IR: Add specialized debug info metadata nodes
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV
60 };
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
78   }
79 }
80
81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104
105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121
122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125   case Unordered: return bitc::ORDERING_UNORDERED;
126   case Monotonic: return bitc::ORDERING_MONOTONIC;
127   case Acquire: return bitc::ORDERING_ACQUIRE;
128   case Release: return bitc::ORDERING_RELEASE;
129   case AcquireRelease: return bitc::ORDERING_ACQREL;
130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131   }
132   llvm_unreachable("Invalid ordering");
133 }
134
135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139   }
140   llvm_unreachable("Invalid synch scope");
141 }
142
143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
159   switch (Kind) {
160   case Attribute::Alignment:
161     return bitc::ATTR_KIND_ALIGNMENT;
162   case Attribute::AlwaysInline:
163     return bitc::ATTR_KIND_ALWAYS_INLINE;
164   case Attribute::Builtin:
165     return bitc::ATTR_KIND_BUILTIN;
166   case Attribute::ByVal:
167     return bitc::ATTR_KIND_BY_VAL;
168   case Attribute::InAlloca:
169     return bitc::ATTR_KIND_IN_ALLOCA;
170   case Attribute::Cold:
171     return bitc::ATTR_KIND_COLD;
172   case Attribute::InlineHint:
173     return bitc::ATTR_KIND_INLINE_HINT;
174   case Attribute::InReg:
175     return bitc::ATTR_KIND_IN_REG;
176   case Attribute::JumpTable:
177     return bitc::ATTR_KIND_JUMP_TABLE;
178   case Attribute::MinSize:
179     return bitc::ATTR_KIND_MIN_SIZE;
180   case Attribute::Naked:
181     return bitc::ATTR_KIND_NAKED;
182   case Attribute::Nest:
183     return bitc::ATTR_KIND_NEST;
184   case Attribute::NoAlias:
185     return bitc::ATTR_KIND_NO_ALIAS;
186   case Attribute::NoBuiltin:
187     return bitc::ATTR_KIND_NO_BUILTIN;
188   case Attribute::NoCapture:
189     return bitc::ATTR_KIND_NO_CAPTURE;
190   case Attribute::NoDuplicate:
191     return bitc::ATTR_KIND_NO_DUPLICATE;
192   case Attribute::NoImplicitFloat:
193     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
194   case Attribute::NoInline:
195     return bitc::ATTR_KIND_NO_INLINE;
196   case Attribute::NonLazyBind:
197     return bitc::ATTR_KIND_NON_LAZY_BIND;
198   case Attribute::NonNull:
199     return bitc::ATTR_KIND_NON_NULL;
200   case Attribute::Dereferenceable:
201     return bitc::ATTR_KIND_DEREFERENCEABLE;
202   case Attribute::NoRedZone:
203     return bitc::ATTR_KIND_NO_RED_ZONE;
204   case Attribute::NoReturn:
205     return bitc::ATTR_KIND_NO_RETURN;
206   case Attribute::NoUnwind:
207     return bitc::ATTR_KIND_NO_UNWIND;
208   case Attribute::OptimizeForSize:
209     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
210   case Attribute::OptimizeNone:
211     return bitc::ATTR_KIND_OPTIMIZE_NONE;
212   case Attribute::ReadNone:
213     return bitc::ATTR_KIND_READ_NONE;
214   case Attribute::ReadOnly:
215     return bitc::ATTR_KIND_READ_ONLY;
216   case Attribute::Returned:
217     return bitc::ATTR_KIND_RETURNED;
218   case Attribute::ReturnsTwice:
219     return bitc::ATTR_KIND_RETURNS_TWICE;
220   case Attribute::SExt:
221     return bitc::ATTR_KIND_S_EXT;
222   case Attribute::StackAlignment:
223     return bitc::ATTR_KIND_STACK_ALIGNMENT;
224   case Attribute::StackProtect:
225     return bitc::ATTR_KIND_STACK_PROTECT;
226   case Attribute::StackProtectReq:
227     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
228   case Attribute::StackProtectStrong:
229     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
230   case Attribute::StructRet:
231     return bitc::ATTR_KIND_STRUCT_RET;
232   case Attribute::SanitizeAddress:
233     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
234   case Attribute::SanitizeThread:
235     return bitc::ATTR_KIND_SANITIZE_THREAD;
236   case Attribute::SanitizeMemory:
237     return bitc::ATTR_KIND_SANITIZE_MEMORY;
238   case Attribute::UWTable:
239     return bitc::ATTR_KIND_UW_TABLE;
240   case Attribute::ZExt:
241     return bitc::ATTR_KIND_Z_EXT;
242   case Attribute::EndAttrKinds:
243     llvm_unreachable("Can not encode end-attribute kinds marker.");
244   case Attribute::None:
245     llvm_unreachable("Can not encode none-attribute.");
246   }
247
248   llvm_unreachable("Trying to encode unknown attribute");
249 }
250
251 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
252                                      BitstreamWriter &Stream) {
253   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
254   if (AttrGrps.empty()) return;
255
256   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
257
258   SmallVector<uint64_t, 64> Record;
259   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
260     AttributeSet AS = AttrGrps[i];
261     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
262       AttributeSet A = AS.getSlotAttributes(i);
263
264       Record.push_back(VE.getAttributeGroupID(A));
265       Record.push_back(AS.getSlotIndex(i));
266
267       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
268            I != E; ++I) {
269         Attribute Attr = *I;
270         if (Attr.isEnumAttribute()) {
271           Record.push_back(0);
272           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
273         } else if (Attr.isIntAttribute()) {
274           Record.push_back(1);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276           Record.push_back(Attr.getValueAsInt());
277         } else {
278           StringRef Kind = Attr.getKindAsString();
279           StringRef Val = Attr.getValueAsString();
280
281           Record.push_back(Val.empty() ? 3 : 4);
282           Record.append(Kind.begin(), Kind.end());
283           Record.push_back(0);
284           if (!Val.empty()) {
285             Record.append(Val.begin(), Val.end());
286             Record.push_back(0);
287           }
288         }
289       }
290
291       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
292       Record.clear();
293     }
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static void WriteAttributeTable(const ValueEnumerator &VE,
300                                 BitstreamWriter &Stream) {
301   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
302   if (Attrs.empty()) return;
303
304   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
305
306   SmallVector<uint64_t, 64> Record;
307   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
308     const AttributeSet &A = Attrs[i];
309     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
310       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
311
312     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
313     Record.clear();
314   }
315
316   Stream.ExitBlock();
317 }
318
319 /// WriteTypeTable - Write out the type table for a module.
320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
321   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
322
323   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
324   SmallVector<uint64_t, 64> TypeVals;
325
326   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
327
328   // Abbrev for TYPE_CODE_POINTER.
329   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
330   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
332   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
333   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
334
335   // Abbrev for TYPE_CODE_FUNCTION.
336   Abbv = new BitCodeAbbrev();
337   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341
342   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_STRUCT_ANON.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_NAME.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
358   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
359
360   // Abbrev for TYPE_CODE_STRUCT_NAMED.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366
367   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_ARRAY.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374
375   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
376
377   // Emit an entry count so the reader can reserve space.
378   TypeVals.push_back(TypeList.size());
379   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
380   TypeVals.clear();
381
382   // Loop over all of the types, emitting each in turn.
383   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
384     Type *T = TypeList[i];
385     int AbbrevToUse = 0;
386     unsigned Code = 0;
387
388     switch (T->getTypeID()) {
389     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
390     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
391     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
392     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
393     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
394     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
395     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
396     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
397     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
398     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
399     case Type::IntegerTyID:
400       // INTEGER: [width]
401       Code = bitc::TYPE_CODE_INTEGER;
402       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
403       break;
404     case Type::PointerTyID: {
405       PointerType *PTy = cast<PointerType>(T);
406       // POINTER: [pointee type, address space]
407       Code = bitc::TYPE_CODE_POINTER;
408       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
409       unsigned AddressSpace = PTy->getAddressSpace();
410       TypeVals.push_back(AddressSpace);
411       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
412       break;
413     }
414     case Type::FunctionTyID: {
415       FunctionType *FT = cast<FunctionType>(T);
416       // FUNCTION: [isvararg, retty, paramty x N]
417       Code = bitc::TYPE_CODE_FUNCTION;
418       TypeVals.push_back(FT->isVarArg());
419       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
420       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
421         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
422       AbbrevToUse = FunctionAbbrev;
423       break;
424     }
425     case Type::StructTyID: {
426       StructType *ST = cast<StructType>(T);
427       // STRUCT: [ispacked, eltty x N]
428       TypeVals.push_back(ST->isPacked());
429       // Output all of the element types.
430       for (StructType::element_iterator I = ST->element_begin(),
431            E = ST->element_end(); I != E; ++I)
432         TypeVals.push_back(VE.getTypeID(*I));
433
434       if (ST->isLiteral()) {
435         Code = bitc::TYPE_CODE_STRUCT_ANON;
436         AbbrevToUse = StructAnonAbbrev;
437       } else {
438         if (ST->isOpaque()) {
439           Code = bitc::TYPE_CODE_OPAQUE;
440         } else {
441           Code = bitc::TYPE_CODE_STRUCT_NAMED;
442           AbbrevToUse = StructNamedAbbrev;
443         }
444
445         // Emit the name if it is present.
446         if (!ST->getName().empty())
447           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
448                             StructNameAbbrev, Stream);
449       }
450       break;
451     }
452     case Type::ArrayTyID: {
453       ArrayType *AT = cast<ArrayType>(T);
454       // ARRAY: [numelts, eltty]
455       Code = bitc::TYPE_CODE_ARRAY;
456       TypeVals.push_back(AT->getNumElements());
457       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
458       AbbrevToUse = ArrayAbbrev;
459       break;
460     }
461     case Type::VectorTyID: {
462       VectorType *VT = cast<VectorType>(T);
463       // VECTOR [numelts, eltty]
464       Code = bitc::TYPE_CODE_VECTOR;
465       TypeVals.push_back(VT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
467       break;
468     }
469     }
470
471     // Emit the finished record.
472     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
473     TypeVals.clear();
474   }
475
476   Stream.ExitBlock();
477 }
478
479 static unsigned getEncodedLinkage(const GlobalValue &GV) {
480   switch (GV.getLinkage()) {
481   case GlobalValue::ExternalLinkage:
482     return 0;
483   case GlobalValue::WeakAnyLinkage:
484     return 16;
485   case GlobalValue::AppendingLinkage:
486     return 2;
487   case GlobalValue::InternalLinkage:
488     return 3;
489   case GlobalValue::LinkOnceAnyLinkage:
490     return 18;
491   case GlobalValue::ExternalWeakLinkage:
492     return 7;
493   case GlobalValue::CommonLinkage:
494     return 8;
495   case GlobalValue::PrivateLinkage:
496     return 9;
497   case GlobalValue::WeakODRLinkage:
498     return 17;
499   case GlobalValue::LinkOnceODRLinkage:
500     return 19;
501   case GlobalValue::AvailableExternallyLinkage:
502     return 12;
503   }
504   llvm_unreachable("Invalid linkage");
505 }
506
507 static unsigned getEncodedVisibility(const GlobalValue &GV) {
508   switch (GV.getVisibility()) {
509   case GlobalValue::DefaultVisibility:   return 0;
510   case GlobalValue::HiddenVisibility:    return 1;
511   case GlobalValue::ProtectedVisibility: return 2;
512   }
513   llvm_unreachable("Invalid visibility");
514 }
515
516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
517   switch (GV.getDLLStorageClass()) {
518   case GlobalValue::DefaultStorageClass:   return 0;
519   case GlobalValue::DLLImportStorageClass: return 1;
520   case GlobalValue::DLLExportStorageClass: return 2;
521   }
522   llvm_unreachable("Invalid DLL storage class");
523 }
524
525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
526   switch (GV.getThreadLocalMode()) {
527     case GlobalVariable::NotThreadLocal:         return 0;
528     case GlobalVariable::GeneralDynamicTLSModel: return 1;
529     case GlobalVariable::LocalDynamicTLSModel:   return 2;
530     case GlobalVariable::InitialExecTLSModel:    return 3;
531     case GlobalVariable::LocalExecTLSModel:      return 4;
532   }
533   llvm_unreachable("Invalid TLS model");
534 }
535
536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
537   switch (C.getSelectionKind()) {
538   case Comdat::Any:
539     return bitc::COMDAT_SELECTION_KIND_ANY;
540   case Comdat::ExactMatch:
541     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
542   case Comdat::Largest:
543     return bitc::COMDAT_SELECTION_KIND_LARGEST;
544   case Comdat::NoDuplicates:
545     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
546   case Comdat::SameSize:
547     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
548   }
549   llvm_unreachable("Invalid selection kind");
550 }
551
552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
553   SmallVector<uint16_t, 64> Vals;
554   for (const Comdat *C : VE.getComdats()) {
555     // COMDAT: [selection_kind, name]
556     Vals.push_back(getEncodedComdatSelectionKind(*C));
557     size_t Size = C->getName().size();
558     assert(isUInt<16>(Size));
559     Vals.push_back(Size);
560     for (char Chr : C->getName())
561       Vals.push_back((unsigned char)Chr);
562     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
563     Vals.clear();
564   }
565 }
566
567 // Emit top-level description of module, including target triple, inline asm,
568 // descriptors for global variables, and function prototype info.
569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
570                             BitstreamWriter &Stream) {
571   // Emit various pieces of data attached to a module.
572   if (!M->getTargetTriple().empty())
573     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
574                       0/*TODO*/, Stream);
575   const std::string &DL = M->getDataLayoutStr();
576   if (!DL.empty())
577     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
578   if (!M->getModuleInlineAsm().empty())
579     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
580                       0/*TODO*/, Stream);
581
582   // Emit information about sections and GC, computing how many there are. Also
583   // compute the maximum alignment value.
584   std::map<std::string, unsigned> SectionMap;
585   std::map<std::string, unsigned> GCMap;
586   unsigned MaxAlignment = 0;
587   unsigned MaxGlobalType = 0;
588   for (const GlobalValue &GV : M->globals()) {
589     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
590     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
591     if (GV.hasSection()) {
592       // Give section names unique ID's.
593       unsigned &Entry = SectionMap[GV.getSection()];
594       if (!Entry) {
595         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
596                           0/*TODO*/, Stream);
597         Entry = SectionMap.size();
598       }
599     }
600   }
601   for (const Function &F : *M) {
602     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
603     if (F.hasSection()) {
604       // Give section names unique ID's.
605       unsigned &Entry = SectionMap[F.getSection()];
606       if (!Entry) {
607         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
608                           0/*TODO*/, Stream);
609         Entry = SectionMap.size();
610       }
611     }
612     if (F.hasGC()) {
613       // Same for GC names.
614       unsigned &Entry = GCMap[F.getGC()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
617                           0/*TODO*/, Stream);
618         Entry = GCMap.size();
619       }
620     }
621   }
622
623   // Emit abbrev for globals, now that we know # sections and max alignment.
624   unsigned SimpleGVarAbbrev = 0;
625   if (!M->global_empty()) {
626     // Add an abbrev for common globals with no visibility or thread localness.
627     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
628     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
630                               Log2_32_Ceil(MaxGlobalType+1)));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
634     if (MaxAlignment == 0)                                      // Alignment.
635       Abbv->Add(BitCodeAbbrevOp(0));
636     else {
637       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
638       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                                Log2_32_Ceil(MaxEncAlignment+1)));
640     }
641     if (SectionMap.empty())                                    // Section.
642       Abbv->Add(BitCodeAbbrevOp(0));
643     else
644       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
645                                Log2_32_Ceil(SectionMap.size()+1)));
646     // Don't bother emitting vis + thread local.
647     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
648   }
649
650   // Emit the global variable information.
651   SmallVector<unsigned, 64> Vals;
652   for (const GlobalVariable &GV : M->globals()) {
653     unsigned AbbrevToUse = 0;
654
655     // GLOBALVAR: [type, isconst, initid,
656     //             linkage, alignment, section, visibility, threadlocal,
657     //             unnamed_addr, externally_initialized, dllstorageclass,
658     //             comdat]
659     Vals.push_back(VE.getTypeID(GV.getType()));
660     Vals.push_back(GV.isConstant());
661     Vals.push_back(GV.isDeclaration() ? 0 :
662                    (VE.getValueID(GV.getInitializer()) + 1));
663     Vals.push_back(getEncodedLinkage(GV));
664     Vals.push_back(Log2_32(GV.getAlignment())+1);
665     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
666     if (GV.isThreadLocal() ||
667         GV.getVisibility() != GlobalValue::DefaultVisibility ||
668         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
669         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
670         GV.hasComdat()) {
671       Vals.push_back(getEncodedVisibility(GV));
672       Vals.push_back(getEncodedThreadLocalMode(GV));
673       Vals.push_back(GV.hasUnnamedAddr());
674       Vals.push_back(GV.isExternallyInitialized());
675       Vals.push_back(getEncodedDLLStorageClass(GV));
676       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
677     } else {
678       AbbrevToUse = SimpleGVarAbbrev;
679     }
680
681     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
682     Vals.clear();
683   }
684
685   // Emit the function proto information.
686   for (const Function &F : *M) {
687     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
688     //             section, visibility, gc, unnamed_addr, prologuedata,
689     //             dllstorageclass, comdat, prefixdata]
690     Vals.push_back(VE.getTypeID(F.getType()));
691     Vals.push_back(F.getCallingConv());
692     Vals.push_back(F.isDeclaration());
693     Vals.push_back(getEncodedLinkage(F));
694     Vals.push_back(VE.getAttributeID(F.getAttributes()));
695     Vals.push_back(Log2_32(F.getAlignment())+1);
696     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
697     Vals.push_back(getEncodedVisibility(F));
698     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
699     Vals.push_back(F.hasUnnamedAddr());
700     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
701                                        : 0);
702     Vals.push_back(getEncodedDLLStorageClass(F));
703     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
704     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
705                                      : 0);
706
707     unsigned AbbrevToUse = 0;
708     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
709     Vals.clear();
710   }
711
712   // Emit the alias information.
713   for (const GlobalAlias &A : M->aliases()) {
714     // ALIAS: [alias type, aliasee val#, linkage, visibility]
715     Vals.push_back(VE.getTypeID(A.getType()));
716     Vals.push_back(VE.getValueID(A.getAliasee()));
717     Vals.push_back(getEncodedLinkage(A));
718     Vals.push_back(getEncodedVisibility(A));
719     Vals.push_back(getEncodedDLLStorageClass(A));
720     Vals.push_back(getEncodedThreadLocalMode(A));
721     Vals.push_back(A.hasUnnamedAddr());
722     unsigned AbbrevToUse = 0;
723     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
724     Vals.clear();
725   }
726 }
727
728 static uint64_t GetOptimizationFlags(const Value *V) {
729   uint64_t Flags = 0;
730
731   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
732     if (OBO->hasNoSignedWrap())
733       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
734     if (OBO->hasNoUnsignedWrap())
735       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
736   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
737     if (PEO->isExact())
738       Flags |= 1 << bitc::PEO_EXACT;
739   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
740     if (FPMO->hasUnsafeAlgebra())
741       Flags |= FastMathFlags::UnsafeAlgebra;
742     if (FPMO->hasNoNaNs())
743       Flags |= FastMathFlags::NoNaNs;
744     if (FPMO->hasNoInfs())
745       Flags |= FastMathFlags::NoInfs;
746     if (FPMO->hasNoSignedZeros())
747       Flags |= FastMathFlags::NoSignedZeros;
748     if (FPMO->hasAllowReciprocal())
749       Flags |= FastMathFlags::AllowReciprocal;
750   }
751
752   return Flags;
753 }
754
755 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
756                                  const ValueEnumerator &VE,
757                                  BitstreamWriter &Stream,
758                                  SmallVectorImpl<uint64_t> &Record) {
759   // Mimic an MDNode with a value as one operand.
760   Value *V = MD->getValue();
761   Record.push_back(VE.getTypeID(V->getType()));
762   Record.push_back(VE.getValueID(V));
763   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
764   Record.clear();
765 }
766
767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
768                          BitstreamWriter &Stream,
769                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
770   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
771     Metadata *MD = N->getOperand(i);
772     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
773            "Unexpected function-local metadata");
774     Record.push_back(VE.getMetadataOrNullID(MD));
775   }
776   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
777                                     : bitc::METADATA_NODE,
778                     Record, Abbrev);
779   Record.clear();
780 }
781
782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
783                             BitstreamWriter &Stream,
784                             SmallVectorImpl<uint64_t> &Record,
785                             unsigned Abbrev) {
786   Record.push_back(N->isDistinct());
787   Record.push_back(N->getLine());
788   Record.push_back(N->getColumn());
789   Record.push_back(VE.getMetadataID(N->getScope()));
790   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
791
792   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
793   Record.clear();
794 }
795
796 static void WriteGenericDebugNode(const GenericDebugNode *N,
797                                   const ValueEnumerator &VE,
798                                   BitstreamWriter &Stream,
799                                   SmallVectorImpl<uint64_t> &Record,
800                                   unsigned Abbrev) {
801   Record.push_back(N->isDistinct());
802   Record.push_back(N->getTag());
803   Record.push_back(0); // Per-tag version field; unused for now.
804
805   for (auto &I : N->operands())
806     Record.push_back(VE.getMetadataOrNullID(I));
807
808   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
809   Record.clear();
810 }
811
812 static void WriteMDSubrange(const MDSubrange *, const ValueEnumerator &,
813                             BitstreamWriter &, SmallVectorImpl<uint64_t> &,
814                             unsigned) {
815   llvm_unreachable("write not implemented");
816 }
817 static void WriteMDEnumerator(const MDEnumerator *, const ValueEnumerator &,
818                               BitstreamWriter &, SmallVectorImpl<uint64_t> &,
819                               unsigned) {
820   llvm_unreachable("write not implemented");
821 }
822 static void WriteMDBasicType(const MDBasicType *, const ValueEnumerator &,
823                              BitstreamWriter &, SmallVectorImpl<uint64_t> &,
824                              unsigned) {
825   llvm_unreachable("write not implemented");
826 }
827 static void WriteMDDerivedType(const MDDerivedType *, const ValueEnumerator &,
828                                BitstreamWriter &, SmallVectorImpl<uint64_t> &,
829                                unsigned) {
830   llvm_unreachable("write not implemented");
831 }
832 static void WriteMDCompositeType(const MDCompositeType *,
833                                  const ValueEnumerator &, BitstreamWriter &,
834                                  SmallVectorImpl<uint64_t> &, unsigned) {
835   llvm_unreachable("write not implemented");
836 }
837 static void WriteMDSubroutineType(const MDSubroutineType *,
838                                   const ValueEnumerator &, BitstreamWriter &,
839                                   SmallVectorImpl<uint64_t> &, unsigned) {
840   llvm_unreachable("write not implemented");
841 }
842 static void WriteMDFile(const MDFile *, const ValueEnumerator &,
843                         BitstreamWriter &, SmallVectorImpl<uint64_t> &,
844                         unsigned) {
845   llvm_unreachable("write not implemented");
846 }
847 static void WriteMDCompileUnit(const MDCompileUnit *, const ValueEnumerator &,
848                                BitstreamWriter &, SmallVectorImpl<uint64_t> &,
849                                unsigned) {
850   llvm_unreachable("write not implemented");
851 }
852 static void WriteMDSubprogram(const MDSubprogram *, const ValueEnumerator &,
853                               BitstreamWriter &, SmallVectorImpl<uint64_t> &,
854                               unsigned) {
855   llvm_unreachable("write not implemented");
856 }
857 static void WriteMDLexicalBlock(const MDLexicalBlock *, const ValueEnumerator &,
858                                 BitstreamWriter &, SmallVectorImpl<uint64_t> &,
859                                 unsigned) {
860   llvm_unreachable("write not implemented");
861 }
862 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *,
863                                     const ValueEnumerator &, BitstreamWriter &,
864                                     SmallVectorImpl<uint64_t> &, unsigned) {
865   llvm_unreachable("write not implemented");
866 }
867 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &,
868                              BitstreamWriter &, SmallVectorImpl<uint64_t> &,
869                              unsigned) {
870   llvm_unreachable("write not implemented");
871 }
872 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *,
873                                          const ValueEnumerator &,
874                                          BitstreamWriter &,
875                                          SmallVectorImpl<uint64_t> &,
876                                          unsigned) {
877   llvm_unreachable("write not implemented");
878 }
879 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *,
880                                           const ValueEnumerator &,
881                                           BitstreamWriter &,
882                                           SmallVectorImpl<uint64_t> &,
883                                           unsigned) {
884   llvm_unreachable("write not implemented");
885 }
886 static void WriteMDGlobalVariable(const MDGlobalVariable *,
887                                   const ValueEnumerator &, BitstreamWriter &,
888                                   SmallVectorImpl<uint64_t> &, unsigned) {
889   llvm_unreachable("write not implemented");
890 }
891 static void WriteMDLocalVariable(const MDLocalVariable *,
892                                  const ValueEnumerator &, BitstreamWriter &,
893                                  SmallVectorImpl<uint64_t> &, unsigned) {
894   llvm_unreachable("write not implemented");
895 }
896 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &,
897                               BitstreamWriter &, SmallVectorImpl<uint64_t> &,
898                               unsigned) {
899   llvm_unreachable("write not implemented");
900 }
901 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &,
902                                 BitstreamWriter &, SmallVectorImpl<uint64_t> &,
903                                 unsigned) {
904   llvm_unreachable("write not implemented");
905 }
906 static void WriteMDImportedEntity(const MDImportedEntity *,
907                                   const ValueEnumerator &, BitstreamWriter &,
908                                   SmallVectorImpl<uint64_t> &, unsigned) {
909   llvm_unreachable("write not implemented");
910 }
911
912 static void WriteModuleMetadata(const Module *M,
913                                 const ValueEnumerator &VE,
914                                 BitstreamWriter &Stream) {
915   const auto &MDs = VE.getMDs();
916   if (MDs.empty() && M->named_metadata_empty())
917     return;
918
919   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
920
921   unsigned MDSAbbrev = 0;
922   if (VE.hasMDString()) {
923     // Abbrev for METADATA_STRING.
924     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
925     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
926     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
927     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
928     MDSAbbrev = Stream.EmitAbbrev(Abbv);
929   }
930
931   // Initialize MDNode abbreviations.
932 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
933 #include "llvm/IR/Metadata.def"
934
935   if (VE.hasMDLocation()) {
936     // Abbrev for METADATA_LOCATION.
937     //
938     // Assume the column is usually under 128, and always output the inlined-at
939     // location (it's never more expensive than building an array size 1).
940     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
941     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
942     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
943     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
944     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
947     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
948   }
949
950   if (VE.hasGenericDebugNode()) {
951     // Abbrev for METADATA_GENERIC_DEBUG.
952     //
953     // Assume the column is usually under 128, and always output the inlined-at
954     // location (it's never more expensive than building an array size 1).
955     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
956     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
957     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
958     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
959     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
960     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
961     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
962     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
963     GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
964   }
965
966   unsigned NameAbbrev = 0;
967   if (!M->named_metadata_empty()) {
968     // Abbrev for METADATA_NAME.
969     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
970     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
971     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
972     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
973     NameAbbrev = Stream.EmitAbbrev(Abbv);
974   }
975
976   SmallVector<uint64_t, 64> Record;
977   for (const Metadata *MD : MDs) {
978     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
979       switch (N->getMetadataID()) {
980       default:
981         llvm_unreachable("Invalid MDNode subclass");
982 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
983   case Metadata::CLASS##Kind:                                                  \
984     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
985     continue;
986 #include "llvm/IR/Metadata.def"
987       }
988     }
989     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
990       WriteValueAsMetadata(MDC, VE, Stream, Record);
991       continue;
992     }
993     const MDString *MDS = cast<MDString>(MD);
994     // Code: [strchar x N]
995     Record.append(MDS->bytes_begin(), MDS->bytes_end());
996
997     // Emit the finished record.
998     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
999     Record.clear();
1000   }
1001
1002   // Write named metadata.
1003   for (const NamedMDNode &NMD : M->named_metadata()) {
1004     // Write name.
1005     StringRef Str = NMD.getName();
1006     Record.append(Str.bytes_begin(), Str.bytes_end());
1007     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1008     Record.clear();
1009
1010     // Write named metadata operands.
1011     for (const MDNode *N : NMD.operands())
1012       Record.push_back(VE.getMetadataID(N));
1013     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1014     Record.clear();
1015   }
1016
1017   Stream.ExitBlock();
1018 }
1019
1020 static void WriteFunctionLocalMetadata(const Function &F,
1021                                        const ValueEnumerator &VE,
1022                                        BitstreamWriter &Stream) {
1023   bool StartedMetadataBlock = false;
1024   SmallVector<uint64_t, 64> Record;
1025   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1026       VE.getFunctionLocalMDs();
1027   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1028     assert(MDs[i] && "Expected valid function-local metadata");
1029     if (!StartedMetadataBlock) {
1030       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1031       StartedMetadataBlock = true;
1032     }
1033     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1034   }
1035
1036   if (StartedMetadataBlock)
1037     Stream.ExitBlock();
1038 }
1039
1040 static void WriteMetadataAttachment(const Function &F,
1041                                     const ValueEnumerator &VE,
1042                                     BitstreamWriter &Stream) {
1043   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1044
1045   SmallVector<uint64_t, 64> Record;
1046
1047   // Write metadata attachments
1048   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1049   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1050
1051   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1052     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1053          I != E; ++I) {
1054       MDs.clear();
1055       I->getAllMetadataOtherThanDebugLoc(MDs);
1056
1057       // If no metadata, ignore instruction.
1058       if (MDs.empty()) continue;
1059
1060       Record.push_back(VE.getInstructionID(I));
1061
1062       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1063         Record.push_back(MDs[i].first);
1064         Record.push_back(VE.getMetadataID(MDs[i].second));
1065       }
1066       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1067       Record.clear();
1068     }
1069
1070   Stream.ExitBlock();
1071 }
1072
1073 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1074   SmallVector<uint64_t, 64> Record;
1075
1076   // Write metadata kinds
1077   // METADATA_KIND - [n x [id, name]]
1078   SmallVector<StringRef, 8> Names;
1079   M->getMDKindNames(Names);
1080
1081   if (Names.empty()) return;
1082
1083   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1084
1085   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1086     Record.push_back(MDKindID);
1087     StringRef KName = Names[MDKindID];
1088     Record.append(KName.begin(), KName.end());
1089
1090     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1091     Record.clear();
1092   }
1093
1094   Stream.ExitBlock();
1095 }
1096
1097 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1098   if ((int64_t)V >= 0)
1099     Vals.push_back(V << 1);
1100   else
1101     Vals.push_back((-V << 1) | 1);
1102 }
1103
1104 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1105                            const ValueEnumerator &VE,
1106                            BitstreamWriter &Stream, bool isGlobal) {
1107   if (FirstVal == LastVal) return;
1108
1109   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1110
1111   unsigned AggregateAbbrev = 0;
1112   unsigned String8Abbrev = 0;
1113   unsigned CString7Abbrev = 0;
1114   unsigned CString6Abbrev = 0;
1115   // If this is a constant pool for the module, emit module-specific abbrevs.
1116   if (isGlobal) {
1117     // Abbrev for CST_CODE_AGGREGATE.
1118     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1119     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1120     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1122     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1123
1124     // Abbrev for CST_CODE_STRING.
1125     Abbv = new BitCodeAbbrev();
1126     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1129     String8Abbrev = Stream.EmitAbbrev(Abbv);
1130     // Abbrev for CST_CODE_CSTRING.
1131     Abbv = new BitCodeAbbrev();
1132     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1133     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1135     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1136     // Abbrev for CST_CODE_CSTRING.
1137     Abbv = new BitCodeAbbrev();
1138     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1139     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1140     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1141     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1142   }
1143
1144   SmallVector<uint64_t, 64> Record;
1145
1146   const ValueEnumerator::ValueList &Vals = VE.getValues();
1147   Type *LastTy = nullptr;
1148   for (unsigned i = FirstVal; i != LastVal; ++i) {
1149     const Value *V = Vals[i].first;
1150     // If we need to switch types, do so now.
1151     if (V->getType() != LastTy) {
1152       LastTy = V->getType();
1153       Record.push_back(VE.getTypeID(LastTy));
1154       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1155                         CONSTANTS_SETTYPE_ABBREV);
1156       Record.clear();
1157     }
1158
1159     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1160       Record.push_back(unsigned(IA->hasSideEffects()) |
1161                        unsigned(IA->isAlignStack()) << 1 |
1162                        unsigned(IA->getDialect()&1) << 2);
1163
1164       // Add the asm string.
1165       const std::string &AsmStr = IA->getAsmString();
1166       Record.push_back(AsmStr.size());
1167       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1168         Record.push_back(AsmStr[i]);
1169
1170       // Add the constraint string.
1171       const std::string &ConstraintStr = IA->getConstraintString();
1172       Record.push_back(ConstraintStr.size());
1173       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1174         Record.push_back(ConstraintStr[i]);
1175       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1176       Record.clear();
1177       continue;
1178     }
1179     const Constant *C = cast<Constant>(V);
1180     unsigned Code = -1U;
1181     unsigned AbbrevToUse = 0;
1182     if (C->isNullValue()) {
1183       Code = bitc::CST_CODE_NULL;
1184     } else if (isa<UndefValue>(C)) {
1185       Code = bitc::CST_CODE_UNDEF;
1186     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1187       if (IV->getBitWidth() <= 64) {
1188         uint64_t V = IV->getSExtValue();
1189         emitSignedInt64(Record, V);
1190         Code = bitc::CST_CODE_INTEGER;
1191         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1192       } else {                             // Wide integers, > 64 bits in size.
1193         // We have an arbitrary precision integer value to write whose
1194         // bit width is > 64. However, in canonical unsigned integer
1195         // format it is likely that the high bits are going to be zero.
1196         // So, we only write the number of active words.
1197         unsigned NWords = IV->getValue().getActiveWords();
1198         const uint64_t *RawWords = IV->getValue().getRawData();
1199         for (unsigned i = 0; i != NWords; ++i) {
1200           emitSignedInt64(Record, RawWords[i]);
1201         }
1202         Code = bitc::CST_CODE_WIDE_INTEGER;
1203       }
1204     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1205       Code = bitc::CST_CODE_FLOAT;
1206       Type *Ty = CFP->getType();
1207       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1208         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1209       } else if (Ty->isX86_FP80Ty()) {
1210         // api needed to prevent premature destruction
1211         // bits are not in the same order as a normal i80 APInt, compensate.
1212         APInt api = CFP->getValueAPF().bitcastToAPInt();
1213         const uint64_t *p = api.getRawData();
1214         Record.push_back((p[1] << 48) | (p[0] >> 16));
1215         Record.push_back(p[0] & 0xffffLL);
1216       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1217         APInt api = CFP->getValueAPF().bitcastToAPInt();
1218         const uint64_t *p = api.getRawData();
1219         Record.push_back(p[0]);
1220         Record.push_back(p[1]);
1221       } else {
1222         assert (0 && "Unknown FP type!");
1223       }
1224     } else if (isa<ConstantDataSequential>(C) &&
1225                cast<ConstantDataSequential>(C)->isString()) {
1226       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1227       // Emit constant strings specially.
1228       unsigned NumElts = Str->getNumElements();
1229       // If this is a null-terminated string, use the denser CSTRING encoding.
1230       if (Str->isCString()) {
1231         Code = bitc::CST_CODE_CSTRING;
1232         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1233       } else {
1234         Code = bitc::CST_CODE_STRING;
1235         AbbrevToUse = String8Abbrev;
1236       }
1237       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1238       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1239       for (unsigned i = 0; i != NumElts; ++i) {
1240         unsigned char V = Str->getElementAsInteger(i);
1241         Record.push_back(V);
1242         isCStr7 &= (V & 128) == 0;
1243         if (isCStrChar6)
1244           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1245       }
1246
1247       if (isCStrChar6)
1248         AbbrevToUse = CString6Abbrev;
1249       else if (isCStr7)
1250         AbbrevToUse = CString7Abbrev;
1251     } else if (const ConstantDataSequential *CDS =
1252                   dyn_cast<ConstantDataSequential>(C)) {
1253       Code = bitc::CST_CODE_DATA;
1254       Type *EltTy = CDS->getType()->getElementType();
1255       if (isa<IntegerType>(EltTy)) {
1256         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1257           Record.push_back(CDS->getElementAsInteger(i));
1258       } else if (EltTy->isFloatTy()) {
1259         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1260           union { float F; uint32_t I; };
1261           F = CDS->getElementAsFloat(i);
1262           Record.push_back(I);
1263         }
1264       } else {
1265         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1266         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1267           union { double F; uint64_t I; };
1268           F = CDS->getElementAsDouble(i);
1269           Record.push_back(I);
1270         }
1271       }
1272     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1273                isa<ConstantVector>(C)) {
1274       Code = bitc::CST_CODE_AGGREGATE;
1275       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1276         Record.push_back(VE.getValueID(C->getOperand(i)));
1277       AbbrevToUse = AggregateAbbrev;
1278     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279       switch (CE->getOpcode()) {
1280       default:
1281         if (Instruction::isCast(CE->getOpcode())) {
1282           Code = bitc::CST_CODE_CE_CAST;
1283           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1284           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1285           Record.push_back(VE.getValueID(C->getOperand(0)));
1286           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1287         } else {
1288           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1289           Code = bitc::CST_CODE_CE_BINOP;
1290           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1291           Record.push_back(VE.getValueID(C->getOperand(0)));
1292           Record.push_back(VE.getValueID(C->getOperand(1)));
1293           uint64_t Flags = GetOptimizationFlags(CE);
1294           if (Flags != 0)
1295             Record.push_back(Flags);
1296         }
1297         break;
1298       case Instruction::GetElementPtr:
1299         Code = bitc::CST_CODE_CE_GEP;
1300         if (cast<GEPOperator>(C)->isInBounds())
1301           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1302         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1303           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1304           Record.push_back(VE.getValueID(C->getOperand(i)));
1305         }
1306         break;
1307       case Instruction::Select:
1308         Code = bitc::CST_CODE_CE_SELECT;
1309         Record.push_back(VE.getValueID(C->getOperand(0)));
1310         Record.push_back(VE.getValueID(C->getOperand(1)));
1311         Record.push_back(VE.getValueID(C->getOperand(2)));
1312         break;
1313       case Instruction::ExtractElement:
1314         Code = bitc::CST_CODE_CE_EXTRACTELT;
1315         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1316         Record.push_back(VE.getValueID(C->getOperand(0)));
1317         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1318         Record.push_back(VE.getValueID(C->getOperand(1)));
1319         break;
1320       case Instruction::InsertElement:
1321         Code = bitc::CST_CODE_CE_INSERTELT;
1322         Record.push_back(VE.getValueID(C->getOperand(0)));
1323         Record.push_back(VE.getValueID(C->getOperand(1)));
1324         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1325         Record.push_back(VE.getValueID(C->getOperand(2)));
1326         break;
1327       case Instruction::ShuffleVector:
1328         // If the return type and argument types are the same, this is a
1329         // standard shufflevector instruction.  If the types are different,
1330         // then the shuffle is widening or truncating the input vectors, and
1331         // the argument type must also be encoded.
1332         if (C->getType() == C->getOperand(0)->getType()) {
1333           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1334         } else {
1335           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1336           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1337         }
1338         Record.push_back(VE.getValueID(C->getOperand(0)));
1339         Record.push_back(VE.getValueID(C->getOperand(1)));
1340         Record.push_back(VE.getValueID(C->getOperand(2)));
1341         break;
1342       case Instruction::ICmp:
1343       case Instruction::FCmp:
1344         Code = bitc::CST_CODE_CE_CMP;
1345         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1346         Record.push_back(VE.getValueID(C->getOperand(0)));
1347         Record.push_back(VE.getValueID(C->getOperand(1)));
1348         Record.push_back(CE->getPredicate());
1349         break;
1350       }
1351     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1352       Code = bitc::CST_CODE_BLOCKADDRESS;
1353       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1354       Record.push_back(VE.getValueID(BA->getFunction()));
1355       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1356     } else {
1357 #ifndef NDEBUG
1358       C->dump();
1359 #endif
1360       llvm_unreachable("Unknown constant!");
1361     }
1362     Stream.EmitRecord(Code, Record, AbbrevToUse);
1363     Record.clear();
1364   }
1365
1366   Stream.ExitBlock();
1367 }
1368
1369 static void WriteModuleConstants(const ValueEnumerator &VE,
1370                                  BitstreamWriter &Stream) {
1371   const ValueEnumerator::ValueList &Vals = VE.getValues();
1372
1373   // Find the first constant to emit, which is the first non-globalvalue value.
1374   // We know globalvalues have been emitted by WriteModuleInfo.
1375   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1376     if (!isa<GlobalValue>(Vals[i].first)) {
1377       WriteConstants(i, Vals.size(), VE, Stream, true);
1378       return;
1379     }
1380   }
1381 }
1382
1383 /// PushValueAndType - The file has to encode both the value and type id for
1384 /// many values, because we need to know what type to create for forward
1385 /// references.  However, most operands are not forward references, so this type
1386 /// field is not needed.
1387 ///
1388 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1389 /// instruction ID, then it is a forward reference, and it also includes the
1390 /// type ID.  The value ID that is written is encoded relative to the InstID.
1391 static bool PushValueAndType(const Value *V, unsigned InstID,
1392                              SmallVectorImpl<unsigned> &Vals,
1393                              ValueEnumerator &VE) {
1394   unsigned ValID = VE.getValueID(V);
1395   // Make encoding relative to the InstID.
1396   Vals.push_back(InstID - ValID);
1397   if (ValID >= InstID) {
1398     Vals.push_back(VE.getTypeID(V->getType()));
1399     return true;
1400   }
1401   return false;
1402 }
1403
1404 /// pushValue - Like PushValueAndType, but where the type of the value is
1405 /// omitted (perhaps it was already encoded in an earlier operand).
1406 static void pushValue(const Value *V, unsigned InstID,
1407                       SmallVectorImpl<unsigned> &Vals,
1408                       ValueEnumerator &VE) {
1409   unsigned ValID = VE.getValueID(V);
1410   Vals.push_back(InstID - ValID);
1411 }
1412
1413 static void pushValueSigned(const Value *V, unsigned InstID,
1414                             SmallVectorImpl<uint64_t> &Vals,
1415                             ValueEnumerator &VE) {
1416   unsigned ValID = VE.getValueID(V);
1417   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1418   emitSignedInt64(Vals, diff);
1419 }
1420
1421 /// WriteInstruction - Emit an instruction to the specified stream.
1422 static void WriteInstruction(const Instruction &I, unsigned InstID,
1423                              ValueEnumerator &VE, BitstreamWriter &Stream,
1424                              SmallVectorImpl<unsigned> &Vals) {
1425   unsigned Code = 0;
1426   unsigned AbbrevToUse = 0;
1427   VE.setInstructionID(&I);
1428   switch (I.getOpcode()) {
1429   default:
1430     if (Instruction::isCast(I.getOpcode())) {
1431       Code = bitc::FUNC_CODE_INST_CAST;
1432       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1433         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1434       Vals.push_back(VE.getTypeID(I.getType()));
1435       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1436     } else {
1437       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1438       Code = bitc::FUNC_CODE_INST_BINOP;
1439       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1440         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1441       pushValue(I.getOperand(1), InstID, Vals, VE);
1442       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1443       uint64_t Flags = GetOptimizationFlags(&I);
1444       if (Flags != 0) {
1445         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1446           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1447         Vals.push_back(Flags);
1448       }
1449     }
1450     break;
1451
1452   case Instruction::GetElementPtr:
1453     Code = bitc::FUNC_CODE_INST_GEP;
1454     if (cast<GEPOperator>(&I)->isInBounds())
1455       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1456     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1457       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1458     break;
1459   case Instruction::ExtractValue: {
1460     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1461     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1462     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1463     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1464       Vals.push_back(*i);
1465     break;
1466   }
1467   case Instruction::InsertValue: {
1468     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1469     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1470     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1471     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1472     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1473       Vals.push_back(*i);
1474     break;
1475   }
1476   case Instruction::Select:
1477     Code = bitc::FUNC_CODE_INST_VSELECT;
1478     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1479     pushValue(I.getOperand(2), InstID, Vals, VE);
1480     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1481     break;
1482   case Instruction::ExtractElement:
1483     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1484     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1485     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1486     break;
1487   case Instruction::InsertElement:
1488     Code = bitc::FUNC_CODE_INST_INSERTELT;
1489     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1490     pushValue(I.getOperand(1), InstID, Vals, VE);
1491     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1492     break;
1493   case Instruction::ShuffleVector:
1494     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1495     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1496     pushValue(I.getOperand(1), InstID, Vals, VE);
1497     pushValue(I.getOperand(2), InstID, Vals, VE);
1498     break;
1499   case Instruction::ICmp:
1500   case Instruction::FCmp:
1501     // compare returning Int1Ty or vector of Int1Ty
1502     Code = bitc::FUNC_CODE_INST_CMP2;
1503     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1504     pushValue(I.getOperand(1), InstID, Vals, VE);
1505     Vals.push_back(cast<CmpInst>(I).getPredicate());
1506     break;
1507
1508   case Instruction::Ret:
1509     {
1510       Code = bitc::FUNC_CODE_INST_RET;
1511       unsigned NumOperands = I.getNumOperands();
1512       if (NumOperands == 0)
1513         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1514       else if (NumOperands == 1) {
1515         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1516           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1517       } else {
1518         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1519           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1520       }
1521     }
1522     break;
1523   case Instruction::Br:
1524     {
1525       Code = bitc::FUNC_CODE_INST_BR;
1526       const BranchInst &II = cast<BranchInst>(I);
1527       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1528       if (II.isConditional()) {
1529         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1530         pushValue(II.getCondition(), InstID, Vals, VE);
1531       }
1532     }
1533     break;
1534   case Instruction::Switch:
1535     {
1536       Code = bitc::FUNC_CODE_INST_SWITCH;
1537       const SwitchInst &SI = cast<SwitchInst>(I);
1538       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1539       pushValue(SI.getCondition(), InstID, Vals, VE);
1540       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1541       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1542            i != e; ++i) {
1543         Vals.push_back(VE.getValueID(i.getCaseValue()));
1544         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1545       }
1546     }
1547     break;
1548   case Instruction::IndirectBr:
1549     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1550     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1551     // Encode the address operand as relative, but not the basic blocks.
1552     pushValue(I.getOperand(0), InstID, Vals, VE);
1553     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1554       Vals.push_back(VE.getValueID(I.getOperand(i)));
1555     break;
1556
1557   case Instruction::Invoke: {
1558     const InvokeInst *II = cast<InvokeInst>(&I);
1559     const Value *Callee(II->getCalledValue());
1560     PointerType *PTy = cast<PointerType>(Callee->getType());
1561     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1562     Code = bitc::FUNC_CODE_INST_INVOKE;
1563
1564     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1565     Vals.push_back(II->getCallingConv());
1566     Vals.push_back(VE.getValueID(II->getNormalDest()));
1567     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1568     PushValueAndType(Callee, InstID, Vals, VE);
1569
1570     // Emit value #'s for the fixed parameters.
1571     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1572       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1573
1574     // Emit type/value pairs for varargs params.
1575     if (FTy->isVarArg()) {
1576       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1577            i != e; ++i)
1578         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1579     }
1580     break;
1581   }
1582   case Instruction::Resume:
1583     Code = bitc::FUNC_CODE_INST_RESUME;
1584     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1585     break;
1586   case Instruction::Unreachable:
1587     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1588     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1589     break;
1590
1591   case Instruction::PHI: {
1592     const PHINode &PN = cast<PHINode>(I);
1593     Code = bitc::FUNC_CODE_INST_PHI;
1594     // With the newer instruction encoding, forward references could give
1595     // negative valued IDs.  This is most common for PHIs, so we use
1596     // signed VBRs.
1597     SmallVector<uint64_t, 128> Vals64;
1598     Vals64.push_back(VE.getTypeID(PN.getType()));
1599     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1600       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1601       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1602     }
1603     // Emit a Vals64 vector and exit.
1604     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1605     Vals64.clear();
1606     return;
1607   }
1608
1609   case Instruction::LandingPad: {
1610     const LandingPadInst &LP = cast<LandingPadInst>(I);
1611     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1612     Vals.push_back(VE.getTypeID(LP.getType()));
1613     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1614     Vals.push_back(LP.isCleanup());
1615     Vals.push_back(LP.getNumClauses());
1616     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1617       if (LP.isCatch(I))
1618         Vals.push_back(LandingPadInst::Catch);
1619       else
1620         Vals.push_back(LandingPadInst::Filter);
1621       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1622     }
1623     break;
1624   }
1625
1626   case Instruction::Alloca: {
1627     Code = bitc::FUNC_CODE_INST_ALLOCA;
1628     Vals.push_back(VE.getTypeID(I.getType()));
1629     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1630     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1631     const AllocaInst &AI = cast<AllocaInst>(I);
1632     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1633     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1634            "not enough bits for maximum alignment");
1635     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1636     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1637     Vals.push_back(AlignRecord);
1638     break;
1639   }
1640
1641   case Instruction::Load:
1642     if (cast<LoadInst>(I).isAtomic()) {
1643       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1644       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1645     } else {
1646       Code = bitc::FUNC_CODE_INST_LOAD;
1647       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1648         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1649     }
1650     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1651     Vals.push_back(cast<LoadInst>(I).isVolatile());
1652     if (cast<LoadInst>(I).isAtomic()) {
1653       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1654       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1655     }
1656     break;
1657   case Instruction::Store:
1658     if (cast<StoreInst>(I).isAtomic())
1659       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1660     else
1661       Code = bitc::FUNC_CODE_INST_STORE;
1662     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1663     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1664     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1665     Vals.push_back(cast<StoreInst>(I).isVolatile());
1666     if (cast<StoreInst>(I).isAtomic()) {
1667       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1668       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1669     }
1670     break;
1671   case Instruction::AtomicCmpXchg:
1672     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1673     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1674     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1675     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1676     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1677     Vals.push_back(GetEncodedOrdering(
1678                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1679     Vals.push_back(GetEncodedSynchScope(
1680                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1681     Vals.push_back(GetEncodedOrdering(
1682                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1683     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1684     break;
1685   case Instruction::AtomicRMW:
1686     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1687     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1688     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1689     Vals.push_back(GetEncodedRMWOperation(
1690                      cast<AtomicRMWInst>(I).getOperation()));
1691     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1692     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1693     Vals.push_back(GetEncodedSynchScope(
1694                      cast<AtomicRMWInst>(I).getSynchScope()));
1695     break;
1696   case Instruction::Fence:
1697     Code = bitc::FUNC_CODE_INST_FENCE;
1698     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1699     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1700     break;
1701   case Instruction::Call: {
1702     const CallInst &CI = cast<CallInst>(I);
1703     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1704     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1705
1706     Code = bitc::FUNC_CODE_INST_CALL;
1707
1708     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1709     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1710                    unsigned(CI.isMustTailCall()) << 14);
1711     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1712
1713     // Emit value #'s for the fixed parameters.
1714     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1715       // Check for labels (can happen with asm labels).
1716       if (FTy->getParamType(i)->isLabelTy())
1717         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1718       else
1719         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1720     }
1721
1722     // Emit type/value pairs for varargs params.
1723     if (FTy->isVarArg()) {
1724       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1725            i != e; ++i)
1726         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1727     }
1728     break;
1729   }
1730   case Instruction::VAArg:
1731     Code = bitc::FUNC_CODE_INST_VAARG;
1732     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1733     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1734     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1735     break;
1736   }
1737
1738   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1739   Vals.clear();
1740 }
1741
1742 // Emit names for globals/functions etc.
1743 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1744                                   const ValueEnumerator &VE,
1745                                   BitstreamWriter &Stream) {
1746   if (VST.empty()) return;
1747   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1748
1749   // FIXME: Set up the abbrev, we know how many values there are!
1750   // FIXME: We know if the type names can use 7-bit ascii.
1751   SmallVector<unsigned, 64> NameVals;
1752
1753   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1754        SI != SE; ++SI) {
1755
1756     const ValueName &Name = *SI;
1757
1758     // Figure out the encoding to use for the name.
1759     bool is7Bit = true;
1760     bool isChar6 = true;
1761     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1762          C != E; ++C) {
1763       if (isChar6)
1764         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1765       if ((unsigned char)*C & 128) {
1766         is7Bit = false;
1767         break;  // don't bother scanning the rest.
1768       }
1769     }
1770
1771     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1772
1773     // VST_ENTRY:   [valueid, namechar x N]
1774     // VST_BBENTRY: [bbid, namechar x N]
1775     unsigned Code;
1776     if (isa<BasicBlock>(SI->getValue())) {
1777       Code = bitc::VST_CODE_BBENTRY;
1778       if (isChar6)
1779         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1780     } else {
1781       Code = bitc::VST_CODE_ENTRY;
1782       if (isChar6)
1783         AbbrevToUse = VST_ENTRY_6_ABBREV;
1784       else if (is7Bit)
1785         AbbrevToUse = VST_ENTRY_7_ABBREV;
1786     }
1787
1788     NameVals.push_back(VE.getValueID(SI->getValue()));
1789     for (const char *P = Name.getKeyData(),
1790          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1791       NameVals.push_back((unsigned char)*P);
1792
1793     // Emit the finished record.
1794     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1795     NameVals.clear();
1796   }
1797   Stream.ExitBlock();
1798 }
1799
1800 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1801                          BitstreamWriter &Stream) {
1802   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1803   unsigned Code;
1804   if (isa<BasicBlock>(Order.V))
1805     Code = bitc::USELIST_CODE_BB;
1806   else
1807     Code = bitc::USELIST_CODE_DEFAULT;
1808
1809   SmallVector<uint64_t, 64> Record;
1810   for (unsigned I : Order.Shuffle)
1811     Record.push_back(I);
1812   Record.push_back(VE.getValueID(Order.V));
1813   Stream.EmitRecord(Code, Record);
1814 }
1815
1816 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1817                               BitstreamWriter &Stream) {
1818   auto hasMore = [&]() {
1819     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1820   };
1821   if (!hasMore())
1822     // Nothing to do.
1823     return;
1824
1825   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1826   while (hasMore()) {
1827     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1828     VE.UseListOrders.pop_back();
1829   }
1830   Stream.ExitBlock();
1831 }
1832
1833 /// WriteFunction - Emit a function body to the module stream.
1834 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1835                           BitstreamWriter &Stream) {
1836   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1837   VE.incorporateFunction(F);
1838
1839   SmallVector<unsigned, 64> Vals;
1840
1841   // Emit the number of basic blocks, so the reader can create them ahead of
1842   // time.
1843   Vals.push_back(VE.getBasicBlocks().size());
1844   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1845   Vals.clear();
1846
1847   // If there are function-local constants, emit them now.
1848   unsigned CstStart, CstEnd;
1849   VE.getFunctionConstantRange(CstStart, CstEnd);
1850   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1851
1852   // If there is function-local metadata, emit it now.
1853   WriteFunctionLocalMetadata(F, VE, Stream);
1854
1855   // Keep a running idea of what the instruction ID is.
1856   unsigned InstID = CstEnd;
1857
1858   bool NeedsMetadataAttachment = false;
1859
1860   DebugLoc LastDL;
1861
1862   // Finally, emit all the instructions, in order.
1863   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1864     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1865          I != E; ++I) {
1866       WriteInstruction(*I, InstID, VE, Stream, Vals);
1867
1868       if (!I->getType()->isVoidTy())
1869         ++InstID;
1870
1871       // If the instruction has metadata, write a metadata attachment later.
1872       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1873
1874       // If the instruction has a debug location, emit it.
1875       DebugLoc DL = I->getDebugLoc();
1876       if (DL.isUnknown()) {
1877         // nothing todo.
1878       } else if (DL == LastDL) {
1879         // Just repeat the same debug loc as last time.
1880         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1881       } else {
1882         MDNode *Scope, *IA;
1883         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1884         assert(Scope && "Expected valid scope");
1885
1886         Vals.push_back(DL.getLine());
1887         Vals.push_back(DL.getCol());
1888         Vals.push_back(VE.getMetadataOrNullID(Scope));
1889         Vals.push_back(VE.getMetadataOrNullID(IA));
1890         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1891         Vals.clear();
1892
1893         LastDL = DL;
1894       }
1895     }
1896
1897   // Emit names for all the instructions etc.
1898   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1899
1900   if (NeedsMetadataAttachment)
1901     WriteMetadataAttachment(F, VE, Stream);
1902   if (shouldPreserveBitcodeUseListOrder())
1903     WriteUseListBlock(&F, VE, Stream);
1904   VE.purgeFunction();
1905   Stream.ExitBlock();
1906 }
1907
1908 // Emit blockinfo, which defines the standard abbreviations etc.
1909 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1910   // We only want to emit block info records for blocks that have multiple
1911   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1912   // Other blocks can define their abbrevs inline.
1913   Stream.EnterBlockInfoBlock(2);
1914
1915   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1916     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1917     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1918     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1919     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1920     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1921     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1922                                    Abbv) != VST_ENTRY_8_ABBREV)
1923       llvm_unreachable("Unexpected abbrev ordering!");
1924   }
1925
1926   { // 7-bit fixed width VST_ENTRY strings.
1927     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1928     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1929     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1930     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1931     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1932     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1933                                    Abbv) != VST_ENTRY_7_ABBREV)
1934       llvm_unreachable("Unexpected abbrev ordering!");
1935   }
1936   { // 6-bit char6 VST_ENTRY strings.
1937     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1938     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1939     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1940     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1941     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1942     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1943                                    Abbv) != VST_ENTRY_6_ABBREV)
1944       llvm_unreachable("Unexpected abbrev ordering!");
1945   }
1946   { // 6-bit char6 VST_BBENTRY strings.
1947     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1948     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1949     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1950     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1951     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1952     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1953                                    Abbv) != VST_BBENTRY_6_ABBREV)
1954       llvm_unreachable("Unexpected abbrev ordering!");
1955   }
1956
1957
1958
1959   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1960     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1961     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1962     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1963                               Log2_32_Ceil(VE.getTypes().size()+1)));
1964     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1965                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1966       llvm_unreachable("Unexpected abbrev ordering!");
1967   }
1968
1969   { // INTEGER abbrev for CONSTANTS_BLOCK.
1970     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1971     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1972     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1973     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1974                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1975       llvm_unreachable("Unexpected abbrev ordering!");
1976   }
1977
1978   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1979     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1980     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1981     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1982     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1983                               Log2_32_Ceil(VE.getTypes().size()+1)));
1984     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1985
1986     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1987                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1988       llvm_unreachable("Unexpected abbrev ordering!");
1989   }
1990   { // NULL abbrev for CONSTANTS_BLOCK.
1991     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1992     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1993     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1994                                    Abbv) != CONSTANTS_NULL_Abbrev)
1995       llvm_unreachable("Unexpected abbrev ordering!");
1996   }
1997
1998   // FIXME: This should only use space for first class types!
1999
2000   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2001     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2002     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2003     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2004     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2005     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2006     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2007                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2008       llvm_unreachable("Unexpected abbrev ordering!");
2009   }
2010   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2011     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2012     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2013     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2014     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2015     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2016     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2017                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2018       llvm_unreachable("Unexpected abbrev ordering!");
2019   }
2020   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2021     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2022     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2023     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2024     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2025     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2026     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2027     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2028                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2029       llvm_unreachable("Unexpected abbrev ordering!");
2030   }
2031   { // INST_CAST abbrev for FUNCTION_BLOCK.
2032     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2033     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2034     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2035     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2036                               Log2_32_Ceil(VE.getTypes().size()+1)));
2037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2038     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2039                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2040       llvm_unreachable("Unexpected abbrev ordering!");
2041   }
2042
2043   { // INST_RET abbrev for FUNCTION_BLOCK.
2044     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2045     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2046     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2047                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2048       llvm_unreachable("Unexpected abbrev ordering!");
2049   }
2050   { // INST_RET abbrev for FUNCTION_BLOCK.
2051     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2052     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2054     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2055                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2056       llvm_unreachable("Unexpected abbrev ordering!");
2057   }
2058   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2059     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2060     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2061     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2062                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2063       llvm_unreachable("Unexpected abbrev ordering!");
2064   }
2065
2066   Stream.ExitBlock();
2067 }
2068
2069 /// WriteModule - Emit the specified module to the bitstream.
2070 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
2071   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2072
2073   SmallVector<unsigned, 1> Vals;
2074   unsigned CurVersion = 1;
2075   Vals.push_back(CurVersion);
2076   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2077
2078   // Analyze the module, enumerating globals, functions, etc.
2079   ValueEnumerator VE(*M);
2080
2081   // Emit blockinfo, which defines the standard abbreviations etc.
2082   WriteBlockInfo(VE, Stream);
2083
2084   // Emit information about attribute groups.
2085   WriteAttributeGroupTable(VE, Stream);
2086
2087   // Emit information about parameter attributes.
2088   WriteAttributeTable(VE, Stream);
2089
2090   // Emit information describing all of the types in the module.
2091   WriteTypeTable(VE, Stream);
2092
2093   writeComdats(VE, Stream);
2094
2095   // Emit top-level description of module, including target triple, inline asm,
2096   // descriptors for global variables, and function prototype info.
2097   WriteModuleInfo(M, VE, Stream);
2098
2099   // Emit constants.
2100   WriteModuleConstants(VE, Stream);
2101
2102   // Emit metadata.
2103   WriteModuleMetadata(M, VE, Stream);
2104
2105   // Emit metadata.
2106   WriteModuleMetadataStore(M, Stream);
2107
2108   // Emit names for globals/functions etc.
2109   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2110
2111   // Emit module-level use-lists.
2112   if (shouldPreserveBitcodeUseListOrder())
2113     WriteUseListBlock(nullptr, VE, Stream);
2114
2115   // Emit function bodies.
2116   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2117     if (!F->isDeclaration())
2118       WriteFunction(*F, VE, Stream);
2119
2120   Stream.ExitBlock();
2121 }
2122
2123 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2124 /// header and trailer to make it compatible with the system archiver.  To do
2125 /// this we emit the following header, and then emit a trailer that pads the
2126 /// file out to be a multiple of 16 bytes.
2127 ///
2128 /// struct bc_header {
2129 ///   uint32_t Magic;         // 0x0B17C0DE
2130 ///   uint32_t Version;       // Version, currently always 0.
2131 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2132 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2133 ///   uint32_t CPUType;       // CPU specifier.
2134 ///   ... potentially more later ...
2135 /// };
2136 enum {
2137   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2138   DarwinBCHeaderSize = 5*4
2139 };
2140
2141 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2142                                uint32_t &Position) {
2143   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2144   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2145   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2146   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2147   Position += 4;
2148 }
2149
2150 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2151                                          const Triple &TT) {
2152   unsigned CPUType = ~0U;
2153
2154   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2155   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2156   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2157   // specific constants here because they are implicitly part of the Darwin ABI.
2158   enum {
2159     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2160     DARWIN_CPU_TYPE_X86        = 7,
2161     DARWIN_CPU_TYPE_ARM        = 12,
2162     DARWIN_CPU_TYPE_POWERPC    = 18
2163   };
2164
2165   Triple::ArchType Arch = TT.getArch();
2166   if (Arch == Triple::x86_64)
2167     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2168   else if (Arch == Triple::x86)
2169     CPUType = DARWIN_CPU_TYPE_X86;
2170   else if (Arch == Triple::ppc)
2171     CPUType = DARWIN_CPU_TYPE_POWERPC;
2172   else if (Arch == Triple::ppc64)
2173     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2174   else if (Arch == Triple::arm || Arch == Triple::thumb)
2175     CPUType = DARWIN_CPU_TYPE_ARM;
2176
2177   // Traditional Bitcode starts after header.
2178   assert(Buffer.size() >= DarwinBCHeaderSize &&
2179          "Expected header size to be reserved");
2180   unsigned BCOffset = DarwinBCHeaderSize;
2181   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2182
2183   // Write the magic and version.
2184   unsigned Position = 0;
2185   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2186   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2187   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2188   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2189   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2190
2191   // If the file is not a multiple of 16 bytes, insert dummy padding.
2192   while (Buffer.size() & 15)
2193     Buffer.push_back(0);
2194 }
2195
2196 /// WriteBitcodeToFile - Write the specified module to the specified output
2197 /// stream.
2198 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2199   SmallVector<char, 0> Buffer;
2200   Buffer.reserve(256*1024);
2201
2202   // If this is darwin or another generic macho target, reserve space for the
2203   // header.
2204   Triple TT(M->getTargetTriple());
2205   if (TT.isOSDarwin())
2206     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2207
2208   // Emit the module into the buffer.
2209   {
2210     BitstreamWriter Stream(Buffer);
2211
2212     // Emit the file header.
2213     Stream.Emit((unsigned)'B', 8);
2214     Stream.Emit((unsigned)'C', 8);
2215     Stream.Emit(0x0, 4);
2216     Stream.Emit(0xC, 4);
2217     Stream.Emit(0xE, 4);
2218     Stream.Emit(0xD, 4);
2219
2220     // Emit the module.
2221     WriteModule(M, Stream);
2222   }
2223
2224   if (TT.isOSDarwin())
2225     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2226
2227   // Write the generated bitstream to "Out".
2228   Out.write((char*)&Buffer.front(), Buffer.size());
2229 }