Bitcode: Simplify MDNode subclass dispatch, NFC
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/UseListOrder.h"
26 #include "llvm/IR/ValueSymbolTable.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Program.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cctype>
33 #include <map>
34 using namespace llvm;
35
36 /// These are manifest constants used by the bitcode writer. They do not need to
37 /// be kept in sync with the reader, but need to be consistent within this file.
38 enum {
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
105   switch (Op) {
106   default: llvm_unreachable("Unknown RMW operation!");
107   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
108   case AtomicRMWInst::Add: return bitc::RMW_ADD;
109   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
110   case AtomicRMWInst::And: return bitc::RMW_AND;
111   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
112   case AtomicRMWInst::Or: return bitc::RMW_OR;
113   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
114   case AtomicRMWInst::Max: return bitc::RMW_MAX;
115   case AtomicRMWInst::Min: return bitc::RMW_MIN;
116   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
117   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
118   }
119 }
120
121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
122   switch (Ordering) {
123   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
124   case Unordered: return bitc::ORDERING_UNORDERED;
125   case Monotonic: return bitc::ORDERING_MONOTONIC;
126   case Acquire: return bitc::ORDERING_ACQUIRE;
127   case Release: return bitc::ORDERING_RELEASE;
128   case AcquireRelease: return bitc::ORDERING_ACQREL;
129   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
130   }
131   llvm_unreachable("Invalid ordering");
132 }
133
134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
135   switch (SynchScope) {
136   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
137   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
138   }
139   llvm_unreachable("Invalid synch scope");
140 }
141
142 static void WriteStringRecord(unsigned Code, StringRef Str,
143                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
144   SmallVector<unsigned, 64> Vals;
145
146   // Code: [strchar x N]
147   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
148     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
149       AbbrevToUse = 0;
150     Vals.push_back(Str[i]);
151   }
152
153   // Emit the finished record.
154   Stream.EmitRecord(Code, Vals, AbbrevToUse);
155 }
156
157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
158   switch (Kind) {
159   case Attribute::Alignment:
160     return bitc::ATTR_KIND_ALIGNMENT;
161   case Attribute::AlwaysInline:
162     return bitc::ATTR_KIND_ALWAYS_INLINE;
163   case Attribute::Builtin:
164     return bitc::ATTR_KIND_BUILTIN;
165   case Attribute::ByVal:
166     return bitc::ATTR_KIND_BY_VAL;
167   case Attribute::InAlloca:
168     return bitc::ATTR_KIND_IN_ALLOCA;
169   case Attribute::Cold:
170     return bitc::ATTR_KIND_COLD;
171   case Attribute::InlineHint:
172     return bitc::ATTR_KIND_INLINE_HINT;
173   case Attribute::InReg:
174     return bitc::ATTR_KIND_IN_REG;
175   case Attribute::JumpTable:
176     return bitc::ATTR_KIND_JUMP_TABLE;
177   case Attribute::MinSize:
178     return bitc::ATTR_KIND_MIN_SIZE;
179   case Attribute::Naked:
180     return bitc::ATTR_KIND_NAKED;
181   case Attribute::Nest:
182     return bitc::ATTR_KIND_NEST;
183   case Attribute::NoAlias:
184     return bitc::ATTR_KIND_NO_ALIAS;
185   case Attribute::NoBuiltin:
186     return bitc::ATTR_KIND_NO_BUILTIN;
187   case Attribute::NoCapture:
188     return bitc::ATTR_KIND_NO_CAPTURE;
189   case Attribute::NoDuplicate:
190     return bitc::ATTR_KIND_NO_DUPLICATE;
191   case Attribute::NoImplicitFloat:
192     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
193   case Attribute::NoInline:
194     return bitc::ATTR_KIND_NO_INLINE;
195   case Attribute::NonLazyBind:
196     return bitc::ATTR_KIND_NON_LAZY_BIND;
197   case Attribute::NonNull:
198     return bitc::ATTR_KIND_NON_NULL;
199   case Attribute::Dereferenceable:
200     return bitc::ATTR_KIND_DEREFERENCEABLE;
201   case Attribute::NoRedZone:
202     return bitc::ATTR_KIND_NO_RED_ZONE;
203   case Attribute::NoReturn:
204     return bitc::ATTR_KIND_NO_RETURN;
205   case Attribute::NoUnwind:
206     return bitc::ATTR_KIND_NO_UNWIND;
207   case Attribute::OptimizeForSize:
208     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
209   case Attribute::OptimizeNone:
210     return bitc::ATTR_KIND_OPTIMIZE_NONE;
211   case Attribute::ReadNone:
212     return bitc::ATTR_KIND_READ_NONE;
213   case Attribute::ReadOnly:
214     return bitc::ATTR_KIND_READ_ONLY;
215   case Attribute::Returned:
216     return bitc::ATTR_KIND_RETURNED;
217   case Attribute::ReturnsTwice:
218     return bitc::ATTR_KIND_RETURNS_TWICE;
219   case Attribute::SExt:
220     return bitc::ATTR_KIND_S_EXT;
221   case Attribute::StackAlignment:
222     return bitc::ATTR_KIND_STACK_ALIGNMENT;
223   case Attribute::StackProtect:
224     return bitc::ATTR_KIND_STACK_PROTECT;
225   case Attribute::StackProtectReq:
226     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
227   case Attribute::StackProtectStrong:
228     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
229   case Attribute::StructRet:
230     return bitc::ATTR_KIND_STRUCT_RET;
231   case Attribute::SanitizeAddress:
232     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
233   case Attribute::SanitizeThread:
234     return bitc::ATTR_KIND_SANITIZE_THREAD;
235   case Attribute::SanitizeMemory:
236     return bitc::ATTR_KIND_SANITIZE_MEMORY;
237   case Attribute::UWTable:
238     return bitc::ATTR_KIND_UW_TABLE;
239   case Attribute::ZExt:
240     return bitc::ATTR_KIND_Z_EXT;
241   case Attribute::EndAttrKinds:
242     llvm_unreachable("Can not encode end-attribute kinds marker.");
243   case Attribute::None:
244     llvm_unreachable("Can not encode none-attribute.");
245   }
246
247   llvm_unreachable("Trying to encode unknown attribute");
248 }
249
250 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
251                                      BitstreamWriter &Stream) {
252   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
253   if (AttrGrps.empty()) return;
254
255   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
256
257   SmallVector<uint64_t, 64> Record;
258   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
259     AttributeSet AS = AttrGrps[i];
260     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
261       AttributeSet A = AS.getSlotAttributes(i);
262
263       Record.push_back(VE.getAttributeGroupID(A));
264       Record.push_back(AS.getSlotIndex(i));
265
266       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
267            I != E; ++I) {
268         Attribute Attr = *I;
269         if (Attr.isEnumAttribute()) {
270           Record.push_back(0);
271           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
272         } else if (Attr.isIntAttribute()) {
273           Record.push_back(1);
274           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
275           Record.push_back(Attr.getValueAsInt());
276         } else {
277           StringRef Kind = Attr.getKindAsString();
278           StringRef Val = Attr.getValueAsString();
279
280           Record.push_back(Val.empty() ? 3 : 4);
281           Record.append(Kind.begin(), Kind.end());
282           Record.push_back(0);
283           if (!Val.empty()) {
284             Record.append(Val.begin(), Val.end());
285             Record.push_back(0);
286           }
287         }
288       }
289
290       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
291       Record.clear();
292     }
293   }
294
295   Stream.ExitBlock();
296 }
297
298 static void WriteAttributeTable(const ValueEnumerator &VE,
299                                 BitstreamWriter &Stream) {
300   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
301   if (Attrs.empty()) return;
302
303   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
304
305   SmallVector<uint64_t, 64> Record;
306   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
307     const AttributeSet &A = Attrs[i];
308     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
309       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
310
311     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
312     Record.clear();
313   }
314
315   Stream.ExitBlock();
316 }
317
318 /// WriteTypeTable - Write out the type table for a module.
319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
320   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
321
322   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
323   SmallVector<uint64_t, 64> TypeVals;
324
325   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
326
327   // Abbrev for TYPE_CODE_POINTER.
328   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
329   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
331   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
332   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
333
334   // Abbrev for TYPE_CODE_FUNCTION.
335   Abbv = new BitCodeAbbrev();
336   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
340
341   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
342
343   // Abbrev for TYPE_CODE_STRUCT_ANON.
344   Abbv = new BitCodeAbbrev();
345   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
349
350   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
351
352   // Abbrev for TYPE_CODE_STRUCT_NAME.
353   Abbv = new BitCodeAbbrev();
354   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
357   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
358
359   // Abbrev for TYPE_CODE_STRUCT_NAMED.
360   Abbv = new BitCodeAbbrev();
361   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
365
366   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
367
368   // Abbrev for TYPE_CODE_ARRAY.
369   Abbv = new BitCodeAbbrev();
370   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
373
374   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
375
376   // Emit an entry count so the reader can reserve space.
377   TypeVals.push_back(TypeList.size());
378   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
379   TypeVals.clear();
380
381   // Loop over all of the types, emitting each in turn.
382   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
383     Type *T = TypeList[i];
384     int AbbrevToUse = 0;
385     unsigned Code = 0;
386
387     switch (T->getTypeID()) {
388     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
389     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
390     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
391     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
392     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
393     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
394     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
395     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
396     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
397     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
398     case Type::IntegerTyID:
399       // INTEGER: [width]
400       Code = bitc::TYPE_CODE_INTEGER;
401       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
402       break;
403     case Type::PointerTyID: {
404       PointerType *PTy = cast<PointerType>(T);
405       // POINTER: [pointee type, address space]
406       Code = bitc::TYPE_CODE_POINTER;
407       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
408       unsigned AddressSpace = PTy->getAddressSpace();
409       TypeVals.push_back(AddressSpace);
410       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
411       break;
412     }
413     case Type::FunctionTyID: {
414       FunctionType *FT = cast<FunctionType>(T);
415       // FUNCTION: [isvararg, retty, paramty x N]
416       Code = bitc::TYPE_CODE_FUNCTION;
417       TypeVals.push_back(FT->isVarArg());
418       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
419       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
420         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
421       AbbrevToUse = FunctionAbbrev;
422       break;
423     }
424     case Type::StructTyID: {
425       StructType *ST = cast<StructType>(T);
426       // STRUCT: [ispacked, eltty x N]
427       TypeVals.push_back(ST->isPacked());
428       // Output all of the element types.
429       for (StructType::element_iterator I = ST->element_begin(),
430            E = ST->element_end(); I != E; ++I)
431         TypeVals.push_back(VE.getTypeID(*I));
432
433       if (ST->isLiteral()) {
434         Code = bitc::TYPE_CODE_STRUCT_ANON;
435         AbbrevToUse = StructAnonAbbrev;
436       } else {
437         if (ST->isOpaque()) {
438           Code = bitc::TYPE_CODE_OPAQUE;
439         } else {
440           Code = bitc::TYPE_CODE_STRUCT_NAMED;
441           AbbrevToUse = StructNamedAbbrev;
442         }
443
444         // Emit the name if it is present.
445         if (!ST->getName().empty())
446           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
447                             StructNameAbbrev, Stream);
448       }
449       break;
450     }
451     case Type::ArrayTyID: {
452       ArrayType *AT = cast<ArrayType>(T);
453       // ARRAY: [numelts, eltty]
454       Code = bitc::TYPE_CODE_ARRAY;
455       TypeVals.push_back(AT->getNumElements());
456       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
457       AbbrevToUse = ArrayAbbrev;
458       break;
459     }
460     case Type::VectorTyID: {
461       VectorType *VT = cast<VectorType>(T);
462       // VECTOR [numelts, eltty]
463       Code = bitc::TYPE_CODE_VECTOR;
464       TypeVals.push_back(VT->getNumElements());
465       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
466       break;
467     }
468     }
469
470     // Emit the finished record.
471     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
472     TypeVals.clear();
473   }
474
475   Stream.ExitBlock();
476 }
477
478 static unsigned getEncodedLinkage(const GlobalValue &GV) {
479   switch (GV.getLinkage()) {
480   case GlobalValue::ExternalLinkage:
481     return 0;
482   case GlobalValue::WeakAnyLinkage:
483     return 16;
484   case GlobalValue::AppendingLinkage:
485     return 2;
486   case GlobalValue::InternalLinkage:
487     return 3;
488   case GlobalValue::LinkOnceAnyLinkage:
489     return 18;
490   case GlobalValue::ExternalWeakLinkage:
491     return 7;
492   case GlobalValue::CommonLinkage:
493     return 8;
494   case GlobalValue::PrivateLinkage:
495     return 9;
496   case GlobalValue::WeakODRLinkage:
497     return 17;
498   case GlobalValue::LinkOnceODRLinkage:
499     return 19;
500   case GlobalValue::AvailableExternallyLinkage:
501     return 12;
502   }
503   llvm_unreachable("Invalid linkage");
504 }
505
506 static unsigned getEncodedVisibility(const GlobalValue &GV) {
507   switch (GV.getVisibility()) {
508   case GlobalValue::DefaultVisibility:   return 0;
509   case GlobalValue::HiddenVisibility:    return 1;
510   case GlobalValue::ProtectedVisibility: return 2;
511   }
512   llvm_unreachable("Invalid visibility");
513 }
514
515 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
516   switch (GV.getDLLStorageClass()) {
517   case GlobalValue::DefaultStorageClass:   return 0;
518   case GlobalValue::DLLImportStorageClass: return 1;
519   case GlobalValue::DLLExportStorageClass: return 2;
520   }
521   llvm_unreachable("Invalid DLL storage class");
522 }
523
524 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
525   switch (GV.getThreadLocalMode()) {
526     case GlobalVariable::NotThreadLocal:         return 0;
527     case GlobalVariable::GeneralDynamicTLSModel: return 1;
528     case GlobalVariable::LocalDynamicTLSModel:   return 2;
529     case GlobalVariable::InitialExecTLSModel:    return 3;
530     case GlobalVariable::LocalExecTLSModel:      return 4;
531   }
532   llvm_unreachable("Invalid TLS model");
533 }
534
535 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
536   switch (C.getSelectionKind()) {
537   case Comdat::Any:
538     return bitc::COMDAT_SELECTION_KIND_ANY;
539   case Comdat::ExactMatch:
540     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
541   case Comdat::Largest:
542     return bitc::COMDAT_SELECTION_KIND_LARGEST;
543   case Comdat::NoDuplicates:
544     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
545   case Comdat::SameSize:
546     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
547   }
548   llvm_unreachable("Invalid selection kind");
549 }
550
551 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
552   SmallVector<uint16_t, 64> Vals;
553   for (const Comdat *C : VE.getComdats()) {
554     // COMDAT: [selection_kind, name]
555     Vals.push_back(getEncodedComdatSelectionKind(*C));
556     size_t Size = C->getName().size();
557     assert(isUInt<16>(Size));
558     Vals.push_back(Size);
559     for (char Chr : C->getName())
560       Vals.push_back((unsigned char)Chr);
561     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
562     Vals.clear();
563   }
564 }
565
566 // Emit top-level description of module, including target triple, inline asm,
567 // descriptors for global variables, and function prototype info.
568 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
569                             BitstreamWriter &Stream) {
570   // Emit various pieces of data attached to a module.
571   if (!M->getTargetTriple().empty())
572     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
573                       0/*TODO*/, Stream);
574   const std::string &DL = M->getDataLayoutStr();
575   if (!DL.empty())
576     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
577   if (!M->getModuleInlineAsm().empty())
578     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
579                       0/*TODO*/, Stream);
580
581   // Emit information about sections and GC, computing how many there are. Also
582   // compute the maximum alignment value.
583   std::map<std::string, unsigned> SectionMap;
584   std::map<std::string, unsigned> GCMap;
585   unsigned MaxAlignment = 0;
586   unsigned MaxGlobalType = 0;
587   for (const GlobalValue &GV : M->globals()) {
588     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
589     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
590     if (GV.hasSection()) {
591       // Give section names unique ID's.
592       unsigned &Entry = SectionMap[GV.getSection()];
593       if (!Entry) {
594         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
595                           0/*TODO*/, Stream);
596         Entry = SectionMap.size();
597       }
598     }
599   }
600   for (const Function &F : *M) {
601     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
602     if (F.hasSection()) {
603       // Give section names unique ID's.
604       unsigned &Entry = SectionMap[F.getSection()];
605       if (!Entry) {
606         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
607                           0/*TODO*/, Stream);
608         Entry = SectionMap.size();
609       }
610     }
611     if (F.hasGC()) {
612       // Same for GC names.
613       unsigned &Entry = GCMap[F.getGC()];
614       if (!Entry) {
615         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
616                           0/*TODO*/, Stream);
617         Entry = GCMap.size();
618       }
619     }
620   }
621
622   // Emit abbrev for globals, now that we know # sections and max alignment.
623   unsigned SimpleGVarAbbrev = 0;
624   if (!M->global_empty()) {
625     // Add an abbrev for common globals with no visibility or thread localness.
626     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
627     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
628     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
629                               Log2_32_Ceil(MaxGlobalType+1)));
630     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
633     if (MaxAlignment == 0)                                      // Alignment.
634       Abbv->Add(BitCodeAbbrevOp(0));
635     else {
636       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
637       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
638                                Log2_32_Ceil(MaxEncAlignment+1)));
639     }
640     if (SectionMap.empty())                                    // Section.
641       Abbv->Add(BitCodeAbbrevOp(0));
642     else
643       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
644                                Log2_32_Ceil(SectionMap.size()+1)));
645     // Don't bother emitting vis + thread local.
646     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
647   }
648
649   // Emit the global variable information.
650   SmallVector<unsigned, 64> Vals;
651   for (const GlobalVariable &GV : M->globals()) {
652     unsigned AbbrevToUse = 0;
653
654     // GLOBALVAR: [type, isconst, initid,
655     //             linkage, alignment, section, visibility, threadlocal,
656     //             unnamed_addr, externally_initialized, dllstorageclass]
657     Vals.push_back(VE.getTypeID(GV.getType()));
658     Vals.push_back(GV.isConstant());
659     Vals.push_back(GV.isDeclaration() ? 0 :
660                    (VE.getValueID(GV.getInitializer()) + 1));
661     Vals.push_back(getEncodedLinkage(GV));
662     Vals.push_back(Log2_32(GV.getAlignment())+1);
663     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
664     if (GV.isThreadLocal() ||
665         GV.getVisibility() != GlobalValue::DefaultVisibility ||
666         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
667         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
668         GV.hasComdat()) {
669       Vals.push_back(getEncodedVisibility(GV));
670       Vals.push_back(getEncodedThreadLocalMode(GV));
671       Vals.push_back(GV.hasUnnamedAddr());
672       Vals.push_back(GV.isExternallyInitialized());
673       Vals.push_back(getEncodedDLLStorageClass(GV));
674       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
675     } else {
676       AbbrevToUse = SimpleGVarAbbrev;
677     }
678
679     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
680     Vals.clear();
681   }
682
683   // Emit the function proto information.
684   for (const Function &F : *M) {
685     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
686     //             section, visibility, gc, unnamed_addr, prologuedata,
687     //             dllstorageclass, comdat, prefixdata]
688     Vals.push_back(VE.getTypeID(F.getType()));
689     Vals.push_back(F.getCallingConv());
690     Vals.push_back(F.isDeclaration());
691     Vals.push_back(getEncodedLinkage(F));
692     Vals.push_back(VE.getAttributeID(F.getAttributes()));
693     Vals.push_back(Log2_32(F.getAlignment())+1);
694     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
695     Vals.push_back(getEncodedVisibility(F));
696     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
697     Vals.push_back(F.hasUnnamedAddr());
698     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
699                                        : 0);
700     Vals.push_back(getEncodedDLLStorageClass(F));
701     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
702     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
703                                      : 0);
704
705     unsigned AbbrevToUse = 0;
706     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
707     Vals.clear();
708   }
709
710   // Emit the alias information.
711   for (const GlobalAlias &A : M->aliases()) {
712     // ALIAS: [alias type, aliasee val#, linkage, visibility]
713     Vals.push_back(VE.getTypeID(A.getType()));
714     Vals.push_back(VE.getValueID(A.getAliasee()));
715     Vals.push_back(getEncodedLinkage(A));
716     Vals.push_back(getEncodedVisibility(A));
717     Vals.push_back(getEncodedDLLStorageClass(A));
718     Vals.push_back(getEncodedThreadLocalMode(A));
719     Vals.push_back(A.hasUnnamedAddr());
720     unsigned AbbrevToUse = 0;
721     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
722     Vals.clear();
723   }
724 }
725
726 static uint64_t GetOptimizationFlags(const Value *V) {
727   uint64_t Flags = 0;
728
729   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
730     if (OBO->hasNoSignedWrap())
731       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
732     if (OBO->hasNoUnsignedWrap())
733       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
734   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
735     if (PEO->isExact())
736       Flags |= 1 << bitc::PEO_EXACT;
737   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
738     if (FPMO->hasUnsafeAlgebra())
739       Flags |= FastMathFlags::UnsafeAlgebra;
740     if (FPMO->hasNoNaNs())
741       Flags |= FastMathFlags::NoNaNs;
742     if (FPMO->hasNoInfs())
743       Flags |= FastMathFlags::NoInfs;
744     if (FPMO->hasNoSignedZeros())
745       Flags |= FastMathFlags::NoSignedZeros;
746     if (FPMO->hasAllowReciprocal())
747       Flags |= FastMathFlags::AllowReciprocal;
748   }
749
750   return Flags;
751 }
752
753 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
754                                  const ValueEnumerator &VE,
755                                  BitstreamWriter &Stream,
756                                  SmallVectorImpl<uint64_t> &Record) {
757   // Mimic an MDNode with a value as one operand.
758   Value *V = MD->getValue();
759   Record.push_back(VE.getTypeID(V->getType()));
760   Record.push_back(VE.getValueID(V));
761   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
762   Record.clear();
763 }
764
765 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
766                          BitstreamWriter &Stream,
767                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
768   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
769     Metadata *MD = N->getOperand(i);
770     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
771            "Unexpected function-local metadata");
772     Record.push_back(VE.getMetadataOrNullID(MD));
773   }
774   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
775                                     : bitc::METADATA_NODE,
776                     Record, Abbrev);
777   Record.clear();
778 }
779
780 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
781                             BitstreamWriter &Stream,
782                             SmallVectorImpl<uint64_t> &Record,
783                             unsigned Abbrev) {
784   Record.push_back(N->isDistinct());
785   Record.push_back(N->getLine());
786   Record.push_back(N->getColumn());
787   Record.push_back(VE.getMetadataID(N->getScope()));
788   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
789
790   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
791   Record.clear();
792 }
793
794 static void WriteGenericDwarfNode(const GenericDwarfNode *,
795                                   const ValueEnumerator &, BitstreamWriter &,
796                                   SmallVectorImpl<uint64_t> &, unsigned) {
797   llvm_unreachable("unimplemented");
798 }
799
800 static void WriteModuleMetadata(const Module *M,
801                                 const ValueEnumerator &VE,
802                                 BitstreamWriter &Stream) {
803   const auto &MDs = VE.getMDs();
804   if (MDs.empty() && M->named_metadata_empty())
805     return;
806
807   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
808
809   unsigned MDSAbbrev = 0;
810   if (VE.hasMDString()) {
811     // Abbrev for METADATA_STRING.
812     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
813     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
814     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
815     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
816     MDSAbbrev = Stream.EmitAbbrev(Abbv);
817   }
818
819   unsigned MDLocationAbbrev = 0;
820   if (VE.hasMDLocation()) {
821     // Abbrev for METADATA_LOCATION.
822     //
823     // Assume the column is usually under 128, and always output the inlined-at
824     // location (it's never more expensive than building an array size 1).
825     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
826     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
827     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
830     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
831     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
832     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
833   }
834
835   unsigned NameAbbrev = 0;
836   if (!M->named_metadata_empty()) {
837     // Abbrev for METADATA_NAME.
838     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
839     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
840     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
842     NameAbbrev = Stream.EmitAbbrev(Abbv);
843   }
844
845   unsigned MDTupleAbbrev = 0;
846   unsigned GenericDwarfNodeAbbrev = 0;
847   SmallVector<uint64_t, 64> Record;
848   for (const Metadata *MD : MDs) {
849     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
850       switch (N->getMetadataID()) {
851       default:
852         llvm_unreachable("Invalid MDNode subclass");
853 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
854   case Metadata::CLASS##Kind:                                                  \
855     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
856     continue;
857 #include "llvm/IR/Metadata.def"
858       }
859     }
860     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
861       WriteValueAsMetadata(MDC, VE, Stream, Record);
862       continue;
863     }
864     const MDString *MDS = cast<MDString>(MD);
865     // Code: [strchar x N]
866     Record.append(MDS->bytes_begin(), MDS->bytes_end());
867
868     // Emit the finished record.
869     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
870     Record.clear();
871   }
872
873   // Write named metadata.
874   for (const NamedMDNode &NMD : M->named_metadata()) {
875     // Write name.
876     StringRef Str = NMD.getName();
877     Record.append(Str.bytes_begin(), Str.bytes_end());
878     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
879     Record.clear();
880
881     // Write named metadata operands.
882     for (const MDNode *N : NMD.operands())
883       Record.push_back(VE.getMetadataID(N));
884     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
885     Record.clear();
886   }
887
888   Stream.ExitBlock();
889 }
890
891 static void WriteFunctionLocalMetadata(const Function &F,
892                                        const ValueEnumerator &VE,
893                                        BitstreamWriter &Stream) {
894   bool StartedMetadataBlock = false;
895   SmallVector<uint64_t, 64> Record;
896   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
897       VE.getFunctionLocalMDs();
898   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
899     assert(MDs[i] && "Expected valid function-local metadata");
900     if (!StartedMetadataBlock) {
901       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
902       StartedMetadataBlock = true;
903     }
904     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
905   }
906
907   if (StartedMetadataBlock)
908     Stream.ExitBlock();
909 }
910
911 static void WriteMetadataAttachment(const Function &F,
912                                     const ValueEnumerator &VE,
913                                     BitstreamWriter &Stream) {
914   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
915
916   SmallVector<uint64_t, 64> Record;
917
918   // Write metadata attachments
919   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
920   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
921
922   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
923     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
924          I != E; ++I) {
925       MDs.clear();
926       I->getAllMetadataOtherThanDebugLoc(MDs);
927
928       // If no metadata, ignore instruction.
929       if (MDs.empty()) continue;
930
931       Record.push_back(VE.getInstructionID(I));
932
933       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
934         Record.push_back(MDs[i].first);
935         Record.push_back(VE.getMetadataID(MDs[i].second));
936       }
937       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
938       Record.clear();
939     }
940
941   Stream.ExitBlock();
942 }
943
944 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
945   SmallVector<uint64_t, 64> Record;
946
947   // Write metadata kinds
948   // METADATA_KIND - [n x [id, name]]
949   SmallVector<StringRef, 8> Names;
950   M->getMDKindNames(Names);
951
952   if (Names.empty()) return;
953
954   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
955
956   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
957     Record.push_back(MDKindID);
958     StringRef KName = Names[MDKindID];
959     Record.append(KName.begin(), KName.end());
960
961     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
962     Record.clear();
963   }
964
965   Stream.ExitBlock();
966 }
967
968 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
969   if ((int64_t)V >= 0)
970     Vals.push_back(V << 1);
971   else
972     Vals.push_back((-V << 1) | 1);
973 }
974
975 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
976                            const ValueEnumerator &VE,
977                            BitstreamWriter &Stream, bool isGlobal) {
978   if (FirstVal == LastVal) return;
979
980   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
981
982   unsigned AggregateAbbrev = 0;
983   unsigned String8Abbrev = 0;
984   unsigned CString7Abbrev = 0;
985   unsigned CString6Abbrev = 0;
986   // If this is a constant pool for the module, emit module-specific abbrevs.
987   if (isGlobal) {
988     // Abbrev for CST_CODE_AGGREGATE.
989     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
990     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
991     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
992     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
993     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
994
995     // Abbrev for CST_CODE_STRING.
996     Abbv = new BitCodeAbbrev();
997     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
998     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1000     String8Abbrev = Stream.EmitAbbrev(Abbv);
1001     // Abbrev for CST_CODE_CSTRING.
1002     Abbv = new BitCodeAbbrev();
1003     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1004     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1005     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1006     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1007     // Abbrev for CST_CODE_CSTRING.
1008     Abbv = new BitCodeAbbrev();
1009     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1010     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1011     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1012     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1013   }
1014
1015   SmallVector<uint64_t, 64> Record;
1016
1017   const ValueEnumerator::ValueList &Vals = VE.getValues();
1018   Type *LastTy = nullptr;
1019   for (unsigned i = FirstVal; i != LastVal; ++i) {
1020     const Value *V = Vals[i].first;
1021     // If we need to switch types, do so now.
1022     if (V->getType() != LastTy) {
1023       LastTy = V->getType();
1024       Record.push_back(VE.getTypeID(LastTy));
1025       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1026                         CONSTANTS_SETTYPE_ABBREV);
1027       Record.clear();
1028     }
1029
1030     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1031       Record.push_back(unsigned(IA->hasSideEffects()) |
1032                        unsigned(IA->isAlignStack()) << 1 |
1033                        unsigned(IA->getDialect()&1) << 2);
1034
1035       // Add the asm string.
1036       const std::string &AsmStr = IA->getAsmString();
1037       Record.push_back(AsmStr.size());
1038       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1039         Record.push_back(AsmStr[i]);
1040
1041       // Add the constraint string.
1042       const std::string &ConstraintStr = IA->getConstraintString();
1043       Record.push_back(ConstraintStr.size());
1044       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1045         Record.push_back(ConstraintStr[i]);
1046       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1047       Record.clear();
1048       continue;
1049     }
1050     const Constant *C = cast<Constant>(V);
1051     unsigned Code = -1U;
1052     unsigned AbbrevToUse = 0;
1053     if (C->isNullValue()) {
1054       Code = bitc::CST_CODE_NULL;
1055     } else if (isa<UndefValue>(C)) {
1056       Code = bitc::CST_CODE_UNDEF;
1057     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1058       if (IV->getBitWidth() <= 64) {
1059         uint64_t V = IV->getSExtValue();
1060         emitSignedInt64(Record, V);
1061         Code = bitc::CST_CODE_INTEGER;
1062         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1063       } else {                             // Wide integers, > 64 bits in size.
1064         // We have an arbitrary precision integer value to write whose
1065         // bit width is > 64. However, in canonical unsigned integer
1066         // format it is likely that the high bits are going to be zero.
1067         // So, we only write the number of active words.
1068         unsigned NWords = IV->getValue().getActiveWords();
1069         const uint64_t *RawWords = IV->getValue().getRawData();
1070         for (unsigned i = 0; i != NWords; ++i) {
1071           emitSignedInt64(Record, RawWords[i]);
1072         }
1073         Code = bitc::CST_CODE_WIDE_INTEGER;
1074       }
1075     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1076       Code = bitc::CST_CODE_FLOAT;
1077       Type *Ty = CFP->getType();
1078       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1079         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1080       } else if (Ty->isX86_FP80Ty()) {
1081         // api needed to prevent premature destruction
1082         // bits are not in the same order as a normal i80 APInt, compensate.
1083         APInt api = CFP->getValueAPF().bitcastToAPInt();
1084         const uint64_t *p = api.getRawData();
1085         Record.push_back((p[1] << 48) | (p[0] >> 16));
1086         Record.push_back(p[0] & 0xffffLL);
1087       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1088         APInt api = CFP->getValueAPF().bitcastToAPInt();
1089         const uint64_t *p = api.getRawData();
1090         Record.push_back(p[0]);
1091         Record.push_back(p[1]);
1092       } else {
1093         assert (0 && "Unknown FP type!");
1094       }
1095     } else if (isa<ConstantDataSequential>(C) &&
1096                cast<ConstantDataSequential>(C)->isString()) {
1097       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1098       // Emit constant strings specially.
1099       unsigned NumElts = Str->getNumElements();
1100       // If this is a null-terminated string, use the denser CSTRING encoding.
1101       if (Str->isCString()) {
1102         Code = bitc::CST_CODE_CSTRING;
1103         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1104       } else {
1105         Code = bitc::CST_CODE_STRING;
1106         AbbrevToUse = String8Abbrev;
1107       }
1108       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1109       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1110       for (unsigned i = 0; i != NumElts; ++i) {
1111         unsigned char V = Str->getElementAsInteger(i);
1112         Record.push_back(V);
1113         isCStr7 &= (V & 128) == 0;
1114         if (isCStrChar6)
1115           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1116       }
1117
1118       if (isCStrChar6)
1119         AbbrevToUse = CString6Abbrev;
1120       else if (isCStr7)
1121         AbbrevToUse = CString7Abbrev;
1122     } else if (const ConstantDataSequential *CDS =
1123                   dyn_cast<ConstantDataSequential>(C)) {
1124       Code = bitc::CST_CODE_DATA;
1125       Type *EltTy = CDS->getType()->getElementType();
1126       if (isa<IntegerType>(EltTy)) {
1127         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1128           Record.push_back(CDS->getElementAsInteger(i));
1129       } else if (EltTy->isFloatTy()) {
1130         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1131           union { float F; uint32_t I; };
1132           F = CDS->getElementAsFloat(i);
1133           Record.push_back(I);
1134         }
1135       } else {
1136         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1137         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1138           union { double F; uint64_t I; };
1139           F = CDS->getElementAsDouble(i);
1140           Record.push_back(I);
1141         }
1142       }
1143     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1144                isa<ConstantVector>(C)) {
1145       Code = bitc::CST_CODE_AGGREGATE;
1146       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1147         Record.push_back(VE.getValueID(C->getOperand(i)));
1148       AbbrevToUse = AggregateAbbrev;
1149     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1150       switch (CE->getOpcode()) {
1151       default:
1152         if (Instruction::isCast(CE->getOpcode())) {
1153           Code = bitc::CST_CODE_CE_CAST;
1154           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1155           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1156           Record.push_back(VE.getValueID(C->getOperand(0)));
1157           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1158         } else {
1159           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1160           Code = bitc::CST_CODE_CE_BINOP;
1161           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1162           Record.push_back(VE.getValueID(C->getOperand(0)));
1163           Record.push_back(VE.getValueID(C->getOperand(1)));
1164           uint64_t Flags = GetOptimizationFlags(CE);
1165           if (Flags != 0)
1166             Record.push_back(Flags);
1167         }
1168         break;
1169       case Instruction::GetElementPtr:
1170         Code = bitc::CST_CODE_CE_GEP;
1171         if (cast<GEPOperator>(C)->isInBounds())
1172           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1173         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1174           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1175           Record.push_back(VE.getValueID(C->getOperand(i)));
1176         }
1177         break;
1178       case Instruction::Select:
1179         Code = bitc::CST_CODE_CE_SELECT;
1180         Record.push_back(VE.getValueID(C->getOperand(0)));
1181         Record.push_back(VE.getValueID(C->getOperand(1)));
1182         Record.push_back(VE.getValueID(C->getOperand(2)));
1183         break;
1184       case Instruction::ExtractElement:
1185         Code = bitc::CST_CODE_CE_EXTRACTELT;
1186         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1187         Record.push_back(VE.getValueID(C->getOperand(0)));
1188         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1189         Record.push_back(VE.getValueID(C->getOperand(1)));
1190         break;
1191       case Instruction::InsertElement:
1192         Code = bitc::CST_CODE_CE_INSERTELT;
1193         Record.push_back(VE.getValueID(C->getOperand(0)));
1194         Record.push_back(VE.getValueID(C->getOperand(1)));
1195         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1196         Record.push_back(VE.getValueID(C->getOperand(2)));
1197         break;
1198       case Instruction::ShuffleVector:
1199         // If the return type and argument types are the same, this is a
1200         // standard shufflevector instruction.  If the types are different,
1201         // then the shuffle is widening or truncating the input vectors, and
1202         // the argument type must also be encoded.
1203         if (C->getType() == C->getOperand(0)->getType()) {
1204           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1205         } else {
1206           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1207           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1208         }
1209         Record.push_back(VE.getValueID(C->getOperand(0)));
1210         Record.push_back(VE.getValueID(C->getOperand(1)));
1211         Record.push_back(VE.getValueID(C->getOperand(2)));
1212         break;
1213       case Instruction::ICmp:
1214       case Instruction::FCmp:
1215         Code = bitc::CST_CODE_CE_CMP;
1216         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1217         Record.push_back(VE.getValueID(C->getOperand(0)));
1218         Record.push_back(VE.getValueID(C->getOperand(1)));
1219         Record.push_back(CE->getPredicate());
1220         break;
1221       }
1222     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1223       Code = bitc::CST_CODE_BLOCKADDRESS;
1224       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1225       Record.push_back(VE.getValueID(BA->getFunction()));
1226       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1227     } else {
1228 #ifndef NDEBUG
1229       C->dump();
1230 #endif
1231       llvm_unreachable("Unknown constant!");
1232     }
1233     Stream.EmitRecord(Code, Record, AbbrevToUse);
1234     Record.clear();
1235   }
1236
1237   Stream.ExitBlock();
1238 }
1239
1240 static void WriteModuleConstants(const ValueEnumerator &VE,
1241                                  BitstreamWriter &Stream) {
1242   const ValueEnumerator::ValueList &Vals = VE.getValues();
1243
1244   // Find the first constant to emit, which is the first non-globalvalue value.
1245   // We know globalvalues have been emitted by WriteModuleInfo.
1246   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1247     if (!isa<GlobalValue>(Vals[i].first)) {
1248       WriteConstants(i, Vals.size(), VE, Stream, true);
1249       return;
1250     }
1251   }
1252 }
1253
1254 /// PushValueAndType - The file has to encode both the value and type id for
1255 /// many values, because we need to know what type to create for forward
1256 /// references.  However, most operands are not forward references, so this type
1257 /// field is not needed.
1258 ///
1259 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1260 /// instruction ID, then it is a forward reference, and it also includes the
1261 /// type ID.  The value ID that is written is encoded relative to the InstID.
1262 static bool PushValueAndType(const Value *V, unsigned InstID,
1263                              SmallVectorImpl<unsigned> &Vals,
1264                              ValueEnumerator &VE) {
1265   unsigned ValID = VE.getValueID(V);
1266   // Make encoding relative to the InstID.
1267   Vals.push_back(InstID - ValID);
1268   if (ValID >= InstID) {
1269     Vals.push_back(VE.getTypeID(V->getType()));
1270     return true;
1271   }
1272   return false;
1273 }
1274
1275 /// pushValue - Like PushValueAndType, but where the type of the value is
1276 /// omitted (perhaps it was already encoded in an earlier operand).
1277 static void pushValue(const Value *V, unsigned InstID,
1278                       SmallVectorImpl<unsigned> &Vals,
1279                       ValueEnumerator &VE) {
1280   unsigned ValID = VE.getValueID(V);
1281   Vals.push_back(InstID - ValID);
1282 }
1283
1284 static void pushValueSigned(const Value *V, unsigned InstID,
1285                             SmallVectorImpl<uint64_t> &Vals,
1286                             ValueEnumerator &VE) {
1287   unsigned ValID = VE.getValueID(V);
1288   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1289   emitSignedInt64(Vals, diff);
1290 }
1291
1292 /// WriteInstruction - Emit an instruction to the specified stream.
1293 static void WriteInstruction(const Instruction &I, unsigned InstID,
1294                              ValueEnumerator &VE, BitstreamWriter &Stream,
1295                              SmallVectorImpl<unsigned> &Vals) {
1296   unsigned Code = 0;
1297   unsigned AbbrevToUse = 0;
1298   VE.setInstructionID(&I);
1299   switch (I.getOpcode()) {
1300   default:
1301     if (Instruction::isCast(I.getOpcode())) {
1302       Code = bitc::FUNC_CODE_INST_CAST;
1303       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1304         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1305       Vals.push_back(VE.getTypeID(I.getType()));
1306       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1307     } else {
1308       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1309       Code = bitc::FUNC_CODE_INST_BINOP;
1310       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1311         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1312       pushValue(I.getOperand(1), InstID, Vals, VE);
1313       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1314       uint64_t Flags = GetOptimizationFlags(&I);
1315       if (Flags != 0) {
1316         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1317           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1318         Vals.push_back(Flags);
1319       }
1320     }
1321     break;
1322
1323   case Instruction::GetElementPtr:
1324     Code = bitc::FUNC_CODE_INST_GEP;
1325     if (cast<GEPOperator>(&I)->isInBounds())
1326       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1327     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1328       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1329     break;
1330   case Instruction::ExtractValue: {
1331     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1332     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1333     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1334     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1335       Vals.push_back(*i);
1336     break;
1337   }
1338   case Instruction::InsertValue: {
1339     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1340     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1341     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1342     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1343     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1344       Vals.push_back(*i);
1345     break;
1346   }
1347   case Instruction::Select:
1348     Code = bitc::FUNC_CODE_INST_VSELECT;
1349     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1350     pushValue(I.getOperand(2), InstID, Vals, VE);
1351     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1352     break;
1353   case Instruction::ExtractElement:
1354     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1355     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1356     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1357     break;
1358   case Instruction::InsertElement:
1359     Code = bitc::FUNC_CODE_INST_INSERTELT;
1360     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1361     pushValue(I.getOperand(1), InstID, Vals, VE);
1362     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1363     break;
1364   case Instruction::ShuffleVector:
1365     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1366     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1367     pushValue(I.getOperand(1), InstID, Vals, VE);
1368     pushValue(I.getOperand(2), InstID, Vals, VE);
1369     break;
1370   case Instruction::ICmp:
1371   case Instruction::FCmp:
1372     // compare returning Int1Ty or vector of Int1Ty
1373     Code = bitc::FUNC_CODE_INST_CMP2;
1374     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1375     pushValue(I.getOperand(1), InstID, Vals, VE);
1376     Vals.push_back(cast<CmpInst>(I).getPredicate());
1377     break;
1378
1379   case Instruction::Ret:
1380     {
1381       Code = bitc::FUNC_CODE_INST_RET;
1382       unsigned NumOperands = I.getNumOperands();
1383       if (NumOperands == 0)
1384         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1385       else if (NumOperands == 1) {
1386         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1387           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1388       } else {
1389         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1390           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1391       }
1392     }
1393     break;
1394   case Instruction::Br:
1395     {
1396       Code = bitc::FUNC_CODE_INST_BR;
1397       const BranchInst &II = cast<BranchInst>(I);
1398       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1399       if (II.isConditional()) {
1400         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1401         pushValue(II.getCondition(), InstID, Vals, VE);
1402       }
1403     }
1404     break;
1405   case Instruction::Switch:
1406     {
1407       Code = bitc::FUNC_CODE_INST_SWITCH;
1408       const SwitchInst &SI = cast<SwitchInst>(I);
1409       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1410       pushValue(SI.getCondition(), InstID, Vals, VE);
1411       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1412       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1413            i != e; ++i) {
1414         Vals.push_back(VE.getValueID(i.getCaseValue()));
1415         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1416       }
1417     }
1418     break;
1419   case Instruction::IndirectBr:
1420     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1421     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1422     // Encode the address operand as relative, but not the basic blocks.
1423     pushValue(I.getOperand(0), InstID, Vals, VE);
1424     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1425       Vals.push_back(VE.getValueID(I.getOperand(i)));
1426     break;
1427
1428   case Instruction::Invoke: {
1429     const InvokeInst *II = cast<InvokeInst>(&I);
1430     const Value *Callee(II->getCalledValue());
1431     PointerType *PTy = cast<PointerType>(Callee->getType());
1432     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1433     Code = bitc::FUNC_CODE_INST_INVOKE;
1434
1435     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1436     Vals.push_back(II->getCallingConv());
1437     Vals.push_back(VE.getValueID(II->getNormalDest()));
1438     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1439     PushValueAndType(Callee, InstID, Vals, VE);
1440
1441     // Emit value #'s for the fixed parameters.
1442     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1443       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1444
1445     // Emit type/value pairs for varargs params.
1446     if (FTy->isVarArg()) {
1447       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1448            i != e; ++i)
1449         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1450     }
1451     break;
1452   }
1453   case Instruction::Resume:
1454     Code = bitc::FUNC_CODE_INST_RESUME;
1455     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1456     break;
1457   case Instruction::Unreachable:
1458     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1459     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1460     break;
1461
1462   case Instruction::PHI: {
1463     const PHINode &PN = cast<PHINode>(I);
1464     Code = bitc::FUNC_CODE_INST_PHI;
1465     // With the newer instruction encoding, forward references could give
1466     // negative valued IDs.  This is most common for PHIs, so we use
1467     // signed VBRs.
1468     SmallVector<uint64_t, 128> Vals64;
1469     Vals64.push_back(VE.getTypeID(PN.getType()));
1470     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1471       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1472       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1473     }
1474     // Emit a Vals64 vector and exit.
1475     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1476     Vals64.clear();
1477     return;
1478   }
1479
1480   case Instruction::LandingPad: {
1481     const LandingPadInst &LP = cast<LandingPadInst>(I);
1482     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1483     Vals.push_back(VE.getTypeID(LP.getType()));
1484     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1485     Vals.push_back(LP.isCleanup());
1486     Vals.push_back(LP.getNumClauses());
1487     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1488       if (LP.isCatch(I))
1489         Vals.push_back(LandingPadInst::Catch);
1490       else
1491         Vals.push_back(LandingPadInst::Filter);
1492       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1493     }
1494     break;
1495   }
1496
1497   case Instruction::Alloca: {
1498     Code = bitc::FUNC_CODE_INST_ALLOCA;
1499     Vals.push_back(VE.getTypeID(I.getType()));
1500     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1501     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1502     const AllocaInst &AI = cast<AllocaInst>(I);
1503     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1504     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1505            "not enough bits for maximum alignment");
1506     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1507     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1508     Vals.push_back(AlignRecord);
1509     break;
1510   }
1511
1512   case Instruction::Load:
1513     if (cast<LoadInst>(I).isAtomic()) {
1514       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1515       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1516     } else {
1517       Code = bitc::FUNC_CODE_INST_LOAD;
1518       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1519         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1520     }
1521     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1522     Vals.push_back(cast<LoadInst>(I).isVolatile());
1523     if (cast<LoadInst>(I).isAtomic()) {
1524       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1525       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1526     }
1527     break;
1528   case Instruction::Store:
1529     if (cast<StoreInst>(I).isAtomic())
1530       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1531     else
1532       Code = bitc::FUNC_CODE_INST_STORE;
1533     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1534     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1535     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1536     Vals.push_back(cast<StoreInst>(I).isVolatile());
1537     if (cast<StoreInst>(I).isAtomic()) {
1538       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1539       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1540     }
1541     break;
1542   case Instruction::AtomicCmpXchg:
1543     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1544     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1545     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1546     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1547     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1548     Vals.push_back(GetEncodedOrdering(
1549                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1550     Vals.push_back(GetEncodedSynchScope(
1551                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1552     Vals.push_back(GetEncodedOrdering(
1553                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1554     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1555     break;
1556   case Instruction::AtomicRMW:
1557     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1558     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1559     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1560     Vals.push_back(GetEncodedRMWOperation(
1561                      cast<AtomicRMWInst>(I).getOperation()));
1562     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1563     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1564     Vals.push_back(GetEncodedSynchScope(
1565                      cast<AtomicRMWInst>(I).getSynchScope()));
1566     break;
1567   case Instruction::Fence:
1568     Code = bitc::FUNC_CODE_INST_FENCE;
1569     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1570     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1571     break;
1572   case Instruction::Call: {
1573     const CallInst &CI = cast<CallInst>(I);
1574     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1575     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1576
1577     Code = bitc::FUNC_CODE_INST_CALL;
1578
1579     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1580     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1581                    unsigned(CI.isMustTailCall()) << 14);
1582     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1583
1584     // Emit value #'s for the fixed parameters.
1585     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1586       // Check for labels (can happen with asm labels).
1587       if (FTy->getParamType(i)->isLabelTy())
1588         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1589       else
1590         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1591     }
1592
1593     // Emit type/value pairs for varargs params.
1594     if (FTy->isVarArg()) {
1595       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1596            i != e; ++i)
1597         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1598     }
1599     break;
1600   }
1601   case Instruction::VAArg:
1602     Code = bitc::FUNC_CODE_INST_VAARG;
1603     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1604     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1605     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1606     break;
1607   }
1608
1609   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1610   Vals.clear();
1611 }
1612
1613 // Emit names for globals/functions etc.
1614 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1615                                   const ValueEnumerator &VE,
1616                                   BitstreamWriter &Stream) {
1617   if (VST.empty()) return;
1618   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1619
1620   // FIXME: Set up the abbrev, we know how many values there are!
1621   // FIXME: We know if the type names can use 7-bit ascii.
1622   SmallVector<unsigned, 64> NameVals;
1623
1624   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1625        SI != SE; ++SI) {
1626
1627     const ValueName &Name = *SI;
1628
1629     // Figure out the encoding to use for the name.
1630     bool is7Bit = true;
1631     bool isChar6 = true;
1632     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1633          C != E; ++C) {
1634       if (isChar6)
1635         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1636       if ((unsigned char)*C & 128) {
1637         is7Bit = false;
1638         break;  // don't bother scanning the rest.
1639       }
1640     }
1641
1642     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1643
1644     // VST_ENTRY:   [valueid, namechar x N]
1645     // VST_BBENTRY: [bbid, namechar x N]
1646     unsigned Code;
1647     if (isa<BasicBlock>(SI->getValue())) {
1648       Code = bitc::VST_CODE_BBENTRY;
1649       if (isChar6)
1650         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1651     } else {
1652       Code = bitc::VST_CODE_ENTRY;
1653       if (isChar6)
1654         AbbrevToUse = VST_ENTRY_6_ABBREV;
1655       else if (is7Bit)
1656         AbbrevToUse = VST_ENTRY_7_ABBREV;
1657     }
1658
1659     NameVals.push_back(VE.getValueID(SI->getValue()));
1660     for (const char *P = Name.getKeyData(),
1661          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1662       NameVals.push_back((unsigned char)*P);
1663
1664     // Emit the finished record.
1665     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1666     NameVals.clear();
1667   }
1668   Stream.ExitBlock();
1669 }
1670
1671 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1672                          BitstreamWriter &Stream) {
1673   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1674   unsigned Code;
1675   if (isa<BasicBlock>(Order.V))
1676     Code = bitc::USELIST_CODE_BB;
1677   else
1678     Code = bitc::USELIST_CODE_DEFAULT;
1679
1680   SmallVector<uint64_t, 64> Record;
1681   for (unsigned I : Order.Shuffle)
1682     Record.push_back(I);
1683   Record.push_back(VE.getValueID(Order.V));
1684   Stream.EmitRecord(Code, Record);
1685 }
1686
1687 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1688                               BitstreamWriter &Stream) {
1689   auto hasMore = [&]() {
1690     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1691   };
1692   if (!hasMore())
1693     // Nothing to do.
1694     return;
1695
1696   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1697   while (hasMore()) {
1698     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1699     VE.UseListOrders.pop_back();
1700   }
1701   Stream.ExitBlock();
1702 }
1703
1704 /// WriteFunction - Emit a function body to the module stream.
1705 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1706                           BitstreamWriter &Stream) {
1707   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1708   VE.incorporateFunction(F);
1709
1710   SmallVector<unsigned, 64> Vals;
1711
1712   // Emit the number of basic blocks, so the reader can create them ahead of
1713   // time.
1714   Vals.push_back(VE.getBasicBlocks().size());
1715   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1716   Vals.clear();
1717
1718   // If there are function-local constants, emit them now.
1719   unsigned CstStart, CstEnd;
1720   VE.getFunctionConstantRange(CstStart, CstEnd);
1721   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1722
1723   // If there is function-local metadata, emit it now.
1724   WriteFunctionLocalMetadata(F, VE, Stream);
1725
1726   // Keep a running idea of what the instruction ID is.
1727   unsigned InstID = CstEnd;
1728
1729   bool NeedsMetadataAttachment = false;
1730
1731   DebugLoc LastDL;
1732
1733   // Finally, emit all the instructions, in order.
1734   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1735     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1736          I != E; ++I) {
1737       WriteInstruction(*I, InstID, VE, Stream, Vals);
1738
1739       if (!I->getType()->isVoidTy())
1740         ++InstID;
1741
1742       // If the instruction has metadata, write a metadata attachment later.
1743       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1744
1745       // If the instruction has a debug location, emit it.
1746       DebugLoc DL = I->getDebugLoc();
1747       if (DL.isUnknown()) {
1748         // nothing todo.
1749       } else if (DL == LastDL) {
1750         // Just repeat the same debug loc as last time.
1751         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1752       } else {
1753         MDNode *Scope, *IA;
1754         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1755         assert(Scope && "Expected valid scope");
1756
1757         Vals.push_back(DL.getLine());
1758         Vals.push_back(DL.getCol());
1759         Vals.push_back(VE.getMetadataOrNullID(Scope));
1760         Vals.push_back(VE.getMetadataOrNullID(IA));
1761         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1762         Vals.clear();
1763
1764         LastDL = DL;
1765       }
1766     }
1767
1768   // Emit names for all the instructions etc.
1769   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1770
1771   if (NeedsMetadataAttachment)
1772     WriteMetadataAttachment(F, VE, Stream);
1773   if (shouldPreserveBitcodeUseListOrder())
1774     WriteUseListBlock(&F, VE, Stream);
1775   VE.purgeFunction();
1776   Stream.ExitBlock();
1777 }
1778
1779 // Emit blockinfo, which defines the standard abbreviations etc.
1780 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1781   // We only want to emit block info records for blocks that have multiple
1782   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1783   // Other blocks can define their abbrevs inline.
1784   Stream.EnterBlockInfoBlock(2);
1785
1786   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1787     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1788     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1789     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1790     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1792     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1793                                    Abbv) != VST_ENTRY_8_ABBREV)
1794       llvm_unreachable("Unexpected abbrev ordering!");
1795   }
1796
1797   { // 7-bit fixed width VST_ENTRY strings.
1798     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1799     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1800     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1801     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1803     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1804                                    Abbv) != VST_ENTRY_7_ABBREV)
1805       llvm_unreachable("Unexpected abbrev ordering!");
1806   }
1807   { // 6-bit char6 VST_ENTRY strings.
1808     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1809     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1810     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1811     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1812     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1813     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1814                                    Abbv) != VST_ENTRY_6_ABBREV)
1815       llvm_unreachable("Unexpected abbrev ordering!");
1816   }
1817   { // 6-bit char6 VST_BBENTRY strings.
1818     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1819     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1820     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1821     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1822     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1823     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1824                                    Abbv) != VST_BBENTRY_6_ABBREV)
1825       llvm_unreachable("Unexpected abbrev ordering!");
1826   }
1827
1828
1829
1830   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1831     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1832     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1833     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1834                               Log2_32_Ceil(VE.getTypes().size()+1)));
1835     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1836                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1837       llvm_unreachable("Unexpected abbrev ordering!");
1838   }
1839
1840   { // INTEGER abbrev for CONSTANTS_BLOCK.
1841     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1842     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1843     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1844     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1845                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1846       llvm_unreachable("Unexpected abbrev ordering!");
1847   }
1848
1849   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1850     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1851     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1852     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1853     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1854                               Log2_32_Ceil(VE.getTypes().size()+1)));
1855     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1856
1857     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1858                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1859       llvm_unreachable("Unexpected abbrev ordering!");
1860   }
1861   { // NULL abbrev for CONSTANTS_BLOCK.
1862     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1863     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1864     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1865                                    Abbv) != CONSTANTS_NULL_Abbrev)
1866       llvm_unreachable("Unexpected abbrev ordering!");
1867   }
1868
1869   // FIXME: This should only use space for first class types!
1870
1871   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1872     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1873     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1874     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1875     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1876     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1877     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1878                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1879       llvm_unreachable("Unexpected abbrev ordering!");
1880   }
1881   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1882     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1883     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1884     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1885     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1886     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1887     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1888                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1889       llvm_unreachable("Unexpected abbrev ordering!");
1890   }
1891   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1892     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1893     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1894     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1895     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1897     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1898     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1899                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1900       llvm_unreachable("Unexpected abbrev ordering!");
1901   }
1902   { // INST_CAST abbrev for FUNCTION_BLOCK.
1903     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1904     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1905     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1906     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1907                               Log2_32_Ceil(VE.getTypes().size()+1)));
1908     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1909     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1910                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1911       llvm_unreachable("Unexpected abbrev ordering!");
1912   }
1913
1914   { // INST_RET abbrev for FUNCTION_BLOCK.
1915     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1916     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1917     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1918                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1919       llvm_unreachable("Unexpected abbrev ordering!");
1920   }
1921   { // INST_RET abbrev for FUNCTION_BLOCK.
1922     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1923     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1925     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1926                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1927       llvm_unreachable("Unexpected abbrev ordering!");
1928   }
1929   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1930     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1931     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1932     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1933                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1934       llvm_unreachable("Unexpected abbrev ordering!");
1935   }
1936
1937   Stream.ExitBlock();
1938 }
1939
1940 /// WriteModule - Emit the specified module to the bitstream.
1941 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1942   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1943
1944   SmallVector<unsigned, 1> Vals;
1945   unsigned CurVersion = 1;
1946   Vals.push_back(CurVersion);
1947   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1948
1949   // Analyze the module, enumerating globals, functions, etc.
1950   ValueEnumerator VE(*M);
1951
1952   // Emit blockinfo, which defines the standard abbreviations etc.
1953   WriteBlockInfo(VE, Stream);
1954
1955   // Emit information about attribute groups.
1956   WriteAttributeGroupTable(VE, Stream);
1957
1958   // Emit information about parameter attributes.
1959   WriteAttributeTable(VE, Stream);
1960
1961   // Emit information describing all of the types in the module.
1962   WriteTypeTable(VE, Stream);
1963
1964   writeComdats(VE, Stream);
1965
1966   // Emit top-level description of module, including target triple, inline asm,
1967   // descriptors for global variables, and function prototype info.
1968   WriteModuleInfo(M, VE, Stream);
1969
1970   // Emit constants.
1971   WriteModuleConstants(VE, Stream);
1972
1973   // Emit metadata.
1974   WriteModuleMetadata(M, VE, Stream);
1975
1976   // Emit metadata.
1977   WriteModuleMetadataStore(M, Stream);
1978
1979   // Emit names for globals/functions etc.
1980   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1981
1982   // Emit module-level use-lists.
1983   if (shouldPreserveBitcodeUseListOrder())
1984     WriteUseListBlock(nullptr, VE, Stream);
1985
1986   // Emit function bodies.
1987   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1988     if (!F->isDeclaration())
1989       WriteFunction(*F, VE, Stream);
1990
1991   Stream.ExitBlock();
1992 }
1993
1994 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1995 /// header and trailer to make it compatible with the system archiver.  To do
1996 /// this we emit the following header, and then emit a trailer that pads the
1997 /// file out to be a multiple of 16 bytes.
1998 ///
1999 /// struct bc_header {
2000 ///   uint32_t Magic;         // 0x0B17C0DE
2001 ///   uint32_t Version;       // Version, currently always 0.
2002 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2003 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2004 ///   uint32_t CPUType;       // CPU specifier.
2005 ///   ... potentially more later ...
2006 /// };
2007 enum {
2008   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2009   DarwinBCHeaderSize = 5*4
2010 };
2011
2012 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2013                                uint32_t &Position) {
2014   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2015   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2016   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2017   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2018   Position += 4;
2019 }
2020
2021 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2022                                          const Triple &TT) {
2023   unsigned CPUType = ~0U;
2024
2025   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2026   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2027   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2028   // specific constants here because they are implicitly part of the Darwin ABI.
2029   enum {
2030     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2031     DARWIN_CPU_TYPE_X86        = 7,
2032     DARWIN_CPU_TYPE_ARM        = 12,
2033     DARWIN_CPU_TYPE_POWERPC    = 18
2034   };
2035
2036   Triple::ArchType Arch = TT.getArch();
2037   if (Arch == Triple::x86_64)
2038     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2039   else if (Arch == Triple::x86)
2040     CPUType = DARWIN_CPU_TYPE_X86;
2041   else if (Arch == Triple::ppc)
2042     CPUType = DARWIN_CPU_TYPE_POWERPC;
2043   else if (Arch == Triple::ppc64)
2044     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2045   else if (Arch == Triple::arm || Arch == Triple::thumb)
2046     CPUType = DARWIN_CPU_TYPE_ARM;
2047
2048   // Traditional Bitcode starts after header.
2049   assert(Buffer.size() >= DarwinBCHeaderSize &&
2050          "Expected header size to be reserved");
2051   unsigned BCOffset = DarwinBCHeaderSize;
2052   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2053
2054   // Write the magic and version.
2055   unsigned Position = 0;
2056   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2057   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2058   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2059   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2060   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2061
2062   // If the file is not a multiple of 16 bytes, insert dummy padding.
2063   while (Buffer.size() & 15)
2064     Buffer.push_back(0);
2065 }
2066
2067 /// WriteBitcodeToFile - Write the specified module to the specified output
2068 /// stream.
2069 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2070   SmallVector<char, 0> Buffer;
2071   Buffer.reserve(256*1024);
2072
2073   // If this is darwin or another generic macho target, reserve space for the
2074   // header.
2075   Triple TT(M->getTargetTriple());
2076   if (TT.isOSDarwin())
2077     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2078
2079   // Emit the module into the buffer.
2080   {
2081     BitstreamWriter Stream(Buffer);
2082
2083     // Emit the file header.
2084     Stream.Emit((unsigned)'B', 8);
2085     Stream.Emit((unsigned)'C', 8);
2086     Stream.Emit(0x0, 4);
2087     Stream.Emit(0xC, 4);
2088     Stream.Emit(0xE, 4);
2089     Stream.Emit(0xD, 4);
2090
2091     // Emit the module.
2092     WriteModule(M, Stream);
2093   }
2094
2095   if (TT.isOSDarwin())
2096     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2097
2098   // Write the generated bitstream to "Out".
2099   Out.write((char*)&Buffer.front(), Buffer.size());
2100 }