allow partially materialized modules to be written out, which just strips out
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/ParameterAttributes.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 /// These are manifest constants used by the bitcode writer. They do not need to
30 /// be kept in sync with the reader, but need to be consistent within this file.
31 enum {
32   CurVersion = 0,
33   
34   // VALUE_SYMTAB_BLOCK abbrev id's.
35   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36   VST_ENTRY_7_ABBREV,
37   VST_ENTRY_6_ABBREV,
38   VST_BBENTRY_6_ABBREV,
39   
40   // CONSTANTS_BLOCK abbrev id's.
41   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   CONSTANTS_INTEGER_ABBREV,
43   CONSTANTS_CE_CAST_Abbrev,
44   CONSTANTS_NULL_Abbrev,
45   
46   // FUNCTION_BLOCK abbrev id's.
47   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   FUNCTION_INST_BINOP_ABBREV,
49   FUNCTION_INST_CAST_ABBREV,
50   FUNCTION_INST_RET_VOID_ABBREV,
51   FUNCTION_INST_RET_VAL_ABBREV,
52   FUNCTION_INST_UNREACHABLE_ABBREV
53 };
54
55
56 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57   switch (Opcode) {
58   default: assert(0 && "Unknown cast instruction!");
59   case Instruction::Trunc   : return bitc::CAST_TRUNC;
60   case Instruction::ZExt    : return bitc::CAST_ZEXT;
61   case Instruction::SExt    : return bitc::CAST_SEXT;
62   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
63   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
64   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
65   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
66   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67   case Instruction::FPExt   : return bitc::CAST_FPEXT;
68   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70   case Instruction::BitCast : return bitc::CAST_BITCAST;
71   }
72 }
73
74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75   switch (Opcode) {
76   default: assert(0 && "Unknown binary instruction!");
77   case Instruction::Add:  return bitc::BINOP_ADD;
78   case Instruction::Sub:  return bitc::BINOP_SUB;
79   case Instruction::Mul:  return bitc::BINOP_MUL;
80   case Instruction::UDiv: return bitc::BINOP_UDIV;
81   case Instruction::FDiv:
82   case Instruction::SDiv: return bitc::BINOP_SDIV;
83   case Instruction::URem: return bitc::BINOP_UREM;
84   case Instruction::FRem:
85   case Instruction::SRem: return bitc::BINOP_SREM;
86   case Instruction::Shl:  return bitc::BINOP_SHL;
87   case Instruction::LShr: return bitc::BINOP_LSHR;
88   case Instruction::AShr: return bitc::BINOP_ASHR;
89   case Instruction::And:  return bitc::BINOP_AND;
90   case Instruction::Or:   return bitc::BINOP_OR;
91   case Instruction::Xor:  return bitc::BINOP_XOR;
92   }
93 }
94
95
96
97 static void WriteStringRecord(unsigned Code, const std::string &Str, 
98                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
99   SmallVector<unsigned, 64> Vals;
100   
101   // Code: [strchar x N]
102   for (unsigned i = 0, e = Str.size(); i != e; ++i)
103     Vals.push_back(Str[i]);
104     
105   // Emit the finished record.
106   Stream.EmitRecord(Code, Vals, AbbrevToUse);
107 }
108
109 // Emit information about parameter attributes.
110 static void WriteParamAttrTable(const ValueEnumerator &VE, 
111                                 BitstreamWriter &Stream) {
112   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113   if (Attrs.empty()) return;
114   
115   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117   SmallVector<uint64_t, 64> Record;
118   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119     const ParamAttrsList *A = Attrs[i];
120     for (unsigned op = 0, e = A->size(); op != e; ++op) {
121       Record.push_back(A->getParamIndex(op));
122       Record.push_back(A->getParamAttrsAtIndex(op));
123     }
124     
125     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126     Record.clear();
127   }
128   
129   Stream.ExitBlock();
130 }
131
132 /// WriteTypeTable - Write out the type table for a module.
133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135   
136   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137   SmallVector<uint64_t, 64> TypeVals;
138   
139   // Abbrev for TYPE_CODE_POINTER.
140   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143                             Log2_32_Ceil(VE.getTypes().size()+1)));
144   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
145   
146   // Abbrev for TYPE_CODE_FUNCTION.
147   Abbv = new BitCodeAbbrev();
148   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
150   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
151                             Log2_32_Ceil(VE.getParamAttrs().size()+1)));
152   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154                             Log2_32_Ceil(VE.getTypes().size()+1)));
155   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156   
157   // Abbrev for TYPE_CODE_STRUCT.
158   Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165  
166   // Abbrev for TYPE_CODE_ARRAY.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                             Log2_32_Ceil(VE.getTypes().size()+1)));
172   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173   
174   // Emit an entry count so the reader can reserve space.
175   TypeVals.push_back(TypeList.size());
176   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177   TypeVals.clear();
178   
179   // Loop over all of the types, emitting each in turn.
180   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181     const Type *T = TypeList[i].first;
182     int AbbrevToUse = 0;
183     unsigned Code = 0;
184     
185     switch (T->getTypeID()) {
186     case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
187     default: assert(0 && "Unknown type!");
188     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
189     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
190     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
191     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
192     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
193     case Type::IntegerTyID:
194       // INTEGER: [width]
195       Code = bitc::TYPE_CODE_INTEGER;
196       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
197       break;
198     case Type::PointerTyID:
199       // POINTER: [pointee type]
200       Code = bitc::TYPE_CODE_POINTER;
201       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
202       AbbrevToUse = PtrAbbrev;
203       break;
204
205     case Type::FunctionTyID: {
206       const FunctionType *FT = cast<FunctionType>(T);
207       // FUNCTION: [isvararg, attrid, retty, paramty x N]
208       Code = bitc::TYPE_CODE_FUNCTION;
209       TypeVals.push_back(FT->isVarArg());
210       TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
211       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
212       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
213         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
214       AbbrevToUse = FunctionAbbrev;
215       break;
216     }
217     case Type::StructTyID: {
218       const StructType *ST = cast<StructType>(T);
219       // STRUCT: [ispacked, eltty x N]
220       Code = bitc::TYPE_CODE_STRUCT;
221       TypeVals.push_back(ST->isPacked());
222       // Output all of the element types.
223       for (StructType::element_iterator I = ST->element_begin(),
224            E = ST->element_end(); I != E; ++I)
225         TypeVals.push_back(VE.getTypeID(*I));
226       AbbrevToUse = StructAbbrev;
227       break;
228     }
229     case Type::ArrayTyID: {
230       const ArrayType *AT = cast<ArrayType>(T);
231       // ARRAY: [numelts, eltty]
232       Code = bitc::TYPE_CODE_ARRAY;
233       TypeVals.push_back(AT->getNumElements());
234       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
235       AbbrevToUse = ArrayAbbrev;
236       break;
237     }
238     case Type::VectorTyID: {
239       const VectorType *VT = cast<VectorType>(T);
240       // VECTOR [numelts, eltty]
241       Code = bitc::TYPE_CODE_VECTOR;
242       TypeVals.push_back(VT->getNumElements());
243       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
244       break;
245     }
246     }
247
248     // Emit the finished record.
249     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
250     TypeVals.clear();
251   }
252   
253   Stream.ExitBlock();
254 }
255
256 static unsigned getEncodedLinkage(const GlobalValue *GV) {
257   switch (GV->getLinkage()) {
258   default: assert(0 && "Invalid linkage!");
259   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
260   case GlobalValue::ExternalLinkage:     return 0;
261   case GlobalValue::WeakLinkage:         return 1;
262   case GlobalValue::AppendingLinkage:    return 2;
263   case GlobalValue::InternalLinkage:     return 3;
264   case GlobalValue::LinkOnceLinkage:     return 4;
265   case GlobalValue::DLLImportLinkage:    return 5;
266   case GlobalValue::DLLExportLinkage:    return 6;
267   case GlobalValue::ExternalWeakLinkage: return 7;
268   }
269 }
270
271 static unsigned getEncodedVisibility(const GlobalValue *GV) {
272   switch (GV->getVisibility()) {
273   default: assert(0 && "Invalid visibility!");
274   case GlobalValue::DefaultVisibility:   return 0;
275   case GlobalValue::HiddenVisibility:    return 1;
276   case GlobalValue::ProtectedVisibility: return 2;
277   }
278 }
279
280 // Emit top-level description of module, including target triple, inline asm,
281 // descriptors for global variables, and function prototype info.
282 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
283                             BitstreamWriter &Stream) {
284   // Emit the list of dependent libraries for the Module.
285   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
286     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
287
288   // Emit various pieces of data attached to a module.
289   if (!M->getTargetTriple().empty())
290     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
291                       0/*TODO*/, Stream);
292   if (!M->getDataLayout().empty())
293     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
294                       0/*TODO*/, Stream);
295   if (!M->getModuleInlineAsm().empty())
296     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
297                       0/*TODO*/, Stream);
298
299   // Emit information about sections, computing how many there are.  Also
300   // compute the maximum alignment value.
301   std::map<std::string, unsigned> SectionMap;
302   unsigned MaxAlignment = 0;
303   unsigned MaxGlobalType = 0;
304   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
305        GV != E; ++GV) {
306     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
307     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
308     
309     if (!GV->hasSection()) continue;
310     // Give section names unique ID's.
311     unsigned &Entry = SectionMap[GV->getSection()];
312     if (Entry != 0) continue;
313     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
314                       0/*TODO*/, Stream);
315     Entry = SectionMap.size();
316   }
317   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
318     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
319     if (!F->hasSection()) continue;
320     // Give section names unique ID's.
321     unsigned &Entry = SectionMap[F->getSection()];
322     if (Entry != 0) continue;
323     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
324                       0/*TODO*/, Stream);
325     Entry = SectionMap.size();
326   }
327   
328   // Emit abbrev for globals, now that we know # sections and max alignment.
329   unsigned SimpleGVarAbbrev = 0;
330   if (!M->global_empty()) { 
331     // Add an abbrev for common globals with no visibility or thread localness.
332     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
333     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
335                               Log2_32_Ceil(MaxGlobalType+1)));
336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
339     if (MaxAlignment == 0)                                      // Alignment.
340       Abbv->Add(BitCodeAbbrevOp(0));
341     else {
342       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
343       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
344                                Log2_32_Ceil(MaxEncAlignment+1)));
345     }
346     if (SectionMap.empty())                                    // Section.
347       Abbv->Add(BitCodeAbbrevOp(0));
348     else
349       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
350                                Log2_32_Ceil(SectionMap.size()+1)));
351     // Don't bother emitting vis + thread local.
352     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
353   }
354   
355   // Emit the global variable information.
356   SmallVector<unsigned, 64> Vals;
357   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
358        GV != E; ++GV) {
359     unsigned AbbrevToUse = 0;
360
361     // GLOBALVAR: [type, isconst, initid, 
362     //             linkage, alignment, section, visibility, threadlocal]
363     Vals.push_back(VE.getTypeID(GV->getType()));
364     Vals.push_back(GV->isConstant());
365     Vals.push_back(GV->isDeclaration() ? 0 :
366                    (VE.getValueID(GV->getInitializer()) + 1));
367     Vals.push_back(getEncodedLinkage(GV));
368     Vals.push_back(Log2_32(GV->getAlignment())+1);
369     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
370     if (GV->isThreadLocal() || 
371         GV->getVisibility() != GlobalValue::DefaultVisibility) {
372       Vals.push_back(getEncodedVisibility(GV));
373       Vals.push_back(GV->isThreadLocal());
374     } else {
375       AbbrevToUse = SimpleGVarAbbrev;
376     }
377     
378     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
379     Vals.clear();
380   }
381
382   // Emit the function proto information.
383   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
384     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
385     //             visibility]
386     Vals.push_back(VE.getTypeID(F->getType()));
387     Vals.push_back(F->getCallingConv());
388     Vals.push_back(F->isDeclaration());
389     Vals.push_back(getEncodedLinkage(F));
390     
391     // Note: we emit the param attr ID number for the function type of this
392     // function.  In the future, we intend for attrs to be properties of
393     // functions, instead of on the type.  This is to support this future work.
394     Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs()));
395     
396     Vals.push_back(Log2_32(F->getAlignment())+1);
397     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
398     Vals.push_back(getEncodedVisibility(F));
399     
400     unsigned AbbrevToUse = 0;
401     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
402     Vals.clear();
403   }
404   
405   
406   // Emit the alias information.
407   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
408        AI != E; ++AI) {
409     Vals.push_back(VE.getTypeID(AI->getType()));
410     Vals.push_back(VE.getValueID(AI->getAliasee()));
411     Vals.push_back(getEncodedLinkage(AI));
412     unsigned AbbrevToUse = 0;
413     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
414     Vals.clear();
415   }
416 }
417
418
419 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
420                            const ValueEnumerator &VE,
421                            BitstreamWriter &Stream, bool isGlobal) {
422   if (FirstVal == LastVal) return;
423   
424   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
425
426   unsigned AggregateAbbrev = 0;
427   unsigned String8Abbrev = 0;
428   unsigned CString7Abbrev = 0;
429   unsigned CString6Abbrev = 0;
430   // If this is a constant pool for the module, emit module-specific abbrevs.
431   if (isGlobal) {
432     // Abbrev for CST_CODE_AGGREGATE.
433     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
434     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
437     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
438
439     // Abbrev for CST_CODE_STRING.
440     Abbv = new BitCodeAbbrev();
441     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
443     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
444     String8Abbrev = Stream.EmitAbbrev(Abbv);
445     // Abbrev for CST_CODE_CSTRING.
446     Abbv = new BitCodeAbbrev();
447     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
450     CString7Abbrev = Stream.EmitAbbrev(Abbv);
451     // Abbrev for CST_CODE_CSTRING.
452     Abbv = new BitCodeAbbrev();
453     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
455     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
456     CString6Abbrev = Stream.EmitAbbrev(Abbv);
457   }  
458   
459   SmallVector<uint64_t, 64> Record;
460
461   const ValueEnumerator::ValueList &Vals = VE.getValues();
462   const Type *LastTy = 0;
463   for (unsigned i = FirstVal; i != LastVal; ++i) {
464     const Value *V = Vals[i].first;
465     // If we need to switch types, do so now.
466     if (V->getType() != LastTy) {
467       LastTy = V->getType();
468       Record.push_back(VE.getTypeID(LastTy));
469       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
470                         CONSTANTS_SETTYPE_ABBREV);
471       Record.clear();
472     }
473     
474     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
475       Record.push_back(unsigned(IA->hasSideEffects()));
476       
477       // Add the asm string.
478       const std::string &AsmStr = IA->getAsmString();
479       Record.push_back(AsmStr.size());
480       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
481         Record.push_back(AsmStr[i]);
482       
483       // Add the constraint string.
484       const std::string &ConstraintStr = IA->getConstraintString();
485       Record.push_back(ConstraintStr.size());
486       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
487         Record.push_back(ConstraintStr[i]);
488       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
489       Record.clear();
490       continue;
491     }
492     const Constant *C = cast<Constant>(V);
493     unsigned Code = -1U;
494     unsigned AbbrevToUse = 0;
495     if (C->isNullValue()) {
496       Code = bitc::CST_CODE_NULL;
497     } else if (isa<UndefValue>(C)) {
498       Code = bitc::CST_CODE_UNDEF;
499     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
500       if (IV->getBitWidth() <= 64) {
501         int64_t V = IV->getSExtValue();
502         if (V >= 0)
503           Record.push_back(V << 1);
504         else
505           Record.push_back((-V << 1) | 1);
506         Code = bitc::CST_CODE_INTEGER;
507         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
508       } else {                             // Wide integers, > 64 bits in size.
509         // We have an arbitrary precision integer value to write whose 
510         // bit width is > 64. However, in canonical unsigned integer 
511         // format it is likely that the high bits are going to be zero.
512         // So, we only write the number of active words.
513         unsigned NWords = IV->getValue().getActiveWords(); 
514         const uint64_t *RawWords = IV->getValue().getRawData();
515         for (unsigned i = 0; i != NWords; ++i) {
516           int64_t V = RawWords[i];
517           if (V >= 0)
518             Record.push_back(V << 1);
519           else
520             Record.push_back((-V << 1) | 1);
521         }
522         Code = bitc::CST_CODE_WIDE_INTEGER;
523       }
524     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
525       Code = bitc::CST_CODE_FLOAT;
526       if (CFP->getType() == Type::FloatTy) {
527         Record.push_back(FloatToBits((float)CFP->getValue()));
528       } else {
529         assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
530         Record.push_back(DoubleToBits((double)CFP->getValue()));
531       }
532     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
533       // Emit constant strings specially.
534       unsigned NumOps = C->getNumOperands();
535       // If this is a null-terminated string, use the denser CSTRING encoding.
536       if (C->getOperand(NumOps-1)->isNullValue()) {
537         Code = bitc::CST_CODE_CSTRING;
538         --NumOps;  // Don't encode the null, which isn't allowed by char6.
539       } else {
540         Code = bitc::CST_CODE_STRING;
541         AbbrevToUse = String8Abbrev;
542       }
543       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
544       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
545       for (unsigned i = 0; i != NumOps; ++i) {
546         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
547         Record.push_back(V);
548         isCStr7 &= (V & 128) == 0;
549         if (isCStrChar6) 
550           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
551       }
552       
553       if (isCStrChar6)
554         AbbrevToUse = CString6Abbrev;
555       else if (isCStr7)
556         AbbrevToUse = CString7Abbrev;
557     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
558                isa<ConstantVector>(V)) {
559       Code = bitc::CST_CODE_AGGREGATE;
560       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
561         Record.push_back(VE.getValueID(C->getOperand(i)));
562       AbbrevToUse = AggregateAbbrev;
563     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
564       switch (CE->getOpcode()) {
565       default:
566         if (Instruction::isCast(CE->getOpcode())) {
567           Code = bitc::CST_CODE_CE_CAST;
568           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
569           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
570           Record.push_back(VE.getValueID(C->getOperand(0)));
571           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
572         } else {
573           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
574           Code = bitc::CST_CODE_CE_BINOP;
575           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
576           Record.push_back(VE.getValueID(C->getOperand(0)));
577           Record.push_back(VE.getValueID(C->getOperand(1)));
578         }
579         break;
580       case Instruction::GetElementPtr:
581         Code = bitc::CST_CODE_CE_GEP;
582         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
583           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
584           Record.push_back(VE.getValueID(C->getOperand(i)));
585         }
586         break;
587       case Instruction::Select:
588         Code = bitc::CST_CODE_CE_SELECT;
589         Record.push_back(VE.getValueID(C->getOperand(0)));
590         Record.push_back(VE.getValueID(C->getOperand(1)));
591         Record.push_back(VE.getValueID(C->getOperand(2)));
592         break;
593       case Instruction::ExtractElement:
594         Code = bitc::CST_CODE_CE_EXTRACTELT;
595         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
596         Record.push_back(VE.getValueID(C->getOperand(0)));
597         Record.push_back(VE.getValueID(C->getOperand(1)));
598         break;
599       case Instruction::InsertElement:
600         Code = bitc::CST_CODE_CE_INSERTELT;
601         Record.push_back(VE.getValueID(C->getOperand(0)));
602         Record.push_back(VE.getValueID(C->getOperand(1)));
603         Record.push_back(VE.getValueID(C->getOperand(2)));
604         break;
605       case Instruction::ShuffleVector:
606         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
607         Record.push_back(VE.getValueID(C->getOperand(0)));
608         Record.push_back(VE.getValueID(C->getOperand(1)));
609         Record.push_back(VE.getValueID(C->getOperand(2)));
610         break;
611       case Instruction::ICmp:
612       case Instruction::FCmp:
613         Code = bitc::CST_CODE_CE_CMP;
614         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
615         Record.push_back(VE.getValueID(C->getOperand(0)));
616         Record.push_back(VE.getValueID(C->getOperand(1)));
617         Record.push_back(CE->getPredicate());
618         break;
619       }
620     } else {
621       assert(0 && "Unknown constant!");
622     }
623     Stream.EmitRecord(Code, Record, AbbrevToUse);
624     Record.clear();
625   }
626
627   Stream.ExitBlock();
628 }
629
630 static void WriteModuleConstants(const ValueEnumerator &VE,
631                                  BitstreamWriter &Stream) {
632   const ValueEnumerator::ValueList &Vals = VE.getValues();
633   
634   // Find the first constant to emit, which is the first non-globalvalue value.
635   // We know globalvalues have been emitted by WriteModuleInfo.
636   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
637     if (!isa<GlobalValue>(Vals[i].first)) {
638       WriteConstants(i, Vals.size(), VE, Stream, true);
639       return;
640     }
641   }
642 }
643
644 /// PushValueAndType - The file has to encode both the value and type id for
645 /// many values, because we need to know what type to create for forward
646 /// references.  However, most operands are not forward references, so this type
647 /// field is not needed.
648 ///
649 /// This function adds V's value ID to Vals.  If the value ID is higher than the
650 /// instruction ID, then it is a forward reference, and it also includes the
651 /// type ID.
652 static bool PushValueAndType(Value *V, unsigned InstID,
653                              SmallVector<unsigned, 64> &Vals, 
654                              ValueEnumerator &VE) {
655   unsigned ValID = VE.getValueID(V);
656   Vals.push_back(ValID);
657   if (ValID >= InstID) {
658     Vals.push_back(VE.getTypeID(V->getType()));
659     return true;
660   }
661   return false;
662 }
663
664 /// WriteInstruction - Emit an instruction to the specified stream.
665 static void WriteInstruction(const Instruction &I, unsigned InstID,
666                              ValueEnumerator &VE, BitstreamWriter &Stream,
667                              SmallVector<unsigned, 64> &Vals) {
668   unsigned Code = 0;
669   unsigned AbbrevToUse = 0;
670   switch (I.getOpcode()) {
671   default:
672     if (Instruction::isCast(I.getOpcode())) {
673       Code = bitc::FUNC_CODE_INST_CAST;
674       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
675         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
676       Vals.push_back(VE.getTypeID(I.getType()));
677       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
678     } else {
679       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
680       Code = bitc::FUNC_CODE_INST_BINOP;
681       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
682         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
683       Vals.push_back(VE.getValueID(I.getOperand(1)));
684       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
685     }
686     break;
687
688   case Instruction::GetElementPtr:
689     Code = bitc::FUNC_CODE_INST_GEP;
690     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
691       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
692     break;
693   case Instruction::Select:
694     Code = bitc::FUNC_CODE_INST_SELECT;
695     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
696     Vals.push_back(VE.getValueID(I.getOperand(2)));
697     Vals.push_back(VE.getValueID(I.getOperand(0)));
698     break;
699   case Instruction::ExtractElement:
700     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
701     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
702     Vals.push_back(VE.getValueID(I.getOperand(1)));
703     break;
704   case Instruction::InsertElement:
705     Code = bitc::FUNC_CODE_INST_INSERTELT;
706     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
707     Vals.push_back(VE.getValueID(I.getOperand(1)));
708     Vals.push_back(VE.getValueID(I.getOperand(2)));
709     break;
710   case Instruction::ShuffleVector:
711     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
712     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
713     Vals.push_back(VE.getValueID(I.getOperand(1)));
714     Vals.push_back(VE.getValueID(I.getOperand(2)));
715     break;
716   case Instruction::ICmp:
717   case Instruction::FCmp:
718     Code = bitc::FUNC_CODE_INST_CMP;
719     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
720     Vals.push_back(VE.getValueID(I.getOperand(1)));
721     Vals.push_back(cast<CmpInst>(I).getPredicate());
722     break;
723
724   case Instruction::Ret:
725     Code = bitc::FUNC_CODE_INST_RET;
726     if (!I.getNumOperands())
727       AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
728     else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
729       AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
730     break;
731   case Instruction::Br:
732     Code = bitc::FUNC_CODE_INST_BR;
733     Vals.push_back(VE.getValueID(I.getOperand(0)));
734     if (cast<BranchInst>(I).isConditional()) {
735       Vals.push_back(VE.getValueID(I.getOperand(1)));
736       Vals.push_back(VE.getValueID(I.getOperand(2)));
737     }
738     break;
739   case Instruction::Switch:
740     Code = bitc::FUNC_CODE_INST_SWITCH;
741     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
742     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
743       Vals.push_back(VE.getValueID(I.getOperand(i)));
744     break;
745   case Instruction::Invoke: {
746     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
747     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
748     Code = bitc::FUNC_CODE_INST_INVOKE;
749     
750     // Note: we emit the param attr ID number for the function type of this
751     // function.  In the future, we intend for attrs to be properties of
752     // functions, instead of on the type.  This is to support this future work.
753     Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
754     
755     Vals.push_back(cast<InvokeInst>(I).getCallingConv());
756     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
757     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
758     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
759     
760     // Emit value #'s for the fixed parameters.
761     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
762       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
763
764     // Emit type/value pairs for varargs params.
765     if (FTy->isVarArg()) {
766       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
767            i != e; ++i)
768         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
769     }
770     break;
771   }
772   case Instruction::Unwind:
773     Code = bitc::FUNC_CODE_INST_UNWIND;
774     break;
775   case Instruction::Unreachable:
776     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
777     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
778     break;
779   
780   case Instruction::PHI:
781     Code = bitc::FUNC_CODE_INST_PHI;
782     Vals.push_back(VE.getTypeID(I.getType()));
783     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
784       Vals.push_back(VE.getValueID(I.getOperand(i)));
785     break;
786     
787   case Instruction::Malloc:
788     Code = bitc::FUNC_CODE_INST_MALLOC;
789     Vals.push_back(VE.getTypeID(I.getType()));
790     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
791     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
792     break;
793     
794   case Instruction::Free:
795     Code = bitc::FUNC_CODE_INST_FREE;
796     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
797     break;
798     
799   case Instruction::Alloca:
800     Code = bitc::FUNC_CODE_INST_ALLOCA;
801     Vals.push_back(VE.getTypeID(I.getType()));
802     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
803     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
804     break;
805     
806   case Instruction::Load:
807     Code = bitc::FUNC_CODE_INST_LOAD;
808     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
809       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
810       
811     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
812     Vals.push_back(cast<LoadInst>(I).isVolatile());
813     break;
814   case Instruction::Store:
815     Code = bitc::FUNC_CODE_INST_STORE;
816     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
817     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
818     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
819     Vals.push_back(cast<StoreInst>(I).isVolatile());
820     break;
821   case Instruction::Call: {
822     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
823     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
824
825     Code = bitc::FUNC_CODE_INST_CALL;
826     
827     // Note: we emit the param attr ID number for the function type of this
828     // function.  In the future, we intend for attrs to be properties of
829     // functions, instead of on the type.  This is to support this future work.
830     Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
831     
832     Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
833                    unsigned(cast<CallInst>(I).isTailCall()));
834     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // Callee
835     
836     // Emit value #'s for the fixed parameters.
837     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
838       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
839       
840     // Emit type/value pairs for varargs params.
841     if (FTy->isVarArg()) {
842       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
843       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
844            i != e; ++i)
845         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
846     }
847     break;
848   }
849   case Instruction::VAArg:
850     Code = bitc::FUNC_CODE_INST_VAARG;
851     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
852     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
853     Vals.push_back(VE.getTypeID(I.getType())); // restype.
854     break;
855   }
856   
857   Stream.EmitRecord(Code, Vals, AbbrevToUse);
858   Vals.clear();
859 }
860
861 // Emit names for globals/functions etc.
862 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
863                                   const ValueEnumerator &VE,
864                                   BitstreamWriter &Stream) {
865   if (VST.empty()) return;
866   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
867
868   // FIXME: Set up the abbrev, we know how many values there are!
869   // FIXME: We know if the type names can use 7-bit ascii.
870   SmallVector<unsigned, 64> NameVals;
871   
872   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
873        SI != SE; ++SI) {
874     
875     const ValueName &Name = *SI;
876     
877     // Figure out the encoding to use for the name.
878     bool is7Bit = true;
879     bool isChar6 = true;
880     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
881          C != E; ++C) {
882       if (isChar6) 
883         isChar6 = BitCodeAbbrevOp::isChar6(*C);
884       if ((unsigned char)*C & 128) {
885         is7Bit = false;
886         break;  // don't bother scanning the rest.
887       }
888     }
889     
890     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
891     
892     // VST_ENTRY:   [valueid, namechar x N]
893     // VST_BBENTRY: [bbid, namechar x N]
894     unsigned Code;
895     if (isa<BasicBlock>(SI->getValue())) {
896       Code = bitc::VST_CODE_BBENTRY;
897       if (isChar6)
898         AbbrevToUse = VST_BBENTRY_6_ABBREV;
899     } else {
900       Code = bitc::VST_CODE_ENTRY;
901       if (isChar6)
902         AbbrevToUse = VST_ENTRY_6_ABBREV;
903       else if (is7Bit)
904         AbbrevToUse = VST_ENTRY_7_ABBREV;
905     }
906     
907     NameVals.push_back(VE.getValueID(SI->getValue()));
908     for (const char *P = Name.getKeyData(),
909          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
910       NameVals.push_back((unsigned char)*P);
911     
912     // Emit the finished record.
913     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
914     NameVals.clear();
915   }
916   Stream.ExitBlock();
917 }
918
919 /// WriteFunction - Emit a function body to the module stream.
920 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
921                           BitstreamWriter &Stream) {
922   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
923   VE.incorporateFunction(F);
924
925   SmallVector<unsigned, 64> Vals;
926   
927   // Emit the number of basic blocks, so the reader can create them ahead of
928   // time.
929   Vals.push_back(VE.getBasicBlocks().size());
930   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
931   Vals.clear();
932   
933   // If there are function-local constants, emit them now.
934   unsigned CstStart, CstEnd;
935   VE.getFunctionConstantRange(CstStart, CstEnd);
936   WriteConstants(CstStart, CstEnd, VE, Stream, false);
937   
938   // Keep a running idea of what the instruction ID is. 
939   unsigned InstID = CstEnd;
940   
941   // Finally, emit all the instructions, in order.
942   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
943     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
944          I != E; ++I) {
945       WriteInstruction(*I, InstID, VE, Stream, Vals);
946       if (I->getType() != Type::VoidTy)
947         ++InstID;
948     }
949   
950   // Emit names for all the instructions etc.
951   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
952     
953   VE.purgeFunction();
954   Stream.ExitBlock();
955 }
956
957 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
958 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
959                                  const ValueEnumerator &VE,
960                                  BitstreamWriter &Stream) {
961   if (TST.empty()) return;
962   
963   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
964   
965   // 7-bit fixed width VST_CODE_ENTRY strings.
966   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
967   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
968   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
969                             Log2_32_Ceil(VE.getTypes().size()+1)));
970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
972   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
973   
974   SmallVector<unsigned, 64> NameVals;
975   
976   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
977        TI != TE; ++TI) {
978     // TST_ENTRY: [typeid, namechar x N]
979     NameVals.push_back(VE.getTypeID(TI->second));
980     
981     const std::string &Str = TI->first;
982     bool is7Bit = true;
983     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
984       NameVals.push_back((unsigned char)Str[i]);
985       if (Str[i] & 128)
986         is7Bit = false;
987     }
988     
989     // Emit the finished record.
990     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
991     NameVals.clear();
992   }
993   
994   Stream.ExitBlock();
995 }
996
997 // Emit blockinfo, which defines the standard abbreviations etc.
998 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
999   // We only want to emit block info records for blocks that have multiple
1000   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1001   // blocks can defined their abbrevs inline.
1002   Stream.EnterBlockInfoBlock(2);
1003   
1004   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1005     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1008     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1009     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1010     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1011                                    Abbv) != VST_ENTRY_8_ABBREV)
1012       assert(0 && "Unexpected abbrev ordering!");
1013   }
1014   
1015   { // 7-bit fixed width VST_ENTRY strings.
1016     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1017     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1018     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1021     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1022                                    Abbv) != VST_ENTRY_7_ABBREV)
1023       assert(0 && "Unexpected abbrev ordering!");
1024   }
1025   { // 6-bit char6 VST_ENTRY strings.
1026     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1027     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1028     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1029     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1030     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1031     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1032                                    Abbv) != VST_ENTRY_6_ABBREV)
1033       assert(0 && "Unexpected abbrev ordering!");
1034   }
1035   { // 6-bit char6 VST_BBENTRY strings.
1036     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1037     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1039     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1040     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1041     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1042                                    Abbv) != VST_BBENTRY_6_ABBREV)
1043       assert(0 && "Unexpected abbrev ordering!");
1044   }
1045   
1046   
1047   
1048   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1049     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1050     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1051     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1052                               Log2_32_Ceil(VE.getTypes().size()+1)));
1053     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1054                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1055       assert(0 && "Unexpected abbrev ordering!");
1056   }
1057   
1058   { // INTEGER abbrev for CONSTANTS_BLOCK.
1059     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1060     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1061     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1062     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1063                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1064       assert(0 && "Unexpected abbrev ordering!");
1065   }
1066   
1067   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1068     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1069     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1071     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1072                               Log2_32_Ceil(VE.getTypes().size()+1)));
1073     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1074
1075     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1076                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1077       assert(0 && "Unexpected abbrev ordering!");
1078   }
1079   { // NULL abbrev for CONSTANTS_BLOCK.
1080     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1081     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1082     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1083                                    Abbv) != CONSTANTS_NULL_Abbrev)
1084       assert(0 && "Unexpected abbrev ordering!");
1085   }
1086   
1087   // FIXME: This should only use space for first class types!
1088  
1089   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1090     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1091     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1093     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1094     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1095     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1096                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1097       assert(0 && "Unexpected abbrev ordering!");
1098   }
1099   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1100     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1101     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1102     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1104     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1105     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1106                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1107       assert(0 && "Unexpected abbrev ordering!");
1108   }
1109   { // INST_CAST abbrev for FUNCTION_BLOCK.
1110     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1111     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1112     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1113     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1114                               Log2_32_Ceil(VE.getTypes().size()+1)));
1115     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1116     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1117                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1118       assert(0 && "Unexpected abbrev ordering!");
1119   }
1120   
1121   { // INST_RET abbrev for FUNCTION_BLOCK.
1122     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1123     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1124     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1125                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1126       assert(0 && "Unexpected abbrev ordering!");
1127   }
1128   { // INST_RET abbrev for FUNCTION_BLOCK.
1129     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1130     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1132     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1133                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1134       assert(0 && "Unexpected abbrev ordering!");
1135   }
1136   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1137     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1138     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1139     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1140                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1141       assert(0 && "Unexpected abbrev ordering!");
1142   }
1143   
1144   Stream.ExitBlock();
1145 }
1146
1147
1148 /// WriteModule - Emit the specified module to the bitstream.
1149 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1150   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1151   
1152   // Emit the version number if it is non-zero.
1153   if (CurVersion) {
1154     SmallVector<unsigned, 1> Vals;
1155     Vals.push_back(CurVersion);
1156     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1157   }
1158   
1159   // Analyze the module, enumerating globals, functions, etc.
1160   ValueEnumerator VE(M);
1161
1162   // Emit blockinfo, which defines the standard abbreviations etc.
1163   WriteBlockInfo(VE, Stream);
1164   
1165   // Emit information about parameter attributes.
1166   WriteParamAttrTable(VE, Stream);
1167   
1168   // Emit information describing all of the types in the module.
1169   WriteTypeTable(VE, Stream);
1170   
1171   // Emit top-level description of module, including target triple, inline asm,
1172   // descriptors for global variables, and function prototype info.
1173   WriteModuleInfo(M, VE, Stream);
1174   
1175   // Emit constants.
1176   WriteModuleConstants(VE, Stream);
1177   
1178   // If we have any aggregate values in the value table, purge them - these can
1179   // only be used to initialize global variables.  Doing so makes the value
1180   // namespace smaller for code in functions.
1181   int NumNonAggregates = VE.PurgeAggregateValues();
1182   if (NumNonAggregates != -1) {
1183     SmallVector<unsigned, 1> Vals;
1184     Vals.push_back(NumNonAggregates);
1185     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1186   }
1187   
1188   // Emit function bodies.
1189   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1190     if (!I->isDeclaration())
1191       WriteFunction(*I, VE, Stream);
1192   
1193   // Emit the type symbol table information.
1194   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1195   
1196   // Emit names for globals/functions etc.
1197   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1198   
1199   Stream.ExitBlock();
1200 }
1201
1202
1203 /// WriteBitcodeToFile - Write the specified module to the specified output
1204 /// stream.
1205 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1206   std::vector<unsigned char> Buffer;
1207   BitstreamWriter Stream(Buffer);
1208   
1209   Buffer.reserve(256*1024);
1210   
1211   // Emit the file header.
1212   Stream.Emit((unsigned)'B', 8);
1213   Stream.Emit((unsigned)'C', 8);
1214   Stream.Emit(0x0, 4);
1215   Stream.Emit(0xC, 4);
1216   Stream.Emit(0xE, 4);
1217   Stream.Emit(0xD, 4);
1218
1219   // Emit the module.
1220   WriteModule(M, Stream);
1221   
1222   // Write the generated bitstream to "Out".
1223   Out.write((char*)&Buffer.front(), Buffer.size());
1224   
1225   // Make sure it hits disk now.
1226   Out.flush();
1227 }