AsmWriter/Bitcode: MDSubroutineType
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV
60 };
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
78   }
79 }
80
81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104
105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121
122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125   case Unordered: return bitc::ORDERING_UNORDERED;
126   case Monotonic: return bitc::ORDERING_MONOTONIC;
127   case Acquire: return bitc::ORDERING_ACQUIRE;
128   case Release: return bitc::ORDERING_RELEASE;
129   case AcquireRelease: return bitc::ORDERING_ACQREL;
130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131   }
132   llvm_unreachable("Invalid ordering");
133 }
134
135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139   }
140   llvm_unreachable("Invalid synch scope");
141 }
142
143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
159   switch (Kind) {
160   case Attribute::Alignment:
161     return bitc::ATTR_KIND_ALIGNMENT;
162   case Attribute::AlwaysInline:
163     return bitc::ATTR_KIND_ALWAYS_INLINE;
164   case Attribute::Builtin:
165     return bitc::ATTR_KIND_BUILTIN;
166   case Attribute::ByVal:
167     return bitc::ATTR_KIND_BY_VAL;
168   case Attribute::InAlloca:
169     return bitc::ATTR_KIND_IN_ALLOCA;
170   case Attribute::Cold:
171     return bitc::ATTR_KIND_COLD;
172   case Attribute::InlineHint:
173     return bitc::ATTR_KIND_INLINE_HINT;
174   case Attribute::InReg:
175     return bitc::ATTR_KIND_IN_REG;
176   case Attribute::JumpTable:
177     return bitc::ATTR_KIND_JUMP_TABLE;
178   case Attribute::MinSize:
179     return bitc::ATTR_KIND_MIN_SIZE;
180   case Attribute::Naked:
181     return bitc::ATTR_KIND_NAKED;
182   case Attribute::Nest:
183     return bitc::ATTR_KIND_NEST;
184   case Attribute::NoAlias:
185     return bitc::ATTR_KIND_NO_ALIAS;
186   case Attribute::NoBuiltin:
187     return bitc::ATTR_KIND_NO_BUILTIN;
188   case Attribute::NoCapture:
189     return bitc::ATTR_KIND_NO_CAPTURE;
190   case Attribute::NoDuplicate:
191     return bitc::ATTR_KIND_NO_DUPLICATE;
192   case Attribute::NoImplicitFloat:
193     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
194   case Attribute::NoInline:
195     return bitc::ATTR_KIND_NO_INLINE;
196   case Attribute::NonLazyBind:
197     return bitc::ATTR_KIND_NON_LAZY_BIND;
198   case Attribute::NonNull:
199     return bitc::ATTR_KIND_NON_NULL;
200   case Attribute::Dereferenceable:
201     return bitc::ATTR_KIND_DEREFERENCEABLE;
202   case Attribute::NoRedZone:
203     return bitc::ATTR_KIND_NO_RED_ZONE;
204   case Attribute::NoReturn:
205     return bitc::ATTR_KIND_NO_RETURN;
206   case Attribute::NoUnwind:
207     return bitc::ATTR_KIND_NO_UNWIND;
208   case Attribute::OptimizeForSize:
209     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
210   case Attribute::OptimizeNone:
211     return bitc::ATTR_KIND_OPTIMIZE_NONE;
212   case Attribute::ReadNone:
213     return bitc::ATTR_KIND_READ_NONE;
214   case Attribute::ReadOnly:
215     return bitc::ATTR_KIND_READ_ONLY;
216   case Attribute::Returned:
217     return bitc::ATTR_KIND_RETURNED;
218   case Attribute::ReturnsTwice:
219     return bitc::ATTR_KIND_RETURNS_TWICE;
220   case Attribute::SExt:
221     return bitc::ATTR_KIND_S_EXT;
222   case Attribute::StackAlignment:
223     return bitc::ATTR_KIND_STACK_ALIGNMENT;
224   case Attribute::StackProtect:
225     return bitc::ATTR_KIND_STACK_PROTECT;
226   case Attribute::StackProtectReq:
227     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
228   case Attribute::StackProtectStrong:
229     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
230   case Attribute::StructRet:
231     return bitc::ATTR_KIND_STRUCT_RET;
232   case Attribute::SanitizeAddress:
233     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
234   case Attribute::SanitizeThread:
235     return bitc::ATTR_KIND_SANITIZE_THREAD;
236   case Attribute::SanitizeMemory:
237     return bitc::ATTR_KIND_SANITIZE_MEMORY;
238   case Attribute::UWTable:
239     return bitc::ATTR_KIND_UW_TABLE;
240   case Attribute::ZExt:
241     return bitc::ATTR_KIND_Z_EXT;
242   case Attribute::EndAttrKinds:
243     llvm_unreachable("Can not encode end-attribute kinds marker.");
244   case Attribute::None:
245     llvm_unreachable("Can not encode none-attribute.");
246   }
247
248   llvm_unreachable("Trying to encode unknown attribute");
249 }
250
251 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
252                                      BitstreamWriter &Stream) {
253   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
254   if (AttrGrps.empty()) return;
255
256   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
257
258   SmallVector<uint64_t, 64> Record;
259   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
260     AttributeSet AS = AttrGrps[i];
261     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
262       AttributeSet A = AS.getSlotAttributes(i);
263
264       Record.push_back(VE.getAttributeGroupID(A));
265       Record.push_back(AS.getSlotIndex(i));
266
267       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
268            I != E; ++I) {
269         Attribute Attr = *I;
270         if (Attr.isEnumAttribute()) {
271           Record.push_back(0);
272           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
273         } else if (Attr.isIntAttribute()) {
274           Record.push_back(1);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276           Record.push_back(Attr.getValueAsInt());
277         } else {
278           StringRef Kind = Attr.getKindAsString();
279           StringRef Val = Attr.getValueAsString();
280
281           Record.push_back(Val.empty() ? 3 : 4);
282           Record.append(Kind.begin(), Kind.end());
283           Record.push_back(0);
284           if (!Val.empty()) {
285             Record.append(Val.begin(), Val.end());
286             Record.push_back(0);
287           }
288         }
289       }
290
291       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
292       Record.clear();
293     }
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static void WriteAttributeTable(const ValueEnumerator &VE,
300                                 BitstreamWriter &Stream) {
301   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
302   if (Attrs.empty()) return;
303
304   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
305
306   SmallVector<uint64_t, 64> Record;
307   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
308     const AttributeSet &A = Attrs[i];
309     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
310       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
311
312     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
313     Record.clear();
314   }
315
316   Stream.ExitBlock();
317 }
318
319 /// WriteTypeTable - Write out the type table for a module.
320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
321   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
322
323   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
324   SmallVector<uint64_t, 64> TypeVals;
325
326   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
327
328   // Abbrev for TYPE_CODE_POINTER.
329   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
330   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
332   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
333   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
334
335   // Abbrev for TYPE_CODE_FUNCTION.
336   Abbv = new BitCodeAbbrev();
337   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341
342   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_STRUCT_ANON.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_NAME.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
358   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
359
360   // Abbrev for TYPE_CODE_STRUCT_NAMED.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366
367   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_ARRAY.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374
375   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
376
377   // Emit an entry count so the reader can reserve space.
378   TypeVals.push_back(TypeList.size());
379   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
380   TypeVals.clear();
381
382   // Loop over all of the types, emitting each in turn.
383   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
384     Type *T = TypeList[i];
385     int AbbrevToUse = 0;
386     unsigned Code = 0;
387
388     switch (T->getTypeID()) {
389     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
390     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
391     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
392     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
393     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
394     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
395     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
396     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
397     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
398     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
399     case Type::IntegerTyID:
400       // INTEGER: [width]
401       Code = bitc::TYPE_CODE_INTEGER;
402       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
403       break;
404     case Type::PointerTyID: {
405       PointerType *PTy = cast<PointerType>(T);
406       // POINTER: [pointee type, address space]
407       Code = bitc::TYPE_CODE_POINTER;
408       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
409       unsigned AddressSpace = PTy->getAddressSpace();
410       TypeVals.push_back(AddressSpace);
411       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
412       break;
413     }
414     case Type::FunctionTyID: {
415       FunctionType *FT = cast<FunctionType>(T);
416       // FUNCTION: [isvararg, retty, paramty x N]
417       Code = bitc::TYPE_CODE_FUNCTION;
418       TypeVals.push_back(FT->isVarArg());
419       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
420       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
421         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
422       AbbrevToUse = FunctionAbbrev;
423       break;
424     }
425     case Type::StructTyID: {
426       StructType *ST = cast<StructType>(T);
427       // STRUCT: [ispacked, eltty x N]
428       TypeVals.push_back(ST->isPacked());
429       // Output all of the element types.
430       for (StructType::element_iterator I = ST->element_begin(),
431            E = ST->element_end(); I != E; ++I)
432         TypeVals.push_back(VE.getTypeID(*I));
433
434       if (ST->isLiteral()) {
435         Code = bitc::TYPE_CODE_STRUCT_ANON;
436         AbbrevToUse = StructAnonAbbrev;
437       } else {
438         if (ST->isOpaque()) {
439           Code = bitc::TYPE_CODE_OPAQUE;
440         } else {
441           Code = bitc::TYPE_CODE_STRUCT_NAMED;
442           AbbrevToUse = StructNamedAbbrev;
443         }
444
445         // Emit the name if it is present.
446         if (!ST->getName().empty())
447           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
448                             StructNameAbbrev, Stream);
449       }
450       break;
451     }
452     case Type::ArrayTyID: {
453       ArrayType *AT = cast<ArrayType>(T);
454       // ARRAY: [numelts, eltty]
455       Code = bitc::TYPE_CODE_ARRAY;
456       TypeVals.push_back(AT->getNumElements());
457       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
458       AbbrevToUse = ArrayAbbrev;
459       break;
460     }
461     case Type::VectorTyID: {
462       VectorType *VT = cast<VectorType>(T);
463       // VECTOR [numelts, eltty]
464       Code = bitc::TYPE_CODE_VECTOR;
465       TypeVals.push_back(VT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
467       break;
468     }
469     }
470
471     // Emit the finished record.
472     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
473     TypeVals.clear();
474   }
475
476   Stream.ExitBlock();
477 }
478
479 static unsigned getEncodedLinkage(const GlobalValue &GV) {
480   switch (GV.getLinkage()) {
481   case GlobalValue::ExternalLinkage:
482     return 0;
483   case GlobalValue::WeakAnyLinkage:
484     return 16;
485   case GlobalValue::AppendingLinkage:
486     return 2;
487   case GlobalValue::InternalLinkage:
488     return 3;
489   case GlobalValue::LinkOnceAnyLinkage:
490     return 18;
491   case GlobalValue::ExternalWeakLinkage:
492     return 7;
493   case GlobalValue::CommonLinkage:
494     return 8;
495   case GlobalValue::PrivateLinkage:
496     return 9;
497   case GlobalValue::WeakODRLinkage:
498     return 17;
499   case GlobalValue::LinkOnceODRLinkage:
500     return 19;
501   case GlobalValue::AvailableExternallyLinkage:
502     return 12;
503   }
504   llvm_unreachable("Invalid linkage");
505 }
506
507 static unsigned getEncodedVisibility(const GlobalValue &GV) {
508   switch (GV.getVisibility()) {
509   case GlobalValue::DefaultVisibility:   return 0;
510   case GlobalValue::HiddenVisibility:    return 1;
511   case GlobalValue::ProtectedVisibility: return 2;
512   }
513   llvm_unreachable("Invalid visibility");
514 }
515
516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
517   switch (GV.getDLLStorageClass()) {
518   case GlobalValue::DefaultStorageClass:   return 0;
519   case GlobalValue::DLLImportStorageClass: return 1;
520   case GlobalValue::DLLExportStorageClass: return 2;
521   }
522   llvm_unreachable("Invalid DLL storage class");
523 }
524
525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
526   switch (GV.getThreadLocalMode()) {
527     case GlobalVariable::NotThreadLocal:         return 0;
528     case GlobalVariable::GeneralDynamicTLSModel: return 1;
529     case GlobalVariable::LocalDynamicTLSModel:   return 2;
530     case GlobalVariable::InitialExecTLSModel:    return 3;
531     case GlobalVariable::LocalExecTLSModel:      return 4;
532   }
533   llvm_unreachable("Invalid TLS model");
534 }
535
536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
537   switch (C.getSelectionKind()) {
538   case Comdat::Any:
539     return bitc::COMDAT_SELECTION_KIND_ANY;
540   case Comdat::ExactMatch:
541     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
542   case Comdat::Largest:
543     return bitc::COMDAT_SELECTION_KIND_LARGEST;
544   case Comdat::NoDuplicates:
545     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
546   case Comdat::SameSize:
547     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
548   }
549   llvm_unreachable("Invalid selection kind");
550 }
551
552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
553   SmallVector<uint16_t, 64> Vals;
554   for (const Comdat *C : VE.getComdats()) {
555     // COMDAT: [selection_kind, name]
556     Vals.push_back(getEncodedComdatSelectionKind(*C));
557     size_t Size = C->getName().size();
558     assert(isUInt<16>(Size));
559     Vals.push_back(Size);
560     for (char Chr : C->getName())
561       Vals.push_back((unsigned char)Chr);
562     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
563     Vals.clear();
564   }
565 }
566
567 // Emit top-level description of module, including target triple, inline asm,
568 // descriptors for global variables, and function prototype info.
569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
570                             BitstreamWriter &Stream) {
571   // Emit various pieces of data attached to a module.
572   if (!M->getTargetTriple().empty())
573     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
574                       0/*TODO*/, Stream);
575   const std::string &DL = M->getDataLayoutStr();
576   if (!DL.empty())
577     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
578   if (!M->getModuleInlineAsm().empty())
579     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
580                       0/*TODO*/, Stream);
581
582   // Emit information about sections and GC, computing how many there are. Also
583   // compute the maximum alignment value.
584   std::map<std::string, unsigned> SectionMap;
585   std::map<std::string, unsigned> GCMap;
586   unsigned MaxAlignment = 0;
587   unsigned MaxGlobalType = 0;
588   for (const GlobalValue &GV : M->globals()) {
589     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
590     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
591     if (GV.hasSection()) {
592       // Give section names unique ID's.
593       unsigned &Entry = SectionMap[GV.getSection()];
594       if (!Entry) {
595         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
596                           0/*TODO*/, Stream);
597         Entry = SectionMap.size();
598       }
599     }
600   }
601   for (const Function &F : *M) {
602     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
603     if (F.hasSection()) {
604       // Give section names unique ID's.
605       unsigned &Entry = SectionMap[F.getSection()];
606       if (!Entry) {
607         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
608                           0/*TODO*/, Stream);
609         Entry = SectionMap.size();
610       }
611     }
612     if (F.hasGC()) {
613       // Same for GC names.
614       unsigned &Entry = GCMap[F.getGC()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
617                           0/*TODO*/, Stream);
618         Entry = GCMap.size();
619       }
620     }
621   }
622
623   // Emit abbrev for globals, now that we know # sections and max alignment.
624   unsigned SimpleGVarAbbrev = 0;
625   if (!M->global_empty()) {
626     // Add an abbrev for common globals with no visibility or thread localness.
627     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
628     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
630                               Log2_32_Ceil(MaxGlobalType+1)));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
634     if (MaxAlignment == 0)                                      // Alignment.
635       Abbv->Add(BitCodeAbbrevOp(0));
636     else {
637       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
638       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                                Log2_32_Ceil(MaxEncAlignment+1)));
640     }
641     if (SectionMap.empty())                                    // Section.
642       Abbv->Add(BitCodeAbbrevOp(0));
643     else
644       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
645                                Log2_32_Ceil(SectionMap.size()+1)));
646     // Don't bother emitting vis + thread local.
647     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
648   }
649
650   // Emit the global variable information.
651   SmallVector<unsigned, 64> Vals;
652   for (const GlobalVariable &GV : M->globals()) {
653     unsigned AbbrevToUse = 0;
654
655     // GLOBALVAR: [type, isconst, initid,
656     //             linkage, alignment, section, visibility, threadlocal,
657     //             unnamed_addr, externally_initialized, dllstorageclass,
658     //             comdat]
659     Vals.push_back(VE.getTypeID(GV.getType()));
660     Vals.push_back(GV.isConstant());
661     Vals.push_back(GV.isDeclaration() ? 0 :
662                    (VE.getValueID(GV.getInitializer()) + 1));
663     Vals.push_back(getEncodedLinkage(GV));
664     Vals.push_back(Log2_32(GV.getAlignment())+1);
665     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
666     if (GV.isThreadLocal() ||
667         GV.getVisibility() != GlobalValue::DefaultVisibility ||
668         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
669         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
670         GV.hasComdat()) {
671       Vals.push_back(getEncodedVisibility(GV));
672       Vals.push_back(getEncodedThreadLocalMode(GV));
673       Vals.push_back(GV.hasUnnamedAddr());
674       Vals.push_back(GV.isExternallyInitialized());
675       Vals.push_back(getEncodedDLLStorageClass(GV));
676       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
677     } else {
678       AbbrevToUse = SimpleGVarAbbrev;
679     }
680
681     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
682     Vals.clear();
683   }
684
685   // Emit the function proto information.
686   for (const Function &F : *M) {
687     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
688     //             section, visibility, gc, unnamed_addr, prologuedata,
689     //             dllstorageclass, comdat, prefixdata]
690     Vals.push_back(VE.getTypeID(F.getType()));
691     Vals.push_back(F.getCallingConv());
692     Vals.push_back(F.isDeclaration());
693     Vals.push_back(getEncodedLinkage(F));
694     Vals.push_back(VE.getAttributeID(F.getAttributes()));
695     Vals.push_back(Log2_32(F.getAlignment())+1);
696     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
697     Vals.push_back(getEncodedVisibility(F));
698     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
699     Vals.push_back(F.hasUnnamedAddr());
700     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
701                                        : 0);
702     Vals.push_back(getEncodedDLLStorageClass(F));
703     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
704     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
705                                      : 0);
706
707     unsigned AbbrevToUse = 0;
708     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
709     Vals.clear();
710   }
711
712   // Emit the alias information.
713   for (const GlobalAlias &A : M->aliases()) {
714     // ALIAS: [alias type, aliasee val#, linkage, visibility]
715     Vals.push_back(VE.getTypeID(A.getType()));
716     Vals.push_back(VE.getValueID(A.getAliasee()));
717     Vals.push_back(getEncodedLinkage(A));
718     Vals.push_back(getEncodedVisibility(A));
719     Vals.push_back(getEncodedDLLStorageClass(A));
720     Vals.push_back(getEncodedThreadLocalMode(A));
721     Vals.push_back(A.hasUnnamedAddr());
722     unsigned AbbrevToUse = 0;
723     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
724     Vals.clear();
725   }
726 }
727
728 static uint64_t GetOptimizationFlags(const Value *V) {
729   uint64_t Flags = 0;
730
731   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
732     if (OBO->hasNoSignedWrap())
733       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
734     if (OBO->hasNoUnsignedWrap())
735       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
736   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
737     if (PEO->isExact())
738       Flags |= 1 << bitc::PEO_EXACT;
739   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
740     if (FPMO->hasUnsafeAlgebra())
741       Flags |= FastMathFlags::UnsafeAlgebra;
742     if (FPMO->hasNoNaNs())
743       Flags |= FastMathFlags::NoNaNs;
744     if (FPMO->hasNoInfs())
745       Flags |= FastMathFlags::NoInfs;
746     if (FPMO->hasNoSignedZeros())
747       Flags |= FastMathFlags::NoSignedZeros;
748     if (FPMO->hasAllowReciprocal())
749       Flags |= FastMathFlags::AllowReciprocal;
750   }
751
752   return Flags;
753 }
754
755 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
756                                  const ValueEnumerator &VE,
757                                  BitstreamWriter &Stream,
758                                  SmallVectorImpl<uint64_t> &Record) {
759   // Mimic an MDNode with a value as one operand.
760   Value *V = MD->getValue();
761   Record.push_back(VE.getTypeID(V->getType()));
762   Record.push_back(VE.getValueID(V));
763   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
764   Record.clear();
765 }
766
767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
768                          BitstreamWriter &Stream,
769                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
770   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
771     Metadata *MD = N->getOperand(i);
772     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
773            "Unexpected function-local metadata");
774     Record.push_back(VE.getMetadataOrNullID(MD));
775   }
776   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
777                                     : bitc::METADATA_NODE,
778                     Record, Abbrev);
779   Record.clear();
780 }
781
782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
783                             BitstreamWriter &Stream,
784                             SmallVectorImpl<uint64_t> &Record,
785                             unsigned Abbrev) {
786   Record.push_back(N->isDistinct());
787   Record.push_back(N->getLine());
788   Record.push_back(N->getColumn());
789   Record.push_back(VE.getMetadataID(N->getScope()));
790   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
791
792   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
793   Record.clear();
794 }
795
796 static void WriteGenericDebugNode(const GenericDebugNode *N,
797                                   const ValueEnumerator &VE,
798                                   BitstreamWriter &Stream,
799                                   SmallVectorImpl<uint64_t> &Record,
800                                   unsigned Abbrev) {
801   Record.push_back(N->isDistinct());
802   Record.push_back(N->getTag());
803   Record.push_back(0); // Per-tag version field; unused for now.
804
805   for (auto &I : N->operands())
806     Record.push_back(VE.getMetadataOrNullID(I));
807
808   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
809   Record.clear();
810 }
811
812 static uint64_t rotateSign(int64_t I) {
813   uint64_t U = I;
814   return I < 0 ? ~(U << 1) : U << 1;
815 }
816
817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
818                             BitstreamWriter &Stream,
819                             SmallVectorImpl<uint64_t> &Record,
820                             unsigned Abbrev) {
821   Record.push_back(N->isDistinct());
822   Record.push_back(N->getCount());
823   Record.push_back(rotateSign(N->getLo()));
824
825   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
826   Record.clear();
827 }
828
829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
830                               BitstreamWriter &Stream,
831                               SmallVectorImpl<uint64_t> &Record,
832                               unsigned Abbrev) {
833   Record.push_back(N->isDistinct());
834   Record.push_back(rotateSign(N->getValue()));
835   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
836
837   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
838   Record.clear();
839 }
840
841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
842                              BitstreamWriter &Stream,
843                              SmallVectorImpl<uint64_t> &Record,
844                              unsigned Abbrev) {
845   Record.push_back(N->isDistinct());
846   Record.push_back(N->getTag());
847   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
848   Record.push_back(N->getSizeInBits());
849   Record.push_back(N->getAlignInBits());
850   Record.push_back(N->getEncoding());
851
852   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
853   Record.clear();
854 }
855
856 static void WriteMDDerivedType(const MDDerivedType *N,
857                                const ValueEnumerator &VE,
858                                BitstreamWriter &Stream,
859                                SmallVectorImpl<uint64_t> &Record,
860                                unsigned Abbrev) {
861   Record.push_back(N->isDistinct());
862   Record.push_back(N->getTag());
863   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
864   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
865   Record.push_back(N->getLine());
866   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
867   Record.push_back(VE.getMetadataID(N->getBaseType()));
868   Record.push_back(N->getSizeInBits());
869   Record.push_back(N->getAlignInBits());
870   Record.push_back(N->getOffsetInBits());
871   Record.push_back(N->getFlags());
872   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
873
874   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
875   Record.clear();
876 }
877
878 static void WriteMDCompositeType(const MDCompositeType *N,
879                                  const ValueEnumerator &VE,
880                                  BitstreamWriter &Stream,
881                                  SmallVectorImpl<uint64_t> &Record,
882                                  unsigned Abbrev) {
883   Record.push_back(N->isDistinct());
884   Record.push_back(N->getTag());
885   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
886   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
887   Record.push_back(N->getLine());
888   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
889   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
890   Record.push_back(N->getSizeInBits());
891   Record.push_back(N->getAlignInBits());
892   Record.push_back(N->getOffsetInBits());
893   Record.push_back(N->getFlags());
894   Record.push_back(VE.getMetadataOrNullID(N->getElements()));
895   Record.push_back(N->getRuntimeLang());
896   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
897   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
898   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
899
900   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
901   Record.clear();
902 }
903
904 static void WriteMDSubroutineType(const MDSubroutineType *N,
905                                   const ValueEnumerator &VE,
906                                   BitstreamWriter &Stream,
907                                   SmallVectorImpl<uint64_t> &Record,
908                                   unsigned Abbrev) {
909   Record.push_back(N->isDistinct());
910   Record.push_back(N->getFlags());
911   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray()));
912
913   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
914   Record.clear();
915 }
916
917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
918                         BitstreamWriter &Stream,
919                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
920   Record.push_back(N->isDistinct());
921   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
922   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
923
924   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
925   Record.clear();
926 }
927
928 static void WriteMDCompileUnit(const MDCompileUnit *, const ValueEnumerator &,
929                                BitstreamWriter &, SmallVectorImpl<uint64_t> &,
930                                unsigned) {
931   llvm_unreachable("write not implemented");
932 }
933 static void WriteMDSubprogram(const MDSubprogram *, const ValueEnumerator &,
934                               BitstreamWriter &, SmallVectorImpl<uint64_t> &,
935                               unsigned) {
936   llvm_unreachable("write not implemented");
937 }
938 static void WriteMDLexicalBlock(const MDLexicalBlock *, const ValueEnumerator &,
939                                 BitstreamWriter &, SmallVectorImpl<uint64_t> &,
940                                 unsigned) {
941   llvm_unreachable("write not implemented");
942 }
943 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *,
944                                     const ValueEnumerator &, BitstreamWriter &,
945                                     SmallVectorImpl<uint64_t> &, unsigned) {
946   llvm_unreachable("write not implemented");
947 }
948 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &,
949                              BitstreamWriter &, SmallVectorImpl<uint64_t> &,
950                              unsigned) {
951   llvm_unreachable("write not implemented");
952 }
953 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *,
954                                          const ValueEnumerator &,
955                                          BitstreamWriter &,
956                                          SmallVectorImpl<uint64_t> &,
957                                          unsigned) {
958   llvm_unreachable("write not implemented");
959 }
960 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *,
961                                           const ValueEnumerator &,
962                                           BitstreamWriter &,
963                                           SmallVectorImpl<uint64_t> &,
964                                           unsigned) {
965   llvm_unreachable("write not implemented");
966 }
967 static void WriteMDGlobalVariable(const MDGlobalVariable *,
968                                   const ValueEnumerator &, BitstreamWriter &,
969                                   SmallVectorImpl<uint64_t> &, unsigned) {
970   llvm_unreachable("write not implemented");
971 }
972 static void WriteMDLocalVariable(const MDLocalVariable *,
973                                  const ValueEnumerator &, BitstreamWriter &,
974                                  SmallVectorImpl<uint64_t> &, unsigned) {
975   llvm_unreachable("write not implemented");
976 }
977 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &,
978                               BitstreamWriter &, SmallVectorImpl<uint64_t> &,
979                               unsigned) {
980   llvm_unreachable("write not implemented");
981 }
982 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &,
983                                 BitstreamWriter &, SmallVectorImpl<uint64_t> &,
984                                 unsigned) {
985   llvm_unreachable("write not implemented");
986 }
987 static void WriteMDImportedEntity(const MDImportedEntity *,
988                                   const ValueEnumerator &, BitstreamWriter &,
989                                   SmallVectorImpl<uint64_t> &, unsigned) {
990   llvm_unreachable("write not implemented");
991 }
992
993 static void WriteModuleMetadata(const Module *M,
994                                 const ValueEnumerator &VE,
995                                 BitstreamWriter &Stream) {
996   const auto &MDs = VE.getMDs();
997   if (MDs.empty() && M->named_metadata_empty())
998     return;
999
1000   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1001
1002   unsigned MDSAbbrev = 0;
1003   if (VE.hasMDString()) {
1004     // Abbrev for METADATA_STRING.
1005     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1006     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1008     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1009     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1010   }
1011
1012   // Initialize MDNode abbreviations.
1013 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1014 #include "llvm/IR/Metadata.def"
1015
1016   if (VE.hasMDLocation()) {
1017     // Abbrev for METADATA_LOCATION.
1018     //
1019     // Assume the column is usually under 128, and always output the inlined-at
1020     // location (it's never more expensive than building an array size 1).
1021     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1022     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1023     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1024     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1025     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1026     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1027     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1028     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
1029   }
1030
1031   if (VE.hasGenericDebugNode()) {
1032     // Abbrev for METADATA_GENERIC_DEBUG.
1033     //
1034     // Assume the column is usually under 128, and always output the inlined-at
1035     // location (it's never more expensive than building an array size 1).
1036     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1037     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1039     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1040     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1041     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1042     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1044     GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
1045   }
1046
1047   unsigned NameAbbrev = 0;
1048   if (!M->named_metadata_empty()) {
1049     // Abbrev for METADATA_NAME.
1050     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1051     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1052     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1054     NameAbbrev = Stream.EmitAbbrev(Abbv);
1055   }
1056
1057   SmallVector<uint64_t, 64> Record;
1058   for (const Metadata *MD : MDs) {
1059     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1060       switch (N->getMetadataID()) {
1061       default:
1062         llvm_unreachable("Invalid MDNode subclass");
1063 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1064   case Metadata::CLASS##Kind:                                                  \
1065     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1066     continue;
1067 #include "llvm/IR/Metadata.def"
1068       }
1069     }
1070     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1071       WriteValueAsMetadata(MDC, VE, Stream, Record);
1072       continue;
1073     }
1074     const MDString *MDS = cast<MDString>(MD);
1075     // Code: [strchar x N]
1076     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1077
1078     // Emit the finished record.
1079     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1080     Record.clear();
1081   }
1082
1083   // Write named metadata.
1084   for (const NamedMDNode &NMD : M->named_metadata()) {
1085     // Write name.
1086     StringRef Str = NMD.getName();
1087     Record.append(Str.bytes_begin(), Str.bytes_end());
1088     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1089     Record.clear();
1090
1091     // Write named metadata operands.
1092     for (const MDNode *N : NMD.operands())
1093       Record.push_back(VE.getMetadataID(N));
1094     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1095     Record.clear();
1096   }
1097
1098   Stream.ExitBlock();
1099 }
1100
1101 static void WriteFunctionLocalMetadata(const Function &F,
1102                                        const ValueEnumerator &VE,
1103                                        BitstreamWriter &Stream) {
1104   bool StartedMetadataBlock = false;
1105   SmallVector<uint64_t, 64> Record;
1106   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1107       VE.getFunctionLocalMDs();
1108   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1109     assert(MDs[i] && "Expected valid function-local metadata");
1110     if (!StartedMetadataBlock) {
1111       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1112       StartedMetadataBlock = true;
1113     }
1114     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1115   }
1116
1117   if (StartedMetadataBlock)
1118     Stream.ExitBlock();
1119 }
1120
1121 static void WriteMetadataAttachment(const Function &F,
1122                                     const ValueEnumerator &VE,
1123                                     BitstreamWriter &Stream) {
1124   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1125
1126   SmallVector<uint64_t, 64> Record;
1127
1128   // Write metadata attachments
1129   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1130   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1131
1132   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1133     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1134          I != E; ++I) {
1135       MDs.clear();
1136       I->getAllMetadataOtherThanDebugLoc(MDs);
1137
1138       // If no metadata, ignore instruction.
1139       if (MDs.empty()) continue;
1140
1141       Record.push_back(VE.getInstructionID(I));
1142
1143       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1144         Record.push_back(MDs[i].first);
1145         Record.push_back(VE.getMetadataID(MDs[i].second));
1146       }
1147       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1148       Record.clear();
1149     }
1150
1151   Stream.ExitBlock();
1152 }
1153
1154 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1155   SmallVector<uint64_t, 64> Record;
1156
1157   // Write metadata kinds
1158   // METADATA_KIND - [n x [id, name]]
1159   SmallVector<StringRef, 8> Names;
1160   M->getMDKindNames(Names);
1161
1162   if (Names.empty()) return;
1163
1164   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1165
1166   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1167     Record.push_back(MDKindID);
1168     StringRef KName = Names[MDKindID];
1169     Record.append(KName.begin(), KName.end());
1170
1171     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1172     Record.clear();
1173   }
1174
1175   Stream.ExitBlock();
1176 }
1177
1178 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1179   if ((int64_t)V >= 0)
1180     Vals.push_back(V << 1);
1181   else
1182     Vals.push_back((-V << 1) | 1);
1183 }
1184
1185 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1186                            const ValueEnumerator &VE,
1187                            BitstreamWriter &Stream, bool isGlobal) {
1188   if (FirstVal == LastVal) return;
1189
1190   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1191
1192   unsigned AggregateAbbrev = 0;
1193   unsigned String8Abbrev = 0;
1194   unsigned CString7Abbrev = 0;
1195   unsigned CString6Abbrev = 0;
1196   // If this is a constant pool for the module, emit module-specific abbrevs.
1197   if (isGlobal) {
1198     // Abbrev for CST_CODE_AGGREGATE.
1199     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1200     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1203     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1204
1205     // Abbrev for CST_CODE_STRING.
1206     Abbv = new BitCodeAbbrev();
1207     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1208     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1210     String8Abbrev = Stream.EmitAbbrev(Abbv);
1211     // Abbrev for CST_CODE_CSTRING.
1212     Abbv = new BitCodeAbbrev();
1213     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1216     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1217     // Abbrev for CST_CODE_CSTRING.
1218     Abbv = new BitCodeAbbrev();
1219     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1222     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1223   }
1224
1225   SmallVector<uint64_t, 64> Record;
1226
1227   const ValueEnumerator::ValueList &Vals = VE.getValues();
1228   Type *LastTy = nullptr;
1229   for (unsigned i = FirstVal; i != LastVal; ++i) {
1230     const Value *V = Vals[i].first;
1231     // If we need to switch types, do so now.
1232     if (V->getType() != LastTy) {
1233       LastTy = V->getType();
1234       Record.push_back(VE.getTypeID(LastTy));
1235       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1236                         CONSTANTS_SETTYPE_ABBREV);
1237       Record.clear();
1238     }
1239
1240     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1241       Record.push_back(unsigned(IA->hasSideEffects()) |
1242                        unsigned(IA->isAlignStack()) << 1 |
1243                        unsigned(IA->getDialect()&1) << 2);
1244
1245       // Add the asm string.
1246       const std::string &AsmStr = IA->getAsmString();
1247       Record.push_back(AsmStr.size());
1248       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1249         Record.push_back(AsmStr[i]);
1250
1251       // Add the constraint string.
1252       const std::string &ConstraintStr = IA->getConstraintString();
1253       Record.push_back(ConstraintStr.size());
1254       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1255         Record.push_back(ConstraintStr[i]);
1256       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1257       Record.clear();
1258       continue;
1259     }
1260     const Constant *C = cast<Constant>(V);
1261     unsigned Code = -1U;
1262     unsigned AbbrevToUse = 0;
1263     if (C->isNullValue()) {
1264       Code = bitc::CST_CODE_NULL;
1265     } else if (isa<UndefValue>(C)) {
1266       Code = bitc::CST_CODE_UNDEF;
1267     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1268       if (IV->getBitWidth() <= 64) {
1269         uint64_t V = IV->getSExtValue();
1270         emitSignedInt64(Record, V);
1271         Code = bitc::CST_CODE_INTEGER;
1272         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1273       } else {                             // Wide integers, > 64 bits in size.
1274         // We have an arbitrary precision integer value to write whose
1275         // bit width is > 64. However, in canonical unsigned integer
1276         // format it is likely that the high bits are going to be zero.
1277         // So, we only write the number of active words.
1278         unsigned NWords = IV->getValue().getActiveWords();
1279         const uint64_t *RawWords = IV->getValue().getRawData();
1280         for (unsigned i = 0; i != NWords; ++i) {
1281           emitSignedInt64(Record, RawWords[i]);
1282         }
1283         Code = bitc::CST_CODE_WIDE_INTEGER;
1284       }
1285     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1286       Code = bitc::CST_CODE_FLOAT;
1287       Type *Ty = CFP->getType();
1288       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1289         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1290       } else if (Ty->isX86_FP80Ty()) {
1291         // api needed to prevent premature destruction
1292         // bits are not in the same order as a normal i80 APInt, compensate.
1293         APInt api = CFP->getValueAPF().bitcastToAPInt();
1294         const uint64_t *p = api.getRawData();
1295         Record.push_back((p[1] << 48) | (p[0] >> 16));
1296         Record.push_back(p[0] & 0xffffLL);
1297       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1298         APInt api = CFP->getValueAPF().bitcastToAPInt();
1299         const uint64_t *p = api.getRawData();
1300         Record.push_back(p[0]);
1301         Record.push_back(p[1]);
1302       } else {
1303         assert (0 && "Unknown FP type!");
1304       }
1305     } else if (isa<ConstantDataSequential>(C) &&
1306                cast<ConstantDataSequential>(C)->isString()) {
1307       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1308       // Emit constant strings specially.
1309       unsigned NumElts = Str->getNumElements();
1310       // If this is a null-terminated string, use the denser CSTRING encoding.
1311       if (Str->isCString()) {
1312         Code = bitc::CST_CODE_CSTRING;
1313         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1314       } else {
1315         Code = bitc::CST_CODE_STRING;
1316         AbbrevToUse = String8Abbrev;
1317       }
1318       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1319       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1320       for (unsigned i = 0; i != NumElts; ++i) {
1321         unsigned char V = Str->getElementAsInteger(i);
1322         Record.push_back(V);
1323         isCStr7 &= (V & 128) == 0;
1324         if (isCStrChar6)
1325           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1326       }
1327
1328       if (isCStrChar6)
1329         AbbrevToUse = CString6Abbrev;
1330       else if (isCStr7)
1331         AbbrevToUse = CString7Abbrev;
1332     } else if (const ConstantDataSequential *CDS =
1333                   dyn_cast<ConstantDataSequential>(C)) {
1334       Code = bitc::CST_CODE_DATA;
1335       Type *EltTy = CDS->getType()->getElementType();
1336       if (isa<IntegerType>(EltTy)) {
1337         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1338           Record.push_back(CDS->getElementAsInteger(i));
1339       } else if (EltTy->isFloatTy()) {
1340         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1341           union { float F; uint32_t I; };
1342           F = CDS->getElementAsFloat(i);
1343           Record.push_back(I);
1344         }
1345       } else {
1346         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1347         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1348           union { double F; uint64_t I; };
1349           F = CDS->getElementAsDouble(i);
1350           Record.push_back(I);
1351         }
1352       }
1353     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1354                isa<ConstantVector>(C)) {
1355       Code = bitc::CST_CODE_AGGREGATE;
1356       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1357         Record.push_back(VE.getValueID(C->getOperand(i)));
1358       AbbrevToUse = AggregateAbbrev;
1359     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1360       switch (CE->getOpcode()) {
1361       default:
1362         if (Instruction::isCast(CE->getOpcode())) {
1363           Code = bitc::CST_CODE_CE_CAST;
1364           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1365           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1366           Record.push_back(VE.getValueID(C->getOperand(0)));
1367           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1368         } else {
1369           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1370           Code = bitc::CST_CODE_CE_BINOP;
1371           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1372           Record.push_back(VE.getValueID(C->getOperand(0)));
1373           Record.push_back(VE.getValueID(C->getOperand(1)));
1374           uint64_t Flags = GetOptimizationFlags(CE);
1375           if (Flags != 0)
1376             Record.push_back(Flags);
1377         }
1378         break;
1379       case Instruction::GetElementPtr:
1380         Code = bitc::CST_CODE_CE_GEP;
1381         if (cast<GEPOperator>(C)->isInBounds())
1382           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1383         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1384           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1385           Record.push_back(VE.getValueID(C->getOperand(i)));
1386         }
1387         break;
1388       case Instruction::Select:
1389         Code = bitc::CST_CODE_CE_SELECT;
1390         Record.push_back(VE.getValueID(C->getOperand(0)));
1391         Record.push_back(VE.getValueID(C->getOperand(1)));
1392         Record.push_back(VE.getValueID(C->getOperand(2)));
1393         break;
1394       case Instruction::ExtractElement:
1395         Code = bitc::CST_CODE_CE_EXTRACTELT;
1396         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1397         Record.push_back(VE.getValueID(C->getOperand(0)));
1398         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1399         Record.push_back(VE.getValueID(C->getOperand(1)));
1400         break;
1401       case Instruction::InsertElement:
1402         Code = bitc::CST_CODE_CE_INSERTELT;
1403         Record.push_back(VE.getValueID(C->getOperand(0)));
1404         Record.push_back(VE.getValueID(C->getOperand(1)));
1405         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1406         Record.push_back(VE.getValueID(C->getOperand(2)));
1407         break;
1408       case Instruction::ShuffleVector:
1409         // If the return type and argument types are the same, this is a
1410         // standard shufflevector instruction.  If the types are different,
1411         // then the shuffle is widening or truncating the input vectors, and
1412         // the argument type must also be encoded.
1413         if (C->getType() == C->getOperand(0)->getType()) {
1414           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1415         } else {
1416           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1417           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1418         }
1419         Record.push_back(VE.getValueID(C->getOperand(0)));
1420         Record.push_back(VE.getValueID(C->getOperand(1)));
1421         Record.push_back(VE.getValueID(C->getOperand(2)));
1422         break;
1423       case Instruction::ICmp:
1424       case Instruction::FCmp:
1425         Code = bitc::CST_CODE_CE_CMP;
1426         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1427         Record.push_back(VE.getValueID(C->getOperand(0)));
1428         Record.push_back(VE.getValueID(C->getOperand(1)));
1429         Record.push_back(CE->getPredicate());
1430         break;
1431       }
1432     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1433       Code = bitc::CST_CODE_BLOCKADDRESS;
1434       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1435       Record.push_back(VE.getValueID(BA->getFunction()));
1436       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1437     } else {
1438 #ifndef NDEBUG
1439       C->dump();
1440 #endif
1441       llvm_unreachable("Unknown constant!");
1442     }
1443     Stream.EmitRecord(Code, Record, AbbrevToUse);
1444     Record.clear();
1445   }
1446
1447   Stream.ExitBlock();
1448 }
1449
1450 static void WriteModuleConstants(const ValueEnumerator &VE,
1451                                  BitstreamWriter &Stream) {
1452   const ValueEnumerator::ValueList &Vals = VE.getValues();
1453
1454   // Find the first constant to emit, which is the first non-globalvalue value.
1455   // We know globalvalues have been emitted by WriteModuleInfo.
1456   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1457     if (!isa<GlobalValue>(Vals[i].first)) {
1458       WriteConstants(i, Vals.size(), VE, Stream, true);
1459       return;
1460     }
1461   }
1462 }
1463
1464 /// PushValueAndType - The file has to encode both the value and type id for
1465 /// many values, because we need to know what type to create for forward
1466 /// references.  However, most operands are not forward references, so this type
1467 /// field is not needed.
1468 ///
1469 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1470 /// instruction ID, then it is a forward reference, and it also includes the
1471 /// type ID.  The value ID that is written is encoded relative to the InstID.
1472 static bool PushValueAndType(const Value *V, unsigned InstID,
1473                              SmallVectorImpl<unsigned> &Vals,
1474                              ValueEnumerator &VE) {
1475   unsigned ValID = VE.getValueID(V);
1476   // Make encoding relative to the InstID.
1477   Vals.push_back(InstID - ValID);
1478   if (ValID >= InstID) {
1479     Vals.push_back(VE.getTypeID(V->getType()));
1480     return true;
1481   }
1482   return false;
1483 }
1484
1485 /// pushValue - Like PushValueAndType, but where the type of the value is
1486 /// omitted (perhaps it was already encoded in an earlier operand).
1487 static void pushValue(const Value *V, unsigned InstID,
1488                       SmallVectorImpl<unsigned> &Vals,
1489                       ValueEnumerator &VE) {
1490   unsigned ValID = VE.getValueID(V);
1491   Vals.push_back(InstID - ValID);
1492 }
1493
1494 static void pushValueSigned(const Value *V, unsigned InstID,
1495                             SmallVectorImpl<uint64_t> &Vals,
1496                             ValueEnumerator &VE) {
1497   unsigned ValID = VE.getValueID(V);
1498   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1499   emitSignedInt64(Vals, diff);
1500 }
1501
1502 /// WriteInstruction - Emit an instruction to the specified stream.
1503 static void WriteInstruction(const Instruction &I, unsigned InstID,
1504                              ValueEnumerator &VE, BitstreamWriter &Stream,
1505                              SmallVectorImpl<unsigned> &Vals) {
1506   unsigned Code = 0;
1507   unsigned AbbrevToUse = 0;
1508   VE.setInstructionID(&I);
1509   switch (I.getOpcode()) {
1510   default:
1511     if (Instruction::isCast(I.getOpcode())) {
1512       Code = bitc::FUNC_CODE_INST_CAST;
1513       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1514         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1515       Vals.push_back(VE.getTypeID(I.getType()));
1516       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1517     } else {
1518       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1519       Code = bitc::FUNC_CODE_INST_BINOP;
1520       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1521         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1522       pushValue(I.getOperand(1), InstID, Vals, VE);
1523       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1524       uint64_t Flags = GetOptimizationFlags(&I);
1525       if (Flags != 0) {
1526         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1527           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1528         Vals.push_back(Flags);
1529       }
1530     }
1531     break;
1532
1533   case Instruction::GetElementPtr:
1534     Code = bitc::FUNC_CODE_INST_GEP;
1535     if (cast<GEPOperator>(&I)->isInBounds())
1536       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1537     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1538       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1539     break;
1540   case Instruction::ExtractValue: {
1541     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1542     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1543     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1544     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1545       Vals.push_back(*i);
1546     break;
1547   }
1548   case Instruction::InsertValue: {
1549     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1550     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1551     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1552     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1553     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1554       Vals.push_back(*i);
1555     break;
1556   }
1557   case Instruction::Select:
1558     Code = bitc::FUNC_CODE_INST_VSELECT;
1559     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1560     pushValue(I.getOperand(2), InstID, Vals, VE);
1561     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1562     break;
1563   case Instruction::ExtractElement:
1564     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1565     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1566     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1567     break;
1568   case Instruction::InsertElement:
1569     Code = bitc::FUNC_CODE_INST_INSERTELT;
1570     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1571     pushValue(I.getOperand(1), InstID, Vals, VE);
1572     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1573     break;
1574   case Instruction::ShuffleVector:
1575     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1576     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1577     pushValue(I.getOperand(1), InstID, Vals, VE);
1578     pushValue(I.getOperand(2), InstID, Vals, VE);
1579     break;
1580   case Instruction::ICmp:
1581   case Instruction::FCmp:
1582     // compare returning Int1Ty or vector of Int1Ty
1583     Code = bitc::FUNC_CODE_INST_CMP2;
1584     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1585     pushValue(I.getOperand(1), InstID, Vals, VE);
1586     Vals.push_back(cast<CmpInst>(I).getPredicate());
1587     break;
1588
1589   case Instruction::Ret:
1590     {
1591       Code = bitc::FUNC_CODE_INST_RET;
1592       unsigned NumOperands = I.getNumOperands();
1593       if (NumOperands == 0)
1594         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1595       else if (NumOperands == 1) {
1596         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1597           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1598       } else {
1599         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1600           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1601       }
1602     }
1603     break;
1604   case Instruction::Br:
1605     {
1606       Code = bitc::FUNC_CODE_INST_BR;
1607       const BranchInst &II = cast<BranchInst>(I);
1608       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1609       if (II.isConditional()) {
1610         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1611         pushValue(II.getCondition(), InstID, Vals, VE);
1612       }
1613     }
1614     break;
1615   case Instruction::Switch:
1616     {
1617       Code = bitc::FUNC_CODE_INST_SWITCH;
1618       const SwitchInst &SI = cast<SwitchInst>(I);
1619       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1620       pushValue(SI.getCondition(), InstID, Vals, VE);
1621       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1622       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1623            i != e; ++i) {
1624         Vals.push_back(VE.getValueID(i.getCaseValue()));
1625         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1626       }
1627     }
1628     break;
1629   case Instruction::IndirectBr:
1630     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1631     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1632     // Encode the address operand as relative, but not the basic blocks.
1633     pushValue(I.getOperand(0), InstID, Vals, VE);
1634     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1635       Vals.push_back(VE.getValueID(I.getOperand(i)));
1636     break;
1637
1638   case Instruction::Invoke: {
1639     const InvokeInst *II = cast<InvokeInst>(&I);
1640     const Value *Callee(II->getCalledValue());
1641     PointerType *PTy = cast<PointerType>(Callee->getType());
1642     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1643     Code = bitc::FUNC_CODE_INST_INVOKE;
1644
1645     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1646     Vals.push_back(II->getCallingConv());
1647     Vals.push_back(VE.getValueID(II->getNormalDest()));
1648     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1649     PushValueAndType(Callee, InstID, Vals, VE);
1650
1651     // Emit value #'s for the fixed parameters.
1652     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1653       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1654
1655     // Emit type/value pairs for varargs params.
1656     if (FTy->isVarArg()) {
1657       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1658            i != e; ++i)
1659         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1660     }
1661     break;
1662   }
1663   case Instruction::Resume:
1664     Code = bitc::FUNC_CODE_INST_RESUME;
1665     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1666     break;
1667   case Instruction::Unreachable:
1668     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1669     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1670     break;
1671
1672   case Instruction::PHI: {
1673     const PHINode &PN = cast<PHINode>(I);
1674     Code = bitc::FUNC_CODE_INST_PHI;
1675     // With the newer instruction encoding, forward references could give
1676     // negative valued IDs.  This is most common for PHIs, so we use
1677     // signed VBRs.
1678     SmallVector<uint64_t, 128> Vals64;
1679     Vals64.push_back(VE.getTypeID(PN.getType()));
1680     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1681       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1682       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1683     }
1684     // Emit a Vals64 vector and exit.
1685     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1686     Vals64.clear();
1687     return;
1688   }
1689
1690   case Instruction::LandingPad: {
1691     const LandingPadInst &LP = cast<LandingPadInst>(I);
1692     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1693     Vals.push_back(VE.getTypeID(LP.getType()));
1694     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1695     Vals.push_back(LP.isCleanup());
1696     Vals.push_back(LP.getNumClauses());
1697     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1698       if (LP.isCatch(I))
1699         Vals.push_back(LandingPadInst::Catch);
1700       else
1701         Vals.push_back(LandingPadInst::Filter);
1702       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1703     }
1704     break;
1705   }
1706
1707   case Instruction::Alloca: {
1708     Code = bitc::FUNC_CODE_INST_ALLOCA;
1709     Vals.push_back(VE.getTypeID(I.getType()));
1710     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1711     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1712     const AllocaInst &AI = cast<AllocaInst>(I);
1713     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1714     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1715            "not enough bits for maximum alignment");
1716     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1717     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1718     Vals.push_back(AlignRecord);
1719     break;
1720   }
1721
1722   case Instruction::Load:
1723     if (cast<LoadInst>(I).isAtomic()) {
1724       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1725       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1726     } else {
1727       Code = bitc::FUNC_CODE_INST_LOAD;
1728       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1729         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1730     }
1731     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1732     Vals.push_back(cast<LoadInst>(I).isVolatile());
1733     if (cast<LoadInst>(I).isAtomic()) {
1734       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1735       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1736     }
1737     break;
1738   case Instruction::Store:
1739     if (cast<StoreInst>(I).isAtomic())
1740       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1741     else
1742       Code = bitc::FUNC_CODE_INST_STORE;
1743     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1744     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1745     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1746     Vals.push_back(cast<StoreInst>(I).isVolatile());
1747     if (cast<StoreInst>(I).isAtomic()) {
1748       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1749       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1750     }
1751     break;
1752   case Instruction::AtomicCmpXchg:
1753     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1754     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1755     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1756     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1757     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1758     Vals.push_back(GetEncodedOrdering(
1759                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1760     Vals.push_back(GetEncodedSynchScope(
1761                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1762     Vals.push_back(GetEncodedOrdering(
1763                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1764     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1765     break;
1766   case Instruction::AtomicRMW:
1767     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1768     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1769     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1770     Vals.push_back(GetEncodedRMWOperation(
1771                      cast<AtomicRMWInst>(I).getOperation()));
1772     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1773     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1774     Vals.push_back(GetEncodedSynchScope(
1775                      cast<AtomicRMWInst>(I).getSynchScope()));
1776     break;
1777   case Instruction::Fence:
1778     Code = bitc::FUNC_CODE_INST_FENCE;
1779     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1780     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1781     break;
1782   case Instruction::Call: {
1783     const CallInst &CI = cast<CallInst>(I);
1784     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1785     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1786
1787     Code = bitc::FUNC_CODE_INST_CALL;
1788
1789     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1790     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1791                    unsigned(CI.isMustTailCall()) << 14);
1792     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1793
1794     // Emit value #'s for the fixed parameters.
1795     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1796       // Check for labels (can happen with asm labels).
1797       if (FTy->getParamType(i)->isLabelTy())
1798         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1799       else
1800         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1801     }
1802
1803     // Emit type/value pairs for varargs params.
1804     if (FTy->isVarArg()) {
1805       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1806            i != e; ++i)
1807         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1808     }
1809     break;
1810   }
1811   case Instruction::VAArg:
1812     Code = bitc::FUNC_CODE_INST_VAARG;
1813     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1814     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1815     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1816     break;
1817   }
1818
1819   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1820   Vals.clear();
1821 }
1822
1823 // Emit names for globals/functions etc.
1824 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1825                                   const ValueEnumerator &VE,
1826                                   BitstreamWriter &Stream) {
1827   if (VST.empty()) return;
1828   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1829
1830   // FIXME: Set up the abbrev, we know how many values there are!
1831   // FIXME: We know if the type names can use 7-bit ascii.
1832   SmallVector<unsigned, 64> NameVals;
1833
1834   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1835        SI != SE; ++SI) {
1836
1837     const ValueName &Name = *SI;
1838
1839     // Figure out the encoding to use for the name.
1840     bool is7Bit = true;
1841     bool isChar6 = true;
1842     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1843          C != E; ++C) {
1844       if (isChar6)
1845         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1846       if ((unsigned char)*C & 128) {
1847         is7Bit = false;
1848         break;  // don't bother scanning the rest.
1849       }
1850     }
1851
1852     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1853
1854     // VST_ENTRY:   [valueid, namechar x N]
1855     // VST_BBENTRY: [bbid, namechar x N]
1856     unsigned Code;
1857     if (isa<BasicBlock>(SI->getValue())) {
1858       Code = bitc::VST_CODE_BBENTRY;
1859       if (isChar6)
1860         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1861     } else {
1862       Code = bitc::VST_CODE_ENTRY;
1863       if (isChar6)
1864         AbbrevToUse = VST_ENTRY_6_ABBREV;
1865       else if (is7Bit)
1866         AbbrevToUse = VST_ENTRY_7_ABBREV;
1867     }
1868
1869     NameVals.push_back(VE.getValueID(SI->getValue()));
1870     for (const char *P = Name.getKeyData(),
1871          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1872       NameVals.push_back((unsigned char)*P);
1873
1874     // Emit the finished record.
1875     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1876     NameVals.clear();
1877   }
1878   Stream.ExitBlock();
1879 }
1880
1881 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1882                          BitstreamWriter &Stream) {
1883   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1884   unsigned Code;
1885   if (isa<BasicBlock>(Order.V))
1886     Code = bitc::USELIST_CODE_BB;
1887   else
1888     Code = bitc::USELIST_CODE_DEFAULT;
1889
1890   SmallVector<uint64_t, 64> Record;
1891   for (unsigned I : Order.Shuffle)
1892     Record.push_back(I);
1893   Record.push_back(VE.getValueID(Order.V));
1894   Stream.EmitRecord(Code, Record);
1895 }
1896
1897 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1898                               BitstreamWriter &Stream) {
1899   auto hasMore = [&]() {
1900     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1901   };
1902   if (!hasMore())
1903     // Nothing to do.
1904     return;
1905
1906   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1907   while (hasMore()) {
1908     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1909     VE.UseListOrders.pop_back();
1910   }
1911   Stream.ExitBlock();
1912 }
1913
1914 /// WriteFunction - Emit a function body to the module stream.
1915 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1916                           BitstreamWriter &Stream) {
1917   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1918   VE.incorporateFunction(F);
1919
1920   SmallVector<unsigned, 64> Vals;
1921
1922   // Emit the number of basic blocks, so the reader can create them ahead of
1923   // time.
1924   Vals.push_back(VE.getBasicBlocks().size());
1925   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1926   Vals.clear();
1927
1928   // If there are function-local constants, emit them now.
1929   unsigned CstStart, CstEnd;
1930   VE.getFunctionConstantRange(CstStart, CstEnd);
1931   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1932
1933   // If there is function-local metadata, emit it now.
1934   WriteFunctionLocalMetadata(F, VE, Stream);
1935
1936   // Keep a running idea of what the instruction ID is.
1937   unsigned InstID = CstEnd;
1938
1939   bool NeedsMetadataAttachment = false;
1940
1941   DebugLoc LastDL;
1942
1943   // Finally, emit all the instructions, in order.
1944   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1945     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1946          I != E; ++I) {
1947       WriteInstruction(*I, InstID, VE, Stream, Vals);
1948
1949       if (!I->getType()->isVoidTy())
1950         ++InstID;
1951
1952       // If the instruction has metadata, write a metadata attachment later.
1953       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1954
1955       // If the instruction has a debug location, emit it.
1956       DebugLoc DL = I->getDebugLoc();
1957       if (DL.isUnknown()) {
1958         // nothing todo.
1959       } else if (DL == LastDL) {
1960         // Just repeat the same debug loc as last time.
1961         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1962       } else {
1963         MDNode *Scope, *IA;
1964         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1965         assert(Scope && "Expected valid scope");
1966
1967         Vals.push_back(DL.getLine());
1968         Vals.push_back(DL.getCol());
1969         Vals.push_back(VE.getMetadataOrNullID(Scope));
1970         Vals.push_back(VE.getMetadataOrNullID(IA));
1971         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1972         Vals.clear();
1973
1974         LastDL = DL;
1975       }
1976     }
1977
1978   // Emit names for all the instructions etc.
1979   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1980
1981   if (NeedsMetadataAttachment)
1982     WriteMetadataAttachment(F, VE, Stream);
1983   if (shouldPreserveBitcodeUseListOrder())
1984     WriteUseListBlock(&F, VE, Stream);
1985   VE.purgeFunction();
1986   Stream.ExitBlock();
1987 }
1988
1989 // Emit blockinfo, which defines the standard abbreviations etc.
1990 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1991   // We only want to emit block info records for blocks that have multiple
1992   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1993   // Other blocks can define their abbrevs inline.
1994   Stream.EnterBlockInfoBlock(2);
1995
1996   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1997     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1998     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2000     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2001     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2002     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2003                                    Abbv) != VST_ENTRY_8_ABBREV)
2004       llvm_unreachable("Unexpected abbrev ordering!");
2005   }
2006
2007   { // 7-bit fixed width VST_ENTRY strings.
2008     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2009     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2010     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2011     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2012     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2013     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2014                                    Abbv) != VST_ENTRY_7_ABBREV)
2015       llvm_unreachable("Unexpected abbrev ordering!");
2016   }
2017   { // 6-bit char6 VST_ENTRY strings.
2018     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2019     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2022     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2023     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2024                                    Abbv) != VST_ENTRY_6_ABBREV)
2025       llvm_unreachable("Unexpected abbrev ordering!");
2026   }
2027   { // 6-bit char6 VST_BBENTRY strings.
2028     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2029     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2030     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2031     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2033     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2034                                    Abbv) != VST_BBENTRY_6_ABBREV)
2035       llvm_unreachable("Unexpected abbrev ordering!");
2036   }
2037
2038
2039
2040   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2041     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2042     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2044                               Log2_32_Ceil(VE.getTypes().size()+1)));
2045     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2046                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2047       llvm_unreachable("Unexpected abbrev ordering!");
2048   }
2049
2050   { // INTEGER abbrev for CONSTANTS_BLOCK.
2051     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2052     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2054     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2055                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2056       llvm_unreachable("Unexpected abbrev ordering!");
2057   }
2058
2059   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2060     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2061     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2062     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2063     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2064                               Log2_32_Ceil(VE.getTypes().size()+1)));
2065     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2066
2067     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2068                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2069       llvm_unreachable("Unexpected abbrev ordering!");
2070   }
2071   { // NULL abbrev for CONSTANTS_BLOCK.
2072     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2073     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2074     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2075                                    Abbv) != CONSTANTS_NULL_Abbrev)
2076       llvm_unreachable("Unexpected abbrev ordering!");
2077   }
2078
2079   // FIXME: This should only use space for first class types!
2080
2081   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2082     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2083     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2084     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2085     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2086     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2087     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2088                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2089       llvm_unreachable("Unexpected abbrev ordering!");
2090   }
2091   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2092     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2093     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2094     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2095     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2096     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2097     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2098                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2099       llvm_unreachable("Unexpected abbrev ordering!");
2100   }
2101   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2102     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2103     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2104     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2105     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2106     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2107     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2108     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2109                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2110       llvm_unreachable("Unexpected abbrev ordering!");
2111   }
2112   { // INST_CAST abbrev for FUNCTION_BLOCK.
2113     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2114     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2115     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2116     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2117                               Log2_32_Ceil(VE.getTypes().size()+1)));
2118     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2119     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2120                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2121       llvm_unreachable("Unexpected abbrev ordering!");
2122   }
2123
2124   { // INST_RET abbrev for FUNCTION_BLOCK.
2125     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2126     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2127     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2128                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2129       llvm_unreachable("Unexpected abbrev ordering!");
2130   }
2131   { // INST_RET abbrev for FUNCTION_BLOCK.
2132     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2133     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2135     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2136                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2137       llvm_unreachable("Unexpected abbrev ordering!");
2138   }
2139   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2140     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2141     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2142     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2143                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2144       llvm_unreachable("Unexpected abbrev ordering!");
2145   }
2146
2147   Stream.ExitBlock();
2148 }
2149
2150 /// WriteModule - Emit the specified module to the bitstream.
2151 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
2152   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2153
2154   SmallVector<unsigned, 1> Vals;
2155   unsigned CurVersion = 1;
2156   Vals.push_back(CurVersion);
2157   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2158
2159   // Analyze the module, enumerating globals, functions, etc.
2160   ValueEnumerator VE(*M);
2161
2162   // Emit blockinfo, which defines the standard abbreviations etc.
2163   WriteBlockInfo(VE, Stream);
2164
2165   // Emit information about attribute groups.
2166   WriteAttributeGroupTable(VE, Stream);
2167
2168   // Emit information about parameter attributes.
2169   WriteAttributeTable(VE, Stream);
2170
2171   // Emit information describing all of the types in the module.
2172   WriteTypeTable(VE, Stream);
2173
2174   writeComdats(VE, Stream);
2175
2176   // Emit top-level description of module, including target triple, inline asm,
2177   // descriptors for global variables, and function prototype info.
2178   WriteModuleInfo(M, VE, Stream);
2179
2180   // Emit constants.
2181   WriteModuleConstants(VE, Stream);
2182
2183   // Emit metadata.
2184   WriteModuleMetadata(M, VE, Stream);
2185
2186   // Emit metadata.
2187   WriteModuleMetadataStore(M, Stream);
2188
2189   // Emit names for globals/functions etc.
2190   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2191
2192   // Emit module-level use-lists.
2193   if (shouldPreserveBitcodeUseListOrder())
2194     WriteUseListBlock(nullptr, VE, Stream);
2195
2196   // Emit function bodies.
2197   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2198     if (!F->isDeclaration())
2199       WriteFunction(*F, VE, Stream);
2200
2201   Stream.ExitBlock();
2202 }
2203
2204 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2205 /// header and trailer to make it compatible with the system archiver.  To do
2206 /// this we emit the following header, and then emit a trailer that pads the
2207 /// file out to be a multiple of 16 bytes.
2208 ///
2209 /// struct bc_header {
2210 ///   uint32_t Magic;         // 0x0B17C0DE
2211 ///   uint32_t Version;       // Version, currently always 0.
2212 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2213 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2214 ///   uint32_t CPUType;       // CPU specifier.
2215 ///   ... potentially more later ...
2216 /// };
2217 enum {
2218   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2219   DarwinBCHeaderSize = 5*4
2220 };
2221
2222 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2223                                uint32_t &Position) {
2224   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2225   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2226   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2227   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2228   Position += 4;
2229 }
2230
2231 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2232                                          const Triple &TT) {
2233   unsigned CPUType = ~0U;
2234
2235   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2236   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2237   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2238   // specific constants here because they are implicitly part of the Darwin ABI.
2239   enum {
2240     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2241     DARWIN_CPU_TYPE_X86        = 7,
2242     DARWIN_CPU_TYPE_ARM        = 12,
2243     DARWIN_CPU_TYPE_POWERPC    = 18
2244   };
2245
2246   Triple::ArchType Arch = TT.getArch();
2247   if (Arch == Triple::x86_64)
2248     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2249   else if (Arch == Triple::x86)
2250     CPUType = DARWIN_CPU_TYPE_X86;
2251   else if (Arch == Triple::ppc)
2252     CPUType = DARWIN_CPU_TYPE_POWERPC;
2253   else if (Arch == Triple::ppc64)
2254     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2255   else if (Arch == Triple::arm || Arch == Triple::thumb)
2256     CPUType = DARWIN_CPU_TYPE_ARM;
2257
2258   // Traditional Bitcode starts after header.
2259   assert(Buffer.size() >= DarwinBCHeaderSize &&
2260          "Expected header size to be reserved");
2261   unsigned BCOffset = DarwinBCHeaderSize;
2262   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2263
2264   // Write the magic and version.
2265   unsigned Position = 0;
2266   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2267   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2268   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2269   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2270   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2271
2272   // If the file is not a multiple of 16 bytes, insert dummy padding.
2273   while (Buffer.size() & 15)
2274     Buffer.push_back(0);
2275 }
2276
2277 /// WriteBitcodeToFile - Write the specified module to the specified output
2278 /// stream.
2279 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2280   SmallVector<char, 0> Buffer;
2281   Buffer.reserve(256*1024);
2282
2283   // If this is darwin or another generic macho target, reserve space for the
2284   // header.
2285   Triple TT(M->getTargetTriple());
2286   if (TT.isOSDarwin())
2287     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2288
2289   // Emit the module into the buffer.
2290   {
2291     BitstreamWriter Stream(Buffer);
2292
2293     // Emit the file header.
2294     Stream.Emit((unsigned)'B', 8);
2295     Stream.Emit((unsigned)'C', 8);
2296     Stream.Emit(0x0, 4);
2297     Stream.Emit(0xC, 4);
2298     Stream.Emit(0xE, 4);
2299     Stream.Emit(0xD, 4);
2300
2301     // Emit the module.
2302     WriteModule(M, Stream);
2303   }
2304
2305   if (TT.isOSDarwin())
2306     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2307
2308   // Write the generated bitstream to "Out".
2309   Out.write((char*)&Buffer.front(), Buffer.size());
2310 }