // Analyze the module, enumerating globals, functions, etc.
1977   ValueEnumerator VE(*M);
1978
1979   // Emit blockinfo, which defines the standard abbreviations etc.
1980   WriteBlockInfo(VE, Stream);
1981
1982   // Emit information about attribute groups.
1983   WriteAttributeGroupTable(VE, Stream);
1984
1985   // Emit information about parameter attributes.
1986   WriteAttributeTable(VE, Stream);
1987
1988   // Emit information describing all of the types in the module.
1989   WriteTypeTable(VE, Stream);
1990
1991   writeComdats(VE, Stream);
1992
1993   // Emit top-level description of module, including target triple, inline asm,
1994   // descriptors for global variables, and function prototype info.
1995   WriteModuleInfo(M, VE, Stream);
1996
1997   // Emit constants.
1998   WriteModuleConstants(VE, Stream);
1999
2000   // Emit metadata.
2001   WriteModuleMetadata(M, VE, Stream);
2002
2003   // Emit metadata.
2004   WriteModuleMetadataStore(M, Stream);
2005
2006   // Emit names for globals/functions etc.
2007   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2008
2009   // Emit module-level use-lists.
2010   if (shouldPreserveBitcodeUseListOrder())
2011     WriteUseListBlock(nullptr, VE, Stream);
2012
2013   // Emit function bodies.
2014   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2015     if (!F->isDeclaration())
2016       WriteFunction(*F, VE, Stream);
2017
2018   Stream.ExitBlock();
2019 }
2020
2021 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2022 /// header and trailer to make it compatible with the system archiver.  To do
2023 /// this we emit the following header, and then emit a trailer that pads the
2024 /// file out to be a multiple of 16 bytes.
2025 ///
2026 /// struct bc_header {
2027 ///   uint32_t Magic;         // 0x0B17C0DE
2028 ///   uint32_t Version;       // Version, currently always 0.
2029 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2030 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2031 ///   uint32_t CPUType;       // CPU specifier.
2032 ///   ... potentially more later ...
2033 /// };
2034 enum {
2035   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2036   DarwinBCHeaderSize = 5*4
2037 };
2038
2039 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2040                                uint32_t &Position) {
2041   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2042   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2043   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2044   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2045   Position += 4;
2046 }
2047
2048 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2049                                          const Triple &TT) {
2050   unsigned CPUType = ~0U;
2051
2052   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2053   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2054   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2055   // specific constants here because they are implicitly part of the Darwin ABI.
2056   enum {
2057     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2058     DARWIN_CPU_TYPE_X86        = 7,
2059     DARWIN_CPU_TYPE_ARM        = 12,
2060     DARWIN_CPU_TYPE_POWERPC    = 18
2061   };
2062
2063   Triple::ArchType Arch = TT.getArch();
2064   if (Arch == Triple::x86_64)
2065     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2066   else if (Arch == Triple::x86)
2067     CPUType = DARWIN_CPU_TYPE_X86;
2068   else if (Arch == Triple::ppc)
2069     CPUType = DARWIN_CPU_TYPE_POWERPC;
2070   else if (Arch == Triple::ppc64)
2071     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2072   else if (Arch == Triple::arm || Arch == Triple::thumb)
2073     CPUType = DARWIN_CPU_TYPE_ARM;
2074
2075   // Traditional Bitcode starts after header.
2076   assert(Buffer.size() >= DarwinBCHeaderSize &&
2077          "Expected header size to be reserved");
2078   unsigned BCOffset = DarwinBCHeaderSize;
2079   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2080
2081   // Write the magic and version.
2082   unsigned Position = 0;
2083   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2084   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2085   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2086   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2087   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2088
2089   // If the file is not a multiple of 16 bytes, insert dummy padding.
2090   while (Buffer.size() & 15)
2091     Buffer.push_back(0);
2092 }
2093
2094 /// WriteBitcodeToFile - Write the specified module to the specified output
2095 /// stream.
2096 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2097   SmallVector<char, 0> Buffer;
2098   Buffer.reserve(256*1024);
2099
2100   // If this is darwin or another generic macho target, reserve space for the
2101   // header.
2102   Triple TT(M->getTargetTriple());
2103   if (TT.isOSDarwin())
2104     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2105
2106   // Emit the module into the buffer.
2107   {
2108     BitstreamWriter Stream(Buffer);
2109
2110     // Emit the file header.
2111     Stream.Emit((unsigned)'B', 8);
2112     Stream.Emit((unsigned)'C', 8);
2113     Stream.Emit(0x0, 4);
2114     Stream.Emit(0xC, 4);
2115     Stream.Emit(0xE, 4);
2116     Stream.Emit(0xD, 4);
2117
2118     // Emit the module.
2119     WriteModule(M, Stream);
2120   }
2121
2122   if (TT.isOSDarwin())
2123     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2124
2125   // Write the generated bitstream to "Out".
2126   Out.write((char*)&Buffer.front(), Buffer.size());
2127 }