1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/FunctionInfo.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
45 class BitcodeReaderValueList {
46 std::vector<WeakVH> ValuePtrs;
48 /// As we resolve forward-referenced constants, we add information about them
49 /// to this vector. This allows us to resolve them in bulk instead of
50 /// resolving each reference at a time. See the code in
51 /// ResolveConstantForwardRefs for more information about this.
53 /// The key of this vector is the placeholder constant, the value is the slot
54 /// number that holds the resolved value.
55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
56 ResolveConstantsTy ResolveConstants;
59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
60 ~BitcodeReaderValueList() {
61 assert(ResolveConstants.empty() && "Constants not resolved?");
64 // vector compatibility methods
65 unsigned size() const { return ValuePtrs.size(); }
66 void resize(unsigned N) { ValuePtrs.resize(N); }
67 void push_back(Value *V) { ValuePtrs.emplace_back(V); }
70 assert(ResolveConstants.empty() && "Constants not resolved?");
74 Value *operator[](unsigned i) const {
75 assert(i < ValuePtrs.size());
79 Value *back() const { return ValuePtrs.back(); }
80 void pop_back() { ValuePtrs.pop_back(); }
81 bool empty() const { return ValuePtrs.empty(); }
82 void shrinkTo(unsigned N) {
83 assert(N <= size() && "Invalid shrinkTo request!");
87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
88 Value *getValueFwdRef(unsigned Idx, Type *Ty);
90 void assignValue(Value *V, unsigned Idx);
92 /// Once all constants are read, this method bulk resolves any forward
94 void resolveConstantForwardRefs();
97 class BitcodeReaderMetadataList {
102 std::vector<TrackingMDRef> MetadataPtrs;
104 LLVMContext &Context;
106 BitcodeReaderMetadataList(LLVMContext &C)
107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
109 // vector compatibility methods
110 unsigned size() const { return MetadataPtrs.size(); }
111 void resize(unsigned N) { MetadataPtrs.resize(N); }
112 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
113 void clear() { MetadataPtrs.clear(); }
114 Metadata *back() const { return MetadataPtrs.back(); }
115 void pop_back() { MetadataPtrs.pop_back(); }
116 bool empty() const { return MetadataPtrs.empty(); }
118 Metadata *operator[](unsigned i) const {
119 assert(i < MetadataPtrs.size());
120 return MetadataPtrs[i];
123 void shrinkTo(unsigned N) {
124 assert(N <= size() && "Invalid shrinkTo request!");
125 MetadataPtrs.resize(N);
128 Metadata *getValueFwdRef(unsigned Idx);
129 void assignValue(Metadata *MD, unsigned Idx);
130 void tryToResolveCycles();
133 class BitcodeReader : public GVMaterializer {
134 LLVMContext &Context;
135 Module *TheModule = nullptr;
136 std::unique_ptr<MemoryBuffer> Buffer;
137 std::unique_ptr<BitstreamReader> StreamFile;
138 BitstreamCursor Stream;
139 // Next offset to start scanning for lazy parsing of function bodies.
140 uint64_t NextUnreadBit = 0;
141 // Last function offset found in the VST.
142 uint64_t LastFunctionBlockBit = 0;
143 bool SeenValueSymbolTable = false;
144 uint64_t VSTOffset = 0;
145 // Contains an arbitrary and optional string identifying the bitcode producer
146 std::string ProducerIdentification;
147 // Number of module level metadata records specified by the
148 // MODULE_CODE_METADATA_VALUES record.
149 unsigned NumModuleMDs = 0;
150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
151 bool SeenModuleValuesRecord = false;
153 std::vector<Type*> TypeList;
154 BitcodeReaderValueList ValueList;
155 BitcodeReaderMetadataList MetadataList;
156 std::vector<Comdat *> ComdatList;
157 SmallVector<Instruction *, 64> InstructionList;
159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
165 SmallVector<Instruction*, 64> InstsWithTBAATag;
167 /// The set of attributes by index. Index zero in the file is for null, and
168 /// is thus not represented here. As such all indices are off by one.
169 std::vector<AttributeSet> MAttributes;
171 /// The set of attribute groups.
172 std::map<unsigned, AttributeSet> MAttributeGroups;
174 /// While parsing a function body, this is a list of the basic blocks for the
176 std::vector<BasicBlock*> FunctionBBs;
178 // When reading the module header, this list is populated with functions that
179 // have bodies later in the file.
180 std::vector<Function*> FunctionsWithBodies;
182 // When intrinsic functions are encountered which require upgrading they are
183 // stored here with their replacement function.
184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
185 UpgradedIntrinsicMap UpgradedIntrinsics;
187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
188 DenseMap<unsigned, unsigned> MDKindMap;
190 // Several operations happen after the module header has been read, but
191 // before function bodies are processed. This keeps track of whether
192 // we've done this yet.
193 bool SeenFirstFunctionBody = false;
195 /// When function bodies are initially scanned, this map contains info about
196 /// where to find deferred function body in the stream.
197 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
199 /// When Metadata block is initially scanned when parsing the module, we may
200 /// choose to defer parsing of the metadata. This vector contains info about
201 /// which Metadata blocks are deferred.
202 std::vector<uint64_t> DeferredMetadataInfo;
204 /// These are basic blocks forward-referenced by block addresses. They are
205 /// inserted lazily into functions when they're loaded. The basic block ID is
206 /// its index into the vector.
207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
208 std::deque<Function *> BasicBlockFwdRefQueue;
210 /// Indicates that we are using a new encoding for instruction operands where
211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
212 /// instruction number, for a more compact encoding. Some instruction
213 /// operands are not relative to the instruction ID: basic block numbers, and
214 /// types. Once the old style function blocks have been phased out, we would
215 /// not need this flag.
216 bool UseRelativeIDs = false;
218 /// True if all functions will be materialized, negating the need to process
219 /// (e.g.) blockaddress forward references.
220 bool WillMaterializeAllForwardRefs = false;
222 /// True if any Metadata block has been materialized.
223 bool IsMetadataMaterialized = false;
225 bool StripDebugInfo = false;
227 /// Functions that need to be matched with subprograms when upgrading old
229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
231 std::vector<std::string> BundleTags;
234 std::error_code error(BitcodeError E, const Twine &Message);
235 std::error_code error(BitcodeError E);
236 std::error_code error(const Twine &Message);
238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
239 BitcodeReader(LLVMContext &Context);
240 ~BitcodeReader() override { freeState(); }
242 std::error_code materializeForwardReferencedFunctions();
246 void releaseBuffer();
248 std::error_code materialize(GlobalValue *GV) override;
249 std::error_code materializeModule() override;
250 std::vector<StructType *> getIdentifiedStructTypes() const override;
252 /// \brief Main interface to parsing a bitcode buffer.
253 /// \returns true if an error occurred.
254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
256 bool ShouldLazyLoadMetadata = false);
258 /// \brief Cheap mechanism to just extract module triple
259 /// \returns true if an error occurred.
260 ErrorOr<std::string> parseTriple();
262 /// Cheap mechanism to just extract the identification block out of bitcode.
263 ErrorOr<std::string> parseIdentificationBlock();
265 static uint64_t decodeSignRotatedValue(uint64_t V);
267 /// Materialize any deferred Metadata block.
268 std::error_code materializeMetadata() override;
270 void setStripDebugInfo() override;
272 /// Save the mapping between the metadata values and the corresponding
273 /// value id that were recorded in the MetadataList during parsing. If
274 /// OnlyTempMD is true, then only record those entries that are still
275 /// temporary metadata. This interface is used when metadata linking is
276 /// performed as a postpass, such as during function importing.
277 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs,
278 bool OnlyTempMD) override;
281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282 // ProducerIdentification data member, and do some basic enforcement on the
283 // "epoch" encoded in the bitcode.
284 std::error_code parseBitcodeVersion();
286 std::vector<StructType *> IdentifiedStructTypes;
287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288 StructType *createIdentifiedStructType(LLVMContext &Context);
290 Type *getTypeByID(unsigned ID);
291 Value *getFnValueByID(unsigned ID, Type *Ty) {
292 if (Ty && Ty->isMetadataTy())
293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294 return ValueList.getValueFwdRef(ID, Ty);
296 Metadata *getFnMetadataByID(unsigned ID) {
297 return MetadataList.getValueFwdRef(ID);
299 BasicBlock *getBasicBlock(unsigned ID) const {
300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301 return FunctionBBs[ID];
303 AttributeSet getAttributes(unsigned i) const {
304 if (i-1 < MAttributes.size())
305 return MAttributes[i-1];
306 return AttributeSet();
309 /// Read a value/type pair out of the specified record from slot 'Slot'.
310 /// Increment Slot past the number of slots used in the record. Return true on
312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313 unsigned InstNum, Value *&ResVal) {
314 if (Slot == Record.size()) return true;
315 unsigned ValNo = (unsigned)Record[Slot++];
316 // Adjust the ValNo, if it was encoded relative to the InstNum.
318 ValNo = InstNum - ValNo;
319 if (ValNo < InstNum) {
320 // If this is not a forward reference, just return the value we already
322 ResVal = getFnValueByID(ValNo, nullptr);
323 return ResVal == nullptr;
325 if (Slot == Record.size())
328 unsigned TypeNo = (unsigned)Record[Slot++];
329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330 return ResVal == nullptr;
333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334 /// past the number of slots used by the value in the record. Return true if
335 /// there is an error.
336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337 unsigned InstNum, Type *Ty, Value *&ResVal) {
338 if (getValue(Record, Slot, InstNum, Ty, ResVal))
340 // All values currently take a single record slot.
345 /// Like popValue, but does not increment the Slot number.
346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347 unsigned InstNum, Type *Ty, Value *&ResVal) {
348 ResVal = getValue(Record, Slot, InstNum, Ty);
349 return ResVal == nullptr;
352 /// Version of getValue that returns ResVal directly, or 0 if there is an
354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355 unsigned InstNum, Type *Ty) {
356 if (Slot == Record.size()) return nullptr;
357 unsigned ValNo = (unsigned)Record[Slot];
358 // Adjust the ValNo, if it was encoded relative to the InstNum.
360 ValNo = InstNum - ValNo;
361 return getFnValueByID(ValNo, Ty);
364 /// Like getValue, but decodes signed VBRs.
365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366 unsigned InstNum, Type *Ty) {
367 if (Slot == Record.size()) return nullptr;
368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369 // Adjust the ValNo, if it was encoded relative to the InstNum.
371 ValNo = InstNum - ValNo;
372 return getFnValueByID(ValNo, Ty);
375 /// Converts alignment exponent (i.e. power of two (or zero)) to the
376 /// corresponding alignment to use. If alignment is too large, returns
377 /// a corresponding error code.
378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380 std::error_code parseModule(uint64_t ResumeBit,
381 bool ShouldLazyLoadMetadata = false);
382 std::error_code parseAttributeBlock();
383 std::error_code parseAttributeGroupBlock();
384 std::error_code parseTypeTable();
385 std::error_code parseTypeTableBody();
386 std::error_code parseOperandBundleTags();
388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389 unsigned NameIndex, Triple &TT);
390 std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391 std::error_code parseConstants();
392 std::error_code rememberAndSkipFunctionBodies();
393 std::error_code rememberAndSkipFunctionBody();
394 /// Save the positions of the Metadata blocks and skip parsing the blocks.
395 std::error_code rememberAndSkipMetadata();
396 std::error_code parseFunctionBody(Function *F);
397 std::error_code globalCleanup();
398 std::error_code resolveGlobalAndAliasInits();
399 std::error_code parseMetadata(bool ModuleLevel = false);
400 std::error_code parseMetadataKinds();
401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
402 std::error_code parseMetadataAttachment(Function &F);
403 ErrorOr<std::string> parseModuleTriple();
404 std::error_code parseUseLists();
405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
406 std::error_code initStreamFromBuffer();
407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
408 std::error_code findFunctionInStream(
410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
413 /// Class to manage reading and parsing function summary index bitcode
415 class FunctionIndexBitcodeReader {
416 DiagnosticHandlerFunction DiagnosticHandler;
418 /// Eventually points to the function index built during parsing.
419 FunctionInfoIndex *TheIndex = nullptr;
421 std::unique_ptr<MemoryBuffer> Buffer;
422 std::unique_ptr<BitstreamReader> StreamFile;
423 BitstreamCursor Stream;
425 /// \brief Used to indicate whether we are doing lazy parsing of summary data.
427 /// If false, the summary section is fully parsed into the index during
428 /// the initial parse. Otherwise, if true, the caller is expected to
429 /// invoke \a readFunctionSummary for each summary needed, and the summary
430 /// section is thus parsed lazily.
433 /// Used to indicate whether caller only wants to check for the presence
434 /// of the function summary bitcode section. All blocks are skipped,
435 /// but the SeenFuncSummary boolean is set.
436 bool CheckFuncSummaryPresenceOnly = false;
438 /// Indicates whether we have encountered a function summary section
439 /// yet during parsing, used when checking if file contains function
441 bool SeenFuncSummary = false;
443 /// \brief Map populated during function summary section parsing, and
444 /// consumed during ValueSymbolTable parsing.
446 /// Used to correlate summary records with VST entries. For the per-module
447 /// index this maps the ValueID to the parsed function summary, and
448 /// for the combined index this maps the summary record's bitcode
449 /// offset to the function summary (since in the combined index the
450 /// VST records do not hold value IDs but rather hold the function
451 /// summary record offset).
452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
454 /// Map populated during module path string table parsing, from the
455 /// module ID to a string reference owned by the index's module
456 /// path string table, used to correlate with combined index function
458 DenseMap<uint64_t, StringRef> ModuleIdMap;
461 std::error_code error(BitcodeError E, const Twine &Message);
462 std::error_code error(BitcodeError E);
463 std::error_code error(const Twine &Message);
465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer,
466 DiagnosticHandlerFunction DiagnosticHandler,
468 bool CheckFuncSummaryPresenceOnly = false);
469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,
471 bool CheckFuncSummaryPresenceOnly = false);
472 ~FunctionIndexBitcodeReader() { freeState(); }
476 void releaseBuffer();
478 /// Check if the parser has encountered a function summary section.
479 bool foundFuncSummary() { return SeenFuncSummary; }
481 /// \brief Main interface to parsing a bitcode buffer.
482 /// \returns true if an error occurred.
483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
484 FunctionInfoIndex *I);
486 /// \brief Interface for parsing a function summary lazily.
487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
488 FunctionInfoIndex *I,
489 size_t FunctionSummaryOffset);
492 std::error_code parseModule();
493 std::error_code parseValueSymbolTable();
494 std::error_code parseEntireSummary();
495 std::error_code parseModuleStringTable();
496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
497 std::error_code initStreamFromBuffer();
498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
503 DiagnosticSeverity Severity,
505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
510 std::error_code EC, const Twine &Message) {
511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
512 DiagnosticHandler(DI);
516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
517 std::error_code EC) {
518 return error(DiagnosticHandler, EC, EC.message());
521 static std::error_code error(LLVMContext &Context, std::error_code EC,
522 const Twine &Message) {
523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
527 static std::error_code error(LLVMContext &Context, std::error_code EC) {
528 return error(Context, EC, EC.message());
531 static std::error_code error(LLVMContext &Context, const Twine &Message) {
532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
537 if (!ProducerIdentification.empty()) {
538 return ::error(Context, make_error_code(E),
539 Message + " (Producer: '" + ProducerIdentification +
540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
542 return ::error(Context, make_error_code(E), Message);
545 std::error_code BitcodeReader::error(const Twine &Message) {
546 if (!ProducerIdentification.empty()) {
547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
548 Message + " (Producer: '" + ProducerIdentification +
549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
555 std::error_code BitcodeReader::error(BitcodeError E) {
556 return ::error(Context, make_error_code(E));
559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
560 : Context(Context), Buffer(Buffer), ValueList(Context),
561 MetadataList(Context) {}
563 BitcodeReader::BitcodeReader(LLVMContext &Context)
564 : Context(Context), Buffer(nullptr), ValueList(Context),
565 MetadataList(Context) {}
567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
568 if (WillMaterializeAllForwardRefs)
569 return std::error_code();
571 // Prevent recursion.
572 WillMaterializeAllForwardRefs = true;
574 while (!BasicBlockFwdRefQueue.empty()) {
575 Function *F = BasicBlockFwdRefQueue.front();
576 BasicBlockFwdRefQueue.pop_front();
577 assert(F && "Expected valid function");
578 if (!BasicBlockFwdRefs.count(F))
579 // Already materialized.
582 // Check for a function that isn't materializable to prevent an infinite
583 // loop. When parsing a blockaddress stored in a global variable, there
584 // isn't a trivial way to check if a function will have a body without a
585 // linear search through FunctionsWithBodies, so just check it here.
586 if (!F->isMaterializable())
587 return error("Never resolved function from blockaddress");
589 // Try to materialize F.
590 if (std::error_code EC = materialize(F))
593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
596 WillMaterializeAllForwardRefs = false;
597 return std::error_code();
600 void BitcodeReader::freeState() {
602 std::vector<Type*>().swap(TypeList);
604 MetadataList.clear();
605 std::vector<Comdat *>().swap(ComdatList);
607 std::vector<AttributeSet>().swap(MAttributes);
608 std::vector<BasicBlock*>().swap(FunctionBBs);
609 std::vector<Function*>().swap(FunctionsWithBodies);
610 DeferredFunctionInfo.clear();
611 DeferredMetadataInfo.clear();
614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
615 BasicBlockFwdRefQueue.clear();
618 //===----------------------------------------------------------------------===//
619 // Helper functions to implement forward reference resolution, etc.
620 //===----------------------------------------------------------------------===//
622 /// Convert a string from a record into an std::string, return true on failure.
623 template <typename StrTy>
624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
626 if (Idx > Record.size())
629 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
630 Result += (char)Record[i];
634 static bool hasImplicitComdat(size_t Val) {
638 case 1: // Old WeakAnyLinkage
639 case 4: // Old LinkOnceAnyLinkage
640 case 10: // Old WeakODRLinkage
641 case 11: // Old LinkOnceODRLinkage
646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
648 default: // Map unknown/new linkages to external
650 return GlobalValue::ExternalLinkage;
652 return GlobalValue::AppendingLinkage;
654 return GlobalValue::InternalLinkage;
656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
660 return GlobalValue::ExternalWeakLinkage;
662 return GlobalValue::CommonLinkage;
664 return GlobalValue::PrivateLinkage;
666 return GlobalValue::AvailableExternallyLinkage;
668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
673 case 1: // Old value with implicit comdat.
675 return GlobalValue::WeakAnyLinkage;
676 case 10: // Old value with implicit comdat.
678 return GlobalValue::WeakODRLinkage;
679 case 4: // Old value with implicit comdat.
681 return GlobalValue::LinkOnceAnyLinkage;
682 case 11: // Old value with implicit comdat.
684 return GlobalValue::LinkOnceODRLinkage;
688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
690 default: // Map unknown visibilities to default.
691 case 0: return GlobalValue::DefaultVisibility;
692 case 1: return GlobalValue::HiddenVisibility;
693 case 2: return GlobalValue::ProtectedVisibility;
697 static GlobalValue::DLLStorageClassTypes
698 getDecodedDLLStorageClass(unsigned Val) {
700 default: // Map unknown values to default.
701 case 0: return GlobalValue::DefaultStorageClass;
702 case 1: return GlobalValue::DLLImportStorageClass;
703 case 2: return GlobalValue::DLLExportStorageClass;
707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
709 case 0: return GlobalVariable::NotThreadLocal;
710 default: // Map unknown non-zero value to general dynamic.
711 case 1: return GlobalVariable::GeneralDynamicTLSModel;
712 case 2: return GlobalVariable::LocalDynamicTLSModel;
713 case 3: return GlobalVariable::InitialExecTLSModel;
714 case 4: return GlobalVariable::LocalExecTLSModel;
718 static int getDecodedCastOpcode(unsigned Val) {
721 case bitc::CAST_TRUNC : return Instruction::Trunc;
722 case bitc::CAST_ZEXT : return Instruction::ZExt;
723 case bitc::CAST_SEXT : return Instruction::SExt;
724 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
725 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
726 case bitc::CAST_UITOFP : return Instruction::UIToFP;
727 case bitc::CAST_SITOFP : return Instruction::SIToFP;
728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
729 case bitc::CAST_FPEXT : return Instruction::FPExt;
730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
732 case bitc::CAST_BITCAST : return Instruction::BitCast;
733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
738 bool IsFP = Ty->isFPOrFPVectorTy();
739 // BinOps are only valid for int/fp or vector of int/fp types
740 if (!IsFP && !Ty->isIntOrIntVectorTy())
746 case bitc::BINOP_ADD:
747 return IsFP ? Instruction::FAdd : Instruction::Add;
748 case bitc::BINOP_SUB:
749 return IsFP ? Instruction::FSub : Instruction::Sub;
750 case bitc::BINOP_MUL:
751 return IsFP ? Instruction::FMul : Instruction::Mul;
752 case bitc::BINOP_UDIV:
753 return IsFP ? -1 : Instruction::UDiv;
754 case bitc::BINOP_SDIV:
755 return IsFP ? Instruction::FDiv : Instruction::SDiv;
756 case bitc::BINOP_UREM:
757 return IsFP ? -1 : Instruction::URem;
758 case bitc::BINOP_SREM:
759 return IsFP ? Instruction::FRem : Instruction::SRem;
760 case bitc::BINOP_SHL:
761 return IsFP ? -1 : Instruction::Shl;
762 case bitc::BINOP_LSHR:
763 return IsFP ? -1 : Instruction::LShr;
764 case bitc::BINOP_ASHR:
765 return IsFP ? -1 : Instruction::AShr;
766 case bitc::BINOP_AND:
767 return IsFP ? -1 : Instruction::And;
769 return IsFP ? -1 : Instruction::Or;
770 case bitc::BINOP_XOR:
771 return IsFP ? -1 : Instruction::Xor;
775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
777 default: return AtomicRMWInst::BAD_BINOP;
778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
779 case bitc::RMW_ADD: return AtomicRMWInst::Add;
780 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
781 case bitc::RMW_AND: return AtomicRMWInst::And;
782 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
783 case bitc::RMW_OR: return AtomicRMWInst::Or;
784 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
785 case bitc::RMW_MAX: return AtomicRMWInst::Max;
786 case bitc::RMW_MIN: return AtomicRMWInst::Min;
787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
792 static AtomicOrdering getDecodedOrdering(unsigned Val) {
794 case bitc::ORDERING_NOTATOMIC: return NotAtomic;
795 case bitc::ORDERING_UNORDERED: return Unordered;
796 case bitc::ORDERING_MONOTONIC: return Monotonic;
797 case bitc::ORDERING_ACQUIRE: return Acquire;
798 case bitc::ORDERING_RELEASE: return Release;
799 case bitc::ORDERING_ACQREL: return AcquireRelease;
800 default: // Map unknown orderings to sequentially-consistent.
801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
805 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
808 default: // Map unknown scopes to cross-thread.
809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
815 default: // Map unknown selection kinds to any.
816 case bitc::COMDAT_SELECTION_KIND_ANY:
818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
819 return Comdat::ExactMatch;
820 case bitc::COMDAT_SELECTION_KIND_LARGEST:
821 return Comdat::Largest;
822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
823 return Comdat::NoDuplicates;
824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
825 return Comdat::SameSize;
829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
831 if (0 != (Val & FastMathFlags::UnsafeAlgebra))
832 FMF.setUnsafeAlgebra();
833 if (0 != (Val & FastMathFlags::NoNaNs))
835 if (0 != (Val & FastMathFlags::NoInfs))
837 if (0 != (Val & FastMathFlags::NoSignedZeros))
838 FMF.setNoSignedZeros();
839 if (0 != (Val & FastMathFlags::AllowReciprocal))
840 FMF.setAllowReciprocal();
844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
853 /// \brief A class for maintaining the slot number definition
854 /// as a placeholder for the actual definition for forward constants defs.
855 class ConstantPlaceHolder : public ConstantExpr {
856 void operator=(const ConstantPlaceHolder &) = delete;
859 // allocate space for exactly one operand
860 void *operator new(size_t s) { return User::operator new(s, 1); }
861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
867 static bool classof(const Value *V) {
868 return isa<ConstantExpr>(V) &&
869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
872 /// Provide fast operand accessors
873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
877 // FIXME: can we inherit this from ConstantExpr?
879 struct OperandTraits<ConstantPlaceHolder> :
880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
894 WeakVH &OldV = ValuePtrs[Idx];
900 // Handle constants and non-constants (e.g. instrs) differently for
902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
903 ResolveConstants.push_back(std::make_pair(PHC, Idx));
906 // If there was a forward reference to this value, replace it.
907 Value *PrevVal = OldV;
908 OldV->replaceAllUsesWith(V);
916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
921 if (Value *V = ValuePtrs[Idx]) {
922 if (Ty != V->getType())
923 report_fatal_error("Type mismatch in constant table!");
924 return cast<Constant>(V);
927 // Create and return a placeholder, which will later be RAUW'd.
928 Constant *C = new ConstantPlaceHolder(Ty, Context);
933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
934 // Bail out for a clearly invalid value. This would make us call resize(0)
941 if (Value *V = ValuePtrs[Idx]) {
942 // If the types don't match, it's invalid.
943 if (Ty && Ty != V->getType())
948 // No type specified, must be invalid reference.
949 if (!Ty) return nullptr;
951 // Create and return a placeholder, which will later be RAUW'd.
952 Value *V = new Argument(Ty);
957 /// Once all constants are read, this method bulk resolves any forward
958 /// references. The idea behind this is that we sometimes get constants (such
959 /// as large arrays) which reference *many* forward ref constants. Replacing
960 /// each of these causes a lot of thrashing when building/reuniquing the
961 /// constant. Instead of doing this, we look at all the uses and rewrite all
962 /// the place holders at once for any constant that uses a placeholder.
963 void BitcodeReaderValueList::resolveConstantForwardRefs() {
964 // Sort the values by-pointer so that they are efficient to look up with a
966 std::sort(ResolveConstants.begin(), ResolveConstants.end());
968 SmallVector<Constant*, 64> NewOps;
970 while (!ResolveConstants.empty()) {
971 Value *RealVal = operator[](ResolveConstants.back().second);
972 Constant *Placeholder = ResolveConstants.back().first;
973 ResolveConstants.pop_back();
975 // Loop over all users of the placeholder, updating them to reference the
976 // new value. If they reference more than one placeholder, update them all
978 while (!Placeholder->use_empty()) {
979 auto UI = Placeholder->user_begin();
982 // If the using object isn't uniqued, just update the operands. This
983 // handles instructions and initializers for global variables.
984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
985 UI.getUse().set(RealVal);
989 // Otherwise, we have a constant that uses the placeholder. Replace that
990 // constant with a new constant that has *all* placeholder uses updated.
991 Constant *UserC = cast<Constant>(U);
992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
995 if (!isa<ConstantPlaceHolder>(*I)) {
996 // Not a placeholder reference.
998 } else if (*I == Placeholder) {
999 // Common case is that it just references this one placeholder.
1002 // Otherwise, look up the placeholder in ResolveConstants.
1003 ResolveConstantsTy::iterator It =
1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1005 std::pair<Constant*, unsigned>(cast<Constant>(*I),
1007 assert(It != ResolveConstants.end() && It->first == *I);
1008 NewOp = operator[](It->second);
1011 NewOps.push_back(cast<Constant>(NewOp));
1014 // Make the new constant.
1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1017 NewC = ConstantArray::get(UserCA->getType(), NewOps);
1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1020 } else if (isa<ConstantVector>(UserC)) {
1021 NewC = ConstantVector::get(NewOps);
1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1027 UserC->replaceAllUsesWith(NewC);
1028 UserC->destroyConstant();
1032 // Update all ValueHandles, they should be the only users at this point.
1033 Placeholder->replaceAllUsesWith(RealVal);
1038 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1039 if (Idx == size()) {
1047 TrackingMDRef &OldMD = MetadataPtrs[Idx];
1053 // If there was a forward reference to this value, replace it.
1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1055 PrevMD->replaceAllUsesWith(MD);
1059 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) {
1063 if (Metadata *MD = MetadataPtrs[Idx])
1066 // Track forward refs to be resolved later.
1068 MinFwdRef = std::min(MinFwdRef, Idx);
1069 MaxFwdRef = std::max(MaxFwdRef, Idx);
1072 MinFwdRef = MaxFwdRef = Idx;
1076 // Create and return a placeholder, which will later be RAUW'd.
1077 Metadata *MD = MDNode::getTemporary(Context, None).release();
1078 MetadataPtrs[Idx].reset(MD);
1082 void BitcodeReaderMetadataList::tryToResolveCycles() {
1088 // Still forward references... can't resolve cycles.
1091 // Resolve any cycles.
1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1093 auto &MD = MetadataPtrs[I];
1094 auto *N = dyn_cast_or_null<MDNode>(MD);
1098 assert(!N->isTemporary() && "Unexpected forward reference");
1102 // Make sure we return early again until there's another forward ref.
1106 Type *BitcodeReader::getTypeByID(unsigned ID) {
1107 // The type table size is always specified correctly.
1108 if (ID >= TypeList.size())
1111 if (Type *Ty = TypeList[ID])
1114 // If we have a forward reference, the only possible case is when it is to a
1115 // named struct. Just create a placeholder for now.
1116 return TypeList[ID] = createIdentifiedStructType(Context);
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1121 auto *Ret = StructType::create(Context, Name);
1122 IdentifiedStructTypes.push_back(Ret);
1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1127 auto *Ret = StructType::create(Context);
1128 IdentifiedStructTypes.push_back(Ret);
1133 //===----------------------------------------------------------------------===//
1134 // Functions for parsing blocks from the bitcode file
1135 //===----------------------------------------------------------------------===//
1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1139 /// been decoded from the given integer. This function must stay in sync with
1140 /// 'encodeLLVMAttributesForBitcode'.
1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1142 uint64_t EncodedAttrs) {
1143 // FIXME: Remove in 4.0.
1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1146 // the bits above 31 down by 11 bits.
1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1148 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1149 "Alignment must be a power of two.");
1152 B.addAlignmentAttr(Alignment);
1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1154 (EncodedAttrs & 0xffff));
1157 std::error_code BitcodeReader::parseAttributeBlock() {
1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1159 return error("Invalid record");
1161 if (!MAttributes.empty())
1162 return error("Invalid multiple blocks");
1164 SmallVector<uint64_t, 64> Record;
1166 SmallVector<AttributeSet, 8> Attrs;
1168 // Read all the records.
1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1172 switch (Entry.Kind) {
1173 case BitstreamEntry::SubBlock: // Handled for us already.
1174 case BitstreamEntry::Error:
1175 return error("Malformed block");
1176 case BitstreamEntry::EndBlock:
1177 return std::error_code();
1178 case BitstreamEntry::Record:
1179 // The interesting case.
1185 switch (Stream.readRecord(Entry.ID, Record)) {
1186 default: // Default behavior: ignore.
1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1189 // FIXME: Remove in 4.0.
1190 if (Record.size() & 1)
1191 return error("Invalid record");
1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1195 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1199 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1204 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1205 Attrs.push_back(MAttributeGroups[Record[i]]);
1207 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1215 // Returns Attribute::None on unrecognized codes.
1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1219 return Attribute::None;
1220 case bitc::ATTR_KIND_ALIGNMENT:
1221 return Attribute::Alignment;
1222 case bitc::ATTR_KIND_ALWAYS_INLINE:
1223 return Attribute::AlwaysInline;
1224 case bitc::ATTR_KIND_ARGMEMONLY:
1225 return Attribute::ArgMemOnly;
1226 case bitc::ATTR_KIND_BUILTIN:
1227 return Attribute::Builtin;
1228 case bitc::ATTR_KIND_BY_VAL:
1229 return Attribute::ByVal;
1230 case bitc::ATTR_KIND_IN_ALLOCA:
1231 return Attribute::InAlloca;
1232 case bitc::ATTR_KIND_COLD:
1233 return Attribute::Cold;
1234 case bitc::ATTR_KIND_CONVERGENT:
1235 return Attribute::Convergent;
1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1237 return Attribute::InaccessibleMemOnly;
1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1239 return Attribute::InaccessibleMemOrArgMemOnly;
1240 case bitc::ATTR_KIND_INLINE_HINT:
1241 return Attribute::InlineHint;
1242 case bitc::ATTR_KIND_IN_REG:
1243 return Attribute::InReg;
1244 case bitc::ATTR_KIND_JUMP_TABLE:
1245 return Attribute::JumpTable;
1246 case bitc::ATTR_KIND_MIN_SIZE:
1247 return Attribute::MinSize;
1248 case bitc::ATTR_KIND_NAKED:
1249 return Attribute::Naked;
1250 case bitc::ATTR_KIND_NEST:
1251 return Attribute::Nest;
1252 case bitc::ATTR_KIND_NO_ALIAS:
1253 return Attribute::NoAlias;
1254 case bitc::ATTR_KIND_NO_BUILTIN:
1255 return Attribute::NoBuiltin;
1256 case bitc::ATTR_KIND_NO_CAPTURE:
1257 return Attribute::NoCapture;
1258 case bitc::ATTR_KIND_NO_DUPLICATE:
1259 return Attribute::NoDuplicate;
1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1261 return Attribute::NoImplicitFloat;
1262 case bitc::ATTR_KIND_NO_INLINE:
1263 return Attribute::NoInline;
1264 case bitc::ATTR_KIND_NO_RECURSE:
1265 return Attribute::NoRecurse;
1266 case bitc::ATTR_KIND_NON_LAZY_BIND:
1267 return Attribute::NonLazyBind;
1268 case bitc::ATTR_KIND_NON_NULL:
1269 return Attribute::NonNull;
1270 case bitc::ATTR_KIND_DEREFERENCEABLE:
1271 return Attribute::Dereferenceable;
1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1273 return Attribute::DereferenceableOrNull;
1274 case bitc::ATTR_KIND_NO_RED_ZONE:
1275 return Attribute::NoRedZone;
1276 case bitc::ATTR_KIND_NO_RETURN:
1277 return Attribute::NoReturn;
1278 case bitc::ATTR_KIND_NO_UNWIND:
1279 return Attribute::NoUnwind;
1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1281 return Attribute::OptimizeForSize;
1282 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1283 return Attribute::OptimizeNone;
1284 case bitc::ATTR_KIND_READ_NONE:
1285 return Attribute::ReadNone;
1286 case bitc::ATTR_KIND_READ_ONLY:
1287 return Attribute::ReadOnly;
1288 case bitc::ATTR_KIND_RETURNED:
1289 return Attribute::Returned;
1290 case bitc::ATTR_KIND_RETURNS_TWICE:
1291 return Attribute::ReturnsTwice;
1292 case bitc::ATTR_KIND_S_EXT:
1293 return Attribute::SExt;
1294 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1295 return Attribute::StackAlignment;
1296 case bitc::ATTR_KIND_STACK_PROTECT:
1297 return Attribute::StackProtect;
1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1299 return Attribute::StackProtectReq;
1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1301 return Attribute::StackProtectStrong;
1302 case bitc::ATTR_KIND_SAFESTACK:
1303 return Attribute::SafeStack;
1304 case bitc::ATTR_KIND_STRUCT_RET:
1305 return Attribute::StructRet;
1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1307 return Attribute::SanitizeAddress;
1308 case bitc::ATTR_KIND_SANITIZE_THREAD:
1309 return Attribute::SanitizeThread;
1310 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1311 return Attribute::SanitizeMemory;
1312 case bitc::ATTR_KIND_UW_TABLE:
1313 return Attribute::UWTable;
1314 case bitc::ATTR_KIND_Z_EXT:
1315 return Attribute::ZExt;
1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1320 unsigned &Alignment) {
1321 // Note: Alignment in bitcode files is incremented by 1, so that zero
1322 // can be used for default alignment.
1323 if (Exponent > Value::MaxAlignmentExponent + 1)
1324 return error("Invalid alignment value");
1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1326 return std::error_code();
1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1330 Attribute::AttrKind *Kind) {
1331 *Kind = getAttrFromCode(Code);
1332 if (*Kind == Attribute::None)
1333 return error(BitcodeError::CorruptedBitcode,
1334 "Unknown attribute kind (" + Twine(Code) + ")");
1335 return std::error_code();
1338 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1340 return error("Invalid record");
1342 if (!MAttributeGroups.empty())
1343 return error("Invalid multiple blocks");
1345 SmallVector<uint64_t, 64> Record;
1347 // Read all the records.
1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1351 switch (Entry.Kind) {
1352 case BitstreamEntry::SubBlock: // Handled for us already.
1353 case BitstreamEntry::Error:
1354 return error("Malformed block");
1355 case BitstreamEntry::EndBlock:
1356 return std::error_code();
1357 case BitstreamEntry::Record:
1358 // The interesting case.
1364 switch (Stream.readRecord(Entry.ID, Record)) {
1365 default: // Default behavior: ignore.
1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1368 if (Record.size() < 3)
1369 return error("Invalid record");
1371 uint64_t GrpID = Record[0];
1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1376 if (Record[i] == 0) { // Enum attribute
1377 Attribute::AttrKind Kind;
1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1381 B.addAttribute(Kind);
1382 } else if (Record[i] == 1) { // Integer attribute
1383 Attribute::AttrKind Kind;
1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1386 if (Kind == Attribute::Alignment)
1387 B.addAlignmentAttr(Record[++i]);
1388 else if (Kind == Attribute::StackAlignment)
1389 B.addStackAlignmentAttr(Record[++i]);
1390 else if (Kind == Attribute::Dereferenceable)
1391 B.addDereferenceableAttr(Record[++i]);
1392 else if (Kind == Attribute::DereferenceableOrNull)
1393 B.addDereferenceableOrNullAttr(Record[++i]);
1394 } else { // String attribute
1395 assert((Record[i] == 3 || Record[i] == 4) &&
1396 "Invalid attribute group entry");
1397 bool HasValue = (Record[i++] == 4);
1398 SmallString<64> KindStr;
1399 SmallString<64> ValStr;
1401 while (Record[i] != 0 && i != e)
1402 KindStr += Record[i++];
1403 assert(Record[i] == 0 && "Kind string not null terminated");
1406 // Has a value associated with it.
1407 ++i; // Skip the '0' that terminates the "kind" string.
1408 while (Record[i] != 0 && i != e)
1409 ValStr += Record[i++];
1410 assert(Record[i] == 0 && "Value string not null terminated");
1413 B.addAttribute(KindStr.str(), ValStr.str());
1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1424 std::error_code BitcodeReader::parseTypeTable() {
1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1426 return error("Invalid record");
1428 return parseTypeTableBody();
1431 std::error_code BitcodeReader::parseTypeTableBody() {
1432 if (!TypeList.empty())
1433 return error("Invalid multiple blocks");
1435 SmallVector<uint64_t, 64> Record;
1436 unsigned NumRecords = 0;
1438 SmallString<64> TypeName;
1440 // Read all the records for this type table.
1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1444 switch (Entry.Kind) {
1445 case BitstreamEntry::SubBlock: // Handled for us already.
1446 case BitstreamEntry::Error:
1447 return error("Malformed block");
1448 case BitstreamEntry::EndBlock:
1449 if (NumRecords != TypeList.size())
1450 return error("Malformed block");
1451 return std::error_code();
1452 case BitstreamEntry::Record:
1453 // The interesting case.
1459 Type *ResultTy = nullptr;
1460 switch (Stream.readRecord(Entry.ID, Record)) {
1462 return error("Invalid value");
1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1465 // type list. This allows us to reserve space.
1466 if (Record.size() < 1)
1467 return error("Invalid record");
1468 TypeList.resize(Record[0]);
1470 case bitc::TYPE_CODE_VOID: // VOID
1471 ResultTy = Type::getVoidTy(Context);
1473 case bitc::TYPE_CODE_HALF: // HALF
1474 ResultTy = Type::getHalfTy(Context);
1476 case bitc::TYPE_CODE_FLOAT: // FLOAT
1477 ResultTy = Type::getFloatTy(Context);
1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1480 ResultTy = Type::getDoubleTy(Context);
1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1483 ResultTy = Type::getX86_FP80Ty(Context);
1485 case bitc::TYPE_CODE_FP128: // FP128
1486 ResultTy = Type::getFP128Ty(Context);
1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1489 ResultTy = Type::getPPC_FP128Ty(Context);
1491 case bitc::TYPE_CODE_LABEL: // LABEL
1492 ResultTy = Type::getLabelTy(Context);
1494 case bitc::TYPE_CODE_METADATA: // METADATA
1495 ResultTy = Type::getMetadataTy(Context);
1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1498 ResultTy = Type::getX86_MMXTy(Context);
1500 case bitc::TYPE_CODE_TOKEN: // TOKEN
1501 ResultTy = Type::getTokenTy(Context);
1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1504 if (Record.size() < 1)
1505 return error("Invalid record");
1507 uint64_t NumBits = Record[0];
1508 if (NumBits < IntegerType::MIN_INT_BITS ||
1509 NumBits > IntegerType::MAX_INT_BITS)
1510 return error("Bitwidth for integer type out of range");
1511 ResultTy = IntegerType::get(Context, NumBits);
1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1515 // [pointee type, address space]
1516 if (Record.size() < 1)
1517 return error("Invalid record");
1518 unsigned AddressSpace = 0;
1519 if (Record.size() == 2)
1520 AddressSpace = Record[1];
1521 ResultTy = getTypeByID(Record[0]);
1523 !PointerType::isValidElementType(ResultTy))
1524 return error("Invalid type");
1525 ResultTy = PointerType::get(ResultTy, AddressSpace);
1528 case bitc::TYPE_CODE_FUNCTION_OLD: {
1529 // FIXME: attrid is dead, remove it in LLVM 4.0
1530 // FUNCTION: [vararg, attrid, retty, paramty x N]
1531 if (Record.size() < 3)
1532 return error("Invalid record");
1533 SmallVector<Type*, 8> ArgTys;
1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1535 if (Type *T = getTypeByID(Record[i]))
1536 ArgTys.push_back(T);
1541 ResultTy = getTypeByID(Record[2]);
1542 if (!ResultTy || ArgTys.size() < Record.size()-3)
1543 return error("Invalid type");
1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1548 case bitc::TYPE_CODE_FUNCTION: {
1549 // FUNCTION: [vararg, retty, paramty x N]
1550 if (Record.size() < 2)
1551 return error("Invalid record");
1552 SmallVector<Type*, 8> ArgTys;
1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1554 if (Type *T = getTypeByID(Record[i])) {
1555 if (!FunctionType::isValidArgumentType(T))
1556 return error("Invalid function argument type");
1557 ArgTys.push_back(T);
1563 ResultTy = getTypeByID(Record[1]);
1564 if (!ResultTy || ArgTys.size() < Record.size()-2)
1565 return error("Invalid type");
1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1571 if (Record.size() < 1)
1572 return error("Invalid record");
1573 SmallVector<Type*, 8> EltTys;
1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1575 if (Type *T = getTypeByID(Record[i]))
1576 EltTys.push_back(T);
1580 if (EltTys.size() != Record.size()-1)
1581 return error("Invalid type");
1582 ResultTy = StructType::get(Context, EltTys, Record[0]);
1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1586 if (convertToString(Record, 0, TypeName))
1587 return error("Invalid record");
1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1591 if (Record.size() < 1)
1592 return error("Invalid record");
1594 if (NumRecords >= TypeList.size())
1595 return error("Invalid TYPE table");
1597 // Check to see if this was forward referenced, if so fill in the temp.
1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1600 Res->setName(TypeName);
1601 TypeList[NumRecords] = nullptr;
1602 } else // Otherwise, create a new struct.
1603 Res = createIdentifiedStructType(Context, TypeName);
1606 SmallVector<Type*, 8> EltTys;
1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1608 if (Type *T = getTypeByID(Record[i]))
1609 EltTys.push_back(T);
1613 if (EltTys.size() != Record.size()-1)
1614 return error("Invalid record");
1615 Res->setBody(EltTys, Record[0]);
1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1620 if (Record.size() != 1)
1621 return error("Invalid record");
1623 if (NumRecords >= TypeList.size())
1624 return error("Invalid TYPE table");
1626 // Check to see if this was forward referenced, if so fill in the temp.
1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1629 Res->setName(TypeName);
1630 TypeList[NumRecords] = nullptr;
1631 } else // Otherwise, create a new struct with no body.
1632 Res = createIdentifiedStructType(Context, TypeName);
1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1638 if (Record.size() < 2)
1639 return error("Invalid record");
1640 ResultTy = getTypeByID(Record[1]);
1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1642 return error("Invalid type");
1643 ResultTy = ArrayType::get(ResultTy, Record[0]);
1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1646 if (Record.size() < 2)
1647 return error("Invalid record");
1649 return error("Invalid vector length");
1650 ResultTy = getTypeByID(Record[1]);
1651 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1652 return error("Invalid type");
1653 ResultTy = VectorType::get(ResultTy, Record[0]);
1657 if (NumRecords >= TypeList.size())
1658 return error("Invalid TYPE table");
1659 if (TypeList[NumRecords])
1661 "Invalid TYPE table: Only named structs can be forward referenced");
1662 assert(ResultTy && "Didn't read a type?");
1663 TypeList[NumRecords++] = ResultTy;
1667 std::error_code BitcodeReader::parseOperandBundleTags() {
1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1669 return error("Invalid record");
1671 if (!BundleTags.empty())
1672 return error("Invalid multiple blocks");
1674 SmallVector<uint64_t, 64> Record;
1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1679 switch (Entry.Kind) {
1680 case BitstreamEntry::SubBlock: // Handled for us already.
1681 case BitstreamEntry::Error:
1682 return error("Malformed block");
1683 case BitstreamEntry::EndBlock:
1684 return std::error_code();
1685 case BitstreamEntry::Record:
1686 // The interesting case.
1690 // Tags are implicitly mapped to integers by their order.
1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1693 return error("Invalid record");
1695 // OPERAND_BUNDLE_TAG: [strchr x N]
1696 BundleTags.emplace_back();
1697 if (convertToString(Record, 0, BundleTags.back()))
1698 return error("Invalid record");
1703 /// Associate a value with its name from the given index in the provided record.
1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1705 unsigned NameIndex, Triple &TT) {
1706 SmallString<128> ValueName;
1707 if (convertToString(Record, NameIndex, ValueName))
1708 return error("Invalid record");
1709 unsigned ValueID = Record[0];
1710 if (ValueID >= ValueList.size() || !ValueList[ValueID])
1711 return error("Invalid record");
1712 Value *V = ValueList[ValueID];
1714 StringRef NameStr(ValueName.data(), ValueName.size());
1715 if (NameStr.find_first_of(0) != StringRef::npos)
1716 return error("Invalid value name");
1717 V->setName(NameStr);
1718 auto *GO = dyn_cast<GlobalObject>(V);
1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1721 if (TT.isOSBinFormatMachO())
1722 GO->setComdat(nullptr);
1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1730 /// Parse the value symbol table at either the current parsing location or
1731 /// at the given bit offset if provided.
1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1733 uint64_t CurrentBit;
1734 // Pass in the Offset to distinguish between calling for the module-level
1735 // VST (where we want to jump to the VST offset) and the function-level
1736 // VST (where we don't).
1738 // Save the current parsing location so we can jump back at the end
1740 CurrentBit = Stream.GetCurrentBitNo();
1741 Stream.JumpToBit(Offset * 32);
1743 // Do some checking if we are in debug mode.
1744 BitstreamEntry Entry = Stream.advance();
1745 assert(Entry.Kind == BitstreamEntry::SubBlock);
1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1748 // In NDEBUG mode ignore the output so we don't get an unused variable
1754 // Compute the delta between the bitcode indices in the VST (the word offset
1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have
1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1759 // just before entering the VST subblock because: 1) the EnterSubBlock
1760 // changes the AbbrevID width; 2) the VST block is nested within the same
1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want
1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1765 unsigned FuncBitcodeOffsetDelta =
1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1769 return error("Invalid record");
1771 SmallVector<uint64_t, 64> Record;
1773 Triple TT(TheModule->getTargetTriple());
1775 // Read all the records for this value table.
1776 SmallString<128> ValueName;
1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1780 switch (Entry.Kind) {
1781 case BitstreamEntry::SubBlock: // Handled for us already.
1782 case BitstreamEntry::Error:
1783 return error("Malformed block");
1784 case BitstreamEntry::EndBlock:
1786 Stream.JumpToBit(CurrentBit);
1787 return std::error_code();
1788 case BitstreamEntry::Record:
1789 // The interesting case.
1795 switch (Stream.readRecord(Entry.ID, Record)) {
1796 default: // Default behavior: unknown type.
1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1800 if (std::error_code EC = ValOrErr.getError())
1805 case bitc::VST_CODE_FNENTRY: {
1806 // VST_FNENTRY: [valueid, offset, namechar x N]
1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1808 if (std::error_code EC = ValOrErr.getError())
1810 Value *V = ValOrErr.get();
1812 auto *GO = dyn_cast<GlobalObject>(V);
1814 // If this is an alias, need to get the actual Function object
1815 // it aliases, in order to set up the DeferredFunctionInfo entry below.
1816 auto *GA = dyn_cast<GlobalAlias>(V);
1818 GO = GA->getBaseObject();
1822 uint64_t FuncWordOffset = Record[1];
1823 Function *F = dyn_cast<Function>(GO);
1825 uint64_t FuncBitOffset = FuncWordOffset * 32;
1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1827 // Set the LastFunctionBlockBit to point to the last function block.
1828 // Later when parsing is resumed after function materialization,
1829 // we can simply skip that last function block.
1830 if (FuncBitOffset > LastFunctionBlockBit)
1831 LastFunctionBlockBit = FuncBitOffset;
1834 case bitc::VST_CODE_BBENTRY: {
1835 if (convertToString(Record, 1, ValueName))
1836 return error("Invalid record");
1837 BasicBlock *BB = getBasicBlock(Record[0]);
1839 return error("Invalid record");
1841 BB->setName(StringRef(ValueName.data(), ValueName.size()));
1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1852 if (Record.size() < 2)
1853 return error("Invalid record");
1855 unsigned Kind = Record[0];
1856 SmallString<8> Name(Record.begin() + 1, Record.end());
1858 unsigned NewKind = TheModule->getMDKindID(Name.str());
1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1860 return error("Conflicting METADATA_KIND records");
1861 return std::error_code();
1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1867 /// module level metadata.
1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1869 IsMetadataMaterialized = true;
1870 unsigned NextMetadataNo = MetadataList.size();
1871 if (ModuleLevel && SeenModuleValuesRecord) {
1872 // Now that we are parsing the module level metadata, we want to restart
1873 // the numbering of the MD values, and replace temp MD created earlier
1874 // with their real values. If we saw a METADATA_VALUE record then we
1875 // would have set the MetadataList size to the number specified in that
1876 // record, to support parsing function-level metadata first, and we need
1877 // to reset back to 0 to fill the MetadataList in with the parsed module
1878 // The function-level metadata parsing should have reset the MetadataList
1879 // size back to the value reported by the METADATA_VALUE record, saved in
1881 assert(NumModuleMDs == MetadataList.size() &&
1882 "Expected MetadataList to only contain module level values");
1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1887 return error("Invalid record");
1889 SmallVector<uint64_t, 64> Record;
1891 auto getMD = [&](unsigned ID) -> Metadata * {
1892 return MetadataList.getValueFwdRef(ID);
1894 auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1896 return getMD(ID - 1);
1899 auto getMDString = [&](unsigned ID) -> MDString *{
1900 // This requires that the ID is not really a forward reference. In
1901 // particular, the MDString must already have been resolved.
1902 return cast_or_null<MDString>(getMDOrNull(ID));
1905 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \
1906 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1908 // Read all the records.
1910 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1912 switch (Entry.Kind) {
1913 case BitstreamEntry::SubBlock: // Handled for us already.
1914 case BitstreamEntry::Error:
1915 return error("Malformed block");
1916 case BitstreamEntry::EndBlock:
1917 MetadataList.tryToResolveCycles();
1918 assert((!(ModuleLevel && SeenModuleValuesRecord) ||
1919 NumModuleMDs == MetadataList.size()) &&
1920 "Inconsistent bitcode: METADATA_VALUES mismatch");
1921 return std::error_code();
1922 case BitstreamEntry::Record:
1923 // The interesting case.
1929 unsigned Code = Stream.readRecord(Entry.ID, Record);
1930 bool IsDistinct = false;
1932 default: // Default behavior: ignore.
1934 case bitc::METADATA_NAME: {
1935 // Read name of the named metadata.
1936 SmallString<8> Name(Record.begin(), Record.end());
1938 Code = Stream.ReadCode();
1940 unsigned NextBitCode = Stream.readRecord(Code, Record);
1941 if (NextBitCode != bitc::METADATA_NAMED_NODE)
1942 return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1944 // Read named metadata elements.
1945 unsigned Size = Record.size();
1946 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1947 for (unsigned i = 0; i != Size; ++i) {
1949 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i]));
1951 return error("Invalid record");
1952 NMD->addOperand(MD);
1956 case bitc::METADATA_OLD_FN_NODE: {
1957 // FIXME: Remove in 4.0.
1958 // This is a LocalAsMetadata record, the only type of function-local
1960 if (Record.size() % 2 == 1)
1961 return error("Invalid record");
1963 // If this isn't a LocalAsMetadata record, we're dropping it. This used
1964 // to be legal, but there's no upgrade path.
1965 auto dropRecord = [&] {
1966 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
1968 if (Record.size() != 2) {
1973 Type *Ty = getTypeByID(Record[0]);
1974 if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1979 MetadataList.assignValue(
1980 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1984 case bitc::METADATA_OLD_NODE: {
1985 // FIXME: Remove in 4.0.
1986 if (Record.size() % 2 == 1)
1987 return error("Invalid record");
1989 unsigned Size = Record.size();
1990 SmallVector<Metadata *, 8> Elts;
1991 for (unsigned i = 0; i != Size; i += 2) {
1992 Type *Ty = getTypeByID(Record[i]);
1994 return error("Invalid record");
1995 if (Ty->isMetadataTy())
1996 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1]));
1997 else if (!Ty->isVoidTy()) {
1999 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2000 assert(isa<ConstantAsMetadata>(MD) &&
2001 "Expected non-function-local metadata");
2004 Elts.push_back(nullptr);
2006 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2009 case bitc::METADATA_VALUE: {
2010 if (Record.size() != 2)
2011 return error("Invalid record");
2013 Type *Ty = getTypeByID(Record[0]);
2014 if (Ty->isMetadataTy() || Ty->isVoidTy())
2015 return error("Invalid record");
2017 MetadataList.assignValue(
2018 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2022 case bitc::METADATA_DISTINCT_NODE:
2025 case bitc::METADATA_NODE: {
2026 SmallVector<Metadata *, 8> Elts;
2027 Elts.reserve(Record.size());
2028 for (unsigned ID : Record)
2029 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr);
2030 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2031 : MDNode::get(Context, Elts),
2035 case bitc::METADATA_LOCATION: {
2036 if (Record.size() != 5)
2037 return error("Invalid record");
2039 unsigned Line = Record[1];
2040 unsigned Column = Record[2];
2041 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3]));
2042 Metadata *InlinedAt =
2043 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr;
2044 MetadataList.assignValue(
2045 GET_OR_DISTINCT(DILocation, Record[0],
2046 (Context, Line, Column, Scope, InlinedAt)),
2050 case bitc::METADATA_GENERIC_DEBUG: {
2051 if (Record.size() < 4)
2052 return error("Invalid record");
2054 unsigned Tag = Record[1];
2055 unsigned Version = Record[2];
2057 if (Tag >= 1u << 16 || Version != 0)
2058 return error("Invalid record");
2060 auto *Header = getMDString(Record[3]);
2061 SmallVector<Metadata *, 8> DwarfOps;
2062 for (unsigned I = 4, E = Record.size(); I != E; ++I)
2064 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr);
2065 MetadataList.assignValue(
2066 GET_OR_DISTINCT(GenericDINode, Record[0],
2067 (Context, Tag, Header, DwarfOps)),
2071 case bitc::METADATA_SUBRANGE: {
2072 if (Record.size() != 3)
2073 return error("Invalid record");
2075 MetadataList.assignValue(
2076 GET_OR_DISTINCT(DISubrange, Record[0],
2077 (Context, Record[1], unrotateSign(Record[2]))),
2081 case bitc::METADATA_ENUMERATOR: {
2082 if (Record.size() != 3)
2083 return error("Invalid record");
2085 MetadataList.assignValue(
2087 DIEnumerator, Record[0],
2088 (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2092 case bitc::METADATA_BASIC_TYPE: {
2093 if (Record.size() != 6)
2094 return error("Invalid record");
2096 MetadataList.assignValue(
2097 GET_OR_DISTINCT(DIBasicType, Record[0],
2098 (Context, Record[1], getMDString(Record[2]),
2099 Record[3], Record[4], Record[5])),
2103 case bitc::METADATA_DERIVED_TYPE: {
2104 if (Record.size() != 12)
2105 return error("Invalid record");
2107 MetadataList.assignValue(
2108 GET_OR_DISTINCT(DIDerivedType, Record[0],
2109 (Context, Record[1], getMDString(Record[2]),
2110 getMDOrNull(Record[3]), Record[4],
2111 getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2112 Record[7], Record[8], Record[9], Record[10],
2113 getMDOrNull(Record[11]))),
2117 case bitc::METADATA_COMPOSITE_TYPE: {
2118 if (Record.size() != 16)
2119 return error("Invalid record");
2121 MetadataList.assignValue(
2122 GET_OR_DISTINCT(DICompositeType, Record[0],
2123 (Context, Record[1], getMDString(Record[2]),
2124 getMDOrNull(Record[3]), Record[4],
2125 getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2126 Record[7], Record[8], Record[9], Record[10],
2127 getMDOrNull(Record[11]), Record[12],
2128 getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2129 getMDString(Record[15]))),
2133 case bitc::METADATA_SUBROUTINE_TYPE: {
2134 if (Record.size() != 3)
2135 return error("Invalid record");
2137 MetadataList.assignValue(
2138 GET_OR_DISTINCT(DISubroutineType, Record[0],
2139 (Context, Record[1], getMDOrNull(Record[2]))),
2144 case bitc::METADATA_MODULE: {
2145 if (Record.size() != 6)
2146 return error("Invalid record");
2148 MetadataList.assignValue(
2149 GET_OR_DISTINCT(DIModule, Record[0],
2150 (Context, getMDOrNull(Record[1]),
2151 getMDString(Record[2]), getMDString(Record[3]),
2152 getMDString(Record[4]), getMDString(Record[5]))),
2157 case bitc::METADATA_FILE: {
2158 if (Record.size() != 3)
2159 return error("Invalid record");
2161 MetadataList.assignValue(
2162 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2163 getMDString(Record[2]))),
2167 case bitc::METADATA_COMPILE_UNIT: {
2168 if (Record.size() < 14 || Record.size() > 16)
2169 return error("Invalid record");
2171 // Ignore Record[0], which indicates whether this compile unit is
2172 // distinct. It's always distinct.
2173 MetadataList.assignValue(
2174 DICompileUnit::getDistinct(
2175 Context, Record[1], getMDOrNull(Record[2]),
2176 getMDString(Record[3]), Record[4], getMDString(Record[5]),
2177 Record[6], getMDString(Record[7]), Record[8],
2178 getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2179 getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2180 getMDOrNull(Record[13]),
2181 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]),
2182 Record.size() <= 14 ? 0 : Record[14]),
2186 case bitc::METADATA_SUBPROGRAM: {
2187 if (Record.size() != 18 && Record.size() != 19)
2188 return error("Invalid record");
2190 bool HasFn = Record.size() == 19;
2191 DISubprogram *SP = GET_OR_DISTINCT(
2193 Record[0] || Record[8], // All definitions should be distinct.
2194 (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2195 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2196 getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2197 getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2198 Record[14], getMDOrNull(Record[15 + HasFn]),
2199 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2200 MetadataList.assignValue(SP, NextMetadataNo++);
2202 // Upgrade sp->function mapping to function->sp mapping.
2203 if (HasFn && Record[15]) {
2204 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2205 if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2206 if (F->isMaterializable())
2207 // Defer until materialized; unmaterialized functions may not have
2209 FunctionsWithSPs[F] = SP;
2210 else if (!F->empty())
2211 F->setSubprogram(SP);
2216 case bitc::METADATA_LEXICAL_BLOCK: {
2217 if (Record.size() != 5)
2218 return error("Invalid record");
2220 MetadataList.assignValue(
2221 GET_OR_DISTINCT(DILexicalBlock, Record[0],
2222 (Context, getMDOrNull(Record[1]),
2223 getMDOrNull(Record[2]), Record[3], Record[4])),
2227 case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2228 if (Record.size() != 4)
2229 return error("Invalid record");
2231 MetadataList.assignValue(
2232 GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2233 (Context, getMDOrNull(Record[1]),
2234 getMDOrNull(Record[2]), Record[3])),
2238 case bitc::METADATA_NAMESPACE: {
2239 if (Record.size() != 5)
2240 return error("Invalid record");
2242 MetadataList.assignValue(
2243 GET_OR_DISTINCT(DINamespace, Record[0],
2244 (Context, getMDOrNull(Record[1]),
2245 getMDOrNull(Record[2]), getMDString(Record[3]),
2250 case bitc::METADATA_MACRO: {
2251 if (Record.size() != 5)
2252 return error("Invalid record");
2254 MetadataList.assignValue(
2255 GET_OR_DISTINCT(DIMacro, Record[0],
2256 (Context, Record[1], Record[2],
2257 getMDString(Record[3]), getMDString(Record[4]))),
2261 case bitc::METADATA_MACRO_FILE: {
2262 if (Record.size() != 5)
2263 return error("Invalid record");
2265 MetadataList.assignValue(
2266 GET_OR_DISTINCT(DIMacroFile, Record[0],
2267 (Context, Record[1], Record[2],
2268 getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2272 case bitc::METADATA_TEMPLATE_TYPE: {
2273 if (Record.size() != 3)
2274 return error("Invalid record");
2276 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2278 (Context, getMDString(Record[1]),
2279 getMDOrNull(Record[2]))),
2283 case bitc::METADATA_TEMPLATE_VALUE: {
2284 if (Record.size() != 5)
2285 return error("Invalid record");
2287 MetadataList.assignValue(
2288 GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2289 (Context, Record[1], getMDString(Record[2]),
2290 getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2294 case bitc::METADATA_GLOBAL_VAR: {
2295 if (Record.size() != 11)
2296 return error("Invalid record");
2298 MetadataList.assignValue(
2299 GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2300 (Context, getMDOrNull(Record[1]),
2301 getMDString(Record[2]), getMDString(Record[3]),
2302 getMDOrNull(Record[4]), Record[5],
2303 getMDOrNull(Record[6]), Record[7], Record[8],
2304 getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2308 case bitc::METADATA_LOCAL_VAR: {
2309 // 10th field is for the obseleted 'inlinedAt:' field.
2310 if (Record.size() < 8 || Record.size() > 10)
2311 return error("Invalid record");
2313 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2314 // DW_TAG_arg_variable.
2315 bool HasTag = Record.size() > 8;
2316 MetadataList.assignValue(
2317 GET_OR_DISTINCT(DILocalVariable, Record[0],
2318 (Context, getMDOrNull(Record[1 + HasTag]),
2319 getMDString(Record[2 + HasTag]),
2320 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2321 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2322 Record[7 + HasTag])),
2326 case bitc::METADATA_EXPRESSION: {
2327 if (Record.size() < 1)
2328 return error("Invalid record");
2330 MetadataList.assignValue(
2331 GET_OR_DISTINCT(DIExpression, Record[0],
2332 (Context, makeArrayRef(Record).slice(1))),
2336 case bitc::METADATA_OBJC_PROPERTY: {
2337 if (Record.size() != 8)
2338 return error("Invalid record");
2340 MetadataList.assignValue(
2341 GET_OR_DISTINCT(DIObjCProperty, Record[0],
2342 (Context, getMDString(Record[1]),
2343 getMDOrNull(Record[2]), Record[3],
2344 getMDString(Record[4]), getMDString(Record[5]),
2345 Record[6], getMDOrNull(Record[7]))),
2349 case bitc::METADATA_IMPORTED_ENTITY: {
2350 if (Record.size() != 6)
2351 return error("Invalid record");
2353 MetadataList.assignValue(
2354 GET_OR_DISTINCT(DIImportedEntity, Record[0],
2355 (Context, Record[1], getMDOrNull(Record[2]),
2356 getMDOrNull(Record[3]), Record[4],
2357 getMDString(Record[5]))),
2361 case bitc::METADATA_STRING: {
2362 std::string String(Record.begin(), Record.end());
2363 llvm::UpgradeMDStringConstant(String);
2364 Metadata *MD = MDString::get(Context, String);
2365 MetadataList.assignValue(MD, NextMetadataNo++);
2368 case bitc::METADATA_KIND: {
2369 // Support older bitcode files that had METADATA_KIND records in a
2370 // block with METADATA_BLOCK_ID.
2371 if (std::error_code EC = parseMetadataKindRecord(Record))
2377 #undef GET_OR_DISTINCT
2380 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2381 std::error_code BitcodeReader::parseMetadataKinds() {
2382 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2383 return error("Invalid record");
2385 SmallVector<uint64_t, 64> Record;
2387 // Read all the records.
2389 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2391 switch (Entry.Kind) {
2392 case BitstreamEntry::SubBlock: // Handled for us already.
2393 case BitstreamEntry::Error:
2394 return error("Malformed block");
2395 case BitstreamEntry::EndBlock:
2396 return std::error_code();
2397 case BitstreamEntry::Record:
2398 // The interesting case.
2404 unsigned Code = Stream.readRecord(Entry.ID, Record);
2406 default: // Default behavior: ignore.
2408 case bitc::METADATA_KIND: {
2409 if (std::error_code EC = parseMetadataKindRecord(Record))
2417 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2419 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2424 // There is no such thing as -0 with integers. "-0" really means MININT.
2428 /// Resolve all of the initializers for global values and aliases that we can.
2429 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2430 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2431 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2432 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2433 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2434 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2436 GlobalInitWorklist.swap(GlobalInits);
2437 AliasInitWorklist.swap(AliasInits);
2438 FunctionPrefixWorklist.swap(FunctionPrefixes);
2439 FunctionPrologueWorklist.swap(FunctionPrologues);
2440 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2442 while (!GlobalInitWorklist.empty()) {
2443 unsigned ValID = GlobalInitWorklist.back().second;
2444 if (ValID >= ValueList.size()) {
2445 // Not ready to resolve this yet, it requires something later in the file.
2446 GlobalInits.push_back(GlobalInitWorklist.back());
2448 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2449 GlobalInitWorklist.back().first->setInitializer(C);
2451 return error("Expected a constant");
2453 GlobalInitWorklist.pop_back();
2456 while (!AliasInitWorklist.empty()) {
2457 unsigned ValID = AliasInitWorklist.back().second;
2458 if (ValID >= ValueList.size()) {
2459 AliasInits.push_back(AliasInitWorklist.back());
2461 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2463 return error("Expected a constant");
2464 GlobalAlias *Alias = AliasInitWorklist.back().first;
2465 if (C->getType() != Alias->getType())
2466 return error("Alias and aliasee types don't match");
2467 Alias->setAliasee(C);
2469 AliasInitWorklist.pop_back();
2472 while (!FunctionPrefixWorklist.empty()) {
2473 unsigned ValID = FunctionPrefixWorklist.back().second;
2474 if (ValID >= ValueList.size()) {
2475 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2477 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2478 FunctionPrefixWorklist.back().first->setPrefixData(C);
2480 return error("Expected a constant");
2482 FunctionPrefixWorklist.pop_back();
2485 while (!FunctionPrologueWorklist.empty()) {
2486 unsigned ValID = FunctionPrologueWorklist.back().second;
2487 if (ValID >= ValueList.size()) {
2488 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2490 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2491 FunctionPrologueWorklist.back().first->setPrologueData(C);
2493 return error("Expected a constant");
2495 FunctionPrologueWorklist.pop_back();
2498 while (!FunctionPersonalityFnWorklist.empty()) {
2499 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2500 if (ValID >= ValueList.size()) {
2501 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2503 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2504 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2506 return error("Expected a constant");
2508 FunctionPersonalityFnWorklist.pop_back();
2511 return std::error_code();
2514 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2515 SmallVector<uint64_t, 8> Words(Vals.size());
2516 std::transform(Vals.begin(), Vals.end(), Words.begin(),
2517 BitcodeReader::decodeSignRotatedValue);
2519 return APInt(TypeBits, Words);
2522 std::error_code BitcodeReader::parseConstants() {
2523 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2524 return error("Invalid record");
2526 SmallVector<uint64_t, 64> Record;
2528 // Read all the records for this value table.
2529 Type *CurTy = Type::getInt32Ty(Context);
2530 unsigned NextCstNo = ValueList.size();
2532 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2534 switch (Entry.Kind) {
2535 case BitstreamEntry::SubBlock: // Handled for us already.
2536 case BitstreamEntry::Error:
2537 return error("Malformed block");
2538 case BitstreamEntry::EndBlock:
2539 if (NextCstNo != ValueList.size())
2540 return error("Invalid ronstant reference");
2542 // Once all the constants have been read, go through and resolve forward
2544 ValueList.resolveConstantForwardRefs();
2545 return std::error_code();
2546 case BitstreamEntry::Record:
2547 // The interesting case.
2554 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2556 default: // Default behavior: unknown constant
2557 case bitc::CST_CODE_UNDEF: // UNDEF
2558 V = UndefValue::get(CurTy);
2560 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2562 return error("Invalid record");
2563 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2564 return error("Invalid record");
2565 CurTy = TypeList[Record[0]];
2566 continue; // Skip the ValueList manipulation.
2567 case bitc::CST_CODE_NULL: // NULL
2568 V = Constant::getNullValue(CurTy);
2570 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2571 if (!CurTy->isIntegerTy() || Record.empty())
2572 return error("Invalid record");
2573 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2575 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2576 if (!CurTy->isIntegerTy() || Record.empty())
2577 return error("Invalid record");
2580 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2581 V = ConstantInt::get(Context, VInt);
2585 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2587 return error("Invalid record");
2588 if (CurTy->isHalfTy())
2589 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2590 APInt(16, (uint16_t)Record[0])));
2591 else if (CurTy->isFloatTy())
2592 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2593 APInt(32, (uint32_t)Record[0])));
2594 else if (CurTy->isDoubleTy())
2595 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2596 APInt(64, Record[0])));
2597 else if (CurTy->isX86_FP80Ty()) {
2598 // Bits are not stored the same way as a normal i80 APInt, compensate.
2599 uint64_t Rearrange[2];
2600 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2601 Rearrange[1] = Record[0] >> 48;
2602 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2603 APInt(80, Rearrange)));
2604 } else if (CurTy->isFP128Ty())
2605 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2606 APInt(128, Record)));
2607 else if (CurTy->isPPC_FP128Ty())
2608 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2609 APInt(128, Record)));
2611 V = UndefValue::get(CurTy);
2615 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2617 return error("Invalid record");
2619 unsigned Size = Record.size();
2620 SmallVector<Constant*, 16> Elts;
2622 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2623 for (unsigned i = 0; i != Size; ++i)
2624 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2625 STy->getElementType(i)));
2626 V = ConstantStruct::get(STy, Elts);
2627 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2628 Type *EltTy = ATy->getElementType();
2629 for (unsigned i = 0; i != Size; ++i)
2630 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2631 V = ConstantArray::get(ATy, Elts);
2632 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2633 Type *EltTy = VTy->getElementType();
2634 for (unsigned i = 0; i != Size; ++i)
2635 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2636 V = ConstantVector::get(Elts);
2638 V = UndefValue::get(CurTy);
2642 case bitc::CST_CODE_STRING: // STRING: [values]
2643 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2645 return error("Invalid record");
2647 SmallString<16> Elts(Record.begin(), Record.end());
2648 V = ConstantDataArray::getString(Context, Elts,
2649 BitCode == bitc::CST_CODE_CSTRING);
2652 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2654 return error("Invalid record");
2656 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2657 unsigned Size = Record.size();
2659 if (EltTy->isIntegerTy(8)) {
2660 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2661 if (isa<VectorType>(CurTy))
2662 V = ConstantDataVector::get(Context, Elts);
2664 V = ConstantDataArray::get(Context, Elts);
2665 } else if (EltTy->isIntegerTy(16)) {
2666 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2667 if (isa<VectorType>(CurTy))
2668 V = ConstantDataVector::get(Context, Elts);
2670 V = ConstantDataArray::get(Context, Elts);
2671 } else if (EltTy->isIntegerTy(32)) {
2672 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2673 if (isa<VectorType>(CurTy))
2674 V = ConstantDataVector::get(Context, Elts);
2676 V = ConstantDataArray::get(Context, Elts);
2677 } else if (EltTy->isIntegerTy(64)) {
2678 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2679 if (isa<VectorType>(CurTy))
2680 V = ConstantDataVector::get(Context, Elts);
2682 V = ConstantDataArray::get(Context, Elts);
2683 } else if (EltTy->isFloatTy()) {
2684 SmallVector<float, 16> Elts(Size);
2685 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
2686 if (isa<VectorType>(CurTy))
2687 V = ConstantDataVector::get(Context, Elts);
2689 V = ConstantDataArray::get(Context, Elts);
2690 } else if (EltTy->isDoubleTy()) {
2691 SmallVector<double, 16> Elts(Size);
2692 std::transform(Record.begin(), Record.end(), Elts.begin(),
2694 if (isa<VectorType>(CurTy))
2695 V = ConstantDataVector::get(Context, Elts);
2697 V = ConstantDataArray::get(Context, Elts);
2699 return error("Invalid type for value");
2704 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2705 if (Record.size() < 3)
2706 return error("Invalid record");
2707 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2709 V = UndefValue::get(CurTy); // Unknown binop.
2711 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2712 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2714 if (Record.size() >= 4) {
2715 if (Opc == Instruction::Add ||
2716 Opc == Instruction::Sub ||
2717 Opc == Instruction::Mul ||
2718 Opc == Instruction::Shl) {
2719 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2720 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2721 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2722 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2723 } else if (Opc == Instruction::SDiv ||
2724 Opc == Instruction::UDiv ||
2725 Opc == Instruction::LShr ||
2726 Opc == Instruction::AShr) {
2727 if (Record[3] & (1 << bitc::PEO_EXACT))
2728 Flags |= SDivOperator::IsExact;
2731 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2735 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2736 if (Record.size() < 3)
2737 return error("Invalid record");
2738 int Opc = getDecodedCastOpcode(Record[0]);
2740 V = UndefValue::get(CurTy); // Unknown cast.
2742 Type *OpTy = getTypeByID(Record[1]);
2744 return error("Invalid record");
2745 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2746 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2747 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2751 case bitc::CST_CODE_CE_INBOUNDS_GEP:
2752 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
2754 Type *PointeeType = nullptr;
2755 if (Record.size() % 2)
2756 PointeeType = getTypeByID(Record[OpNum++]);
2757 SmallVector<Constant*, 16> Elts;
2758 while (OpNum != Record.size()) {
2759 Type *ElTy = getTypeByID(Record[OpNum++]);
2761 return error("Invalid record");
2762 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2767 cast<SequentialType>(Elts[0]->getType()->getScalarType())
2769 return error("Explicit gep operator type does not match pointee type "
2770 "of pointer operand");
2772 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2773 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2775 bitc::CST_CODE_CE_INBOUNDS_GEP);
2778 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2779 if (Record.size() < 3)
2780 return error("Invalid record");
2782 Type *SelectorTy = Type::getInt1Ty(Context);
2784 // The selector might be an i1 or an <n x i1>
2785 // Get the type from the ValueList before getting a forward ref.
2786 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2787 if (Value *V = ValueList[Record[0]])
2788 if (SelectorTy != V->getType())
2789 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2791 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2793 ValueList.getConstantFwdRef(Record[1],CurTy),
2794 ValueList.getConstantFwdRef(Record[2],CurTy));
2797 case bitc::CST_CODE_CE_EXTRACTELT
2798 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2799 if (Record.size() < 3)
2800 return error("Invalid record");
2802 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2804 return error("Invalid record");
2805 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2806 Constant *Op1 = nullptr;
2807 if (Record.size() == 4) {
2808 Type *IdxTy = getTypeByID(Record[2]);
2810 return error("Invalid record");
2811 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2812 } else // TODO: Remove with llvm 4.0
2813 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2815 return error("Invalid record");
2816 V = ConstantExpr::getExtractElement(Op0, Op1);
2819 case bitc::CST_CODE_CE_INSERTELT
2820 : { // CE_INSERTELT: [opval, opval, opty, opval]
2821 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2822 if (Record.size() < 3 || !OpTy)
2823 return error("Invalid record");
2824 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2825 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2826 OpTy->getElementType());
2827 Constant *Op2 = nullptr;
2828 if (Record.size() == 4) {
2829 Type *IdxTy = getTypeByID(Record[2]);
2831 return error("Invalid record");
2832 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2833 } else // TODO: Remove with llvm 4.0
2834 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2836 return error("Invalid record");
2837 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2840 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2841 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2842 if (Record.size() < 3 || !OpTy)
2843 return error("Invalid record");
2844 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2845 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2846 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2847 OpTy->getNumElements());
2848 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2849 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2852 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2853 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2855 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2856 if (Record.size() < 4 || !RTy || !OpTy)
2857 return error("Invalid record");
2858 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2859 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2860 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2861 RTy->getNumElements());
2862 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2863 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2866 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2867 if (Record.size() < 4)
2868 return error("Invalid record");
2869 Type *OpTy = getTypeByID(Record[0]);
2871 return error("Invalid record");
2872 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2873 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2875 if (OpTy->isFPOrFPVectorTy())
2876 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2878 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2881 // This maintains backward compatibility, pre-asm dialect keywords.
2882 // FIXME: Remove with the 4.0 release.
2883 case bitc::CST_CODE_INLINEASM_OLD: {
2884 if (Record.size() < 2)
2885 return error("Invalid record");
2886 std::string AsmStr, ConstrStr;
2887 bool HasSideEffects = Record[0] & 1;
2888 bool IsAlignStack = Record[0] >> 1;
2889 unsigned AsmStrSize = Record[1];
2890 if (2+AsmStrSize >= Record.size())
2891 return error("Invalid record");
2892 unsigned ConstStrSize = Record[2+AsmStrSize];
2893 if (3+AsmStrSize+ConstStrSize > Record.size())
2894 return error("Invalid record");
2896 for (unsigned i = 0; i != AsmStrSize; ++i)
2897 AsmStr += (char)Record[2+i];
2898 for (unsigned i = 0; i != ConstStrSize; ++i)
2899 ConstrStr += (char)Record[3+AsmStrSize+i];
2900 PointerType *PTy = cast<PointerType>(CurTy);
2901 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2902 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2905 // This version adds support for the asm dialect keywords (e.g.,
2907 case bitc::CST_CODE_INLINEASM: {
2908 if (Record.size() < 2)
2909 return error("Invalid record");
2910 std::string AsmStr, ConstrStr;
2911 bool HasSideEffects = Record[0] & 1;
2912 bool IsAlignStack = (Record[0] >> 1) & 1;
2913 unsigned AsmDialect = Record[0] >> 2;
2914 unsigned AsmStrSize = Record[1];
2915 if (2+AsmStrSize >= Record.size())
2916 return error("Invalid record");
2917 unsigned ConstStrSize = Record[2+AsmStrSize];
2918 if (3+AsmStrSize+ConstStrSize > Record.size())
2919 return error("Invalid record");
2921 for (unsigned i = 0; i != AsmStrSize; ++i)
2922 AsmStr += (char)Record[2+i];
2923 for (unsigned i = 0; i != ConstStrSize; ++i)
2924 ConstrStr += (char)Record[3+AsmStrSize+i];
2925 PointerType *PTy = cast<PointerType>(CurTy);
2926 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2927 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2928 InlineAsm::AsmDialect(AsmDialect));
2931 case bitc::CST_CODE_BLOCKADDRESS:{
2932 if (Record.size() < 3)
2933 return error("Invalid record");
2934 Type *FnTy = getTypeByID(Record[0]);
2936 return error("Invalid record");
2938 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2940 return error("Invalid record");
2942 // If the function is already parsed we can insert the block address right
2945 unsigned BBID = Record[2];
2947 // Invalid reference to entry block.
2948 return error("Invalid ID");
2950 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2951 for (size_t I = 0, E = BBID; I != E; ++I) {
2953 return error("Invalid ID");
2958 // Otherwise insert a placeholder and remember it so it can be inserted
2959 // when the function is parsed.
2960 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2962 BasicBlockFwdRefQueue.push_back(Fn);
2963 if (FwdBBs.size() < BBID + 1)
2964 FwdBBs.resize(BBID + 1);
2966 FwdBBs[BBID] = BasicBlock::Create(Context);
2969 V = BlockAddress::get(Fn, BB);
2974 ValueList.assignValue(V, NextCstNo);
2979 std::error_code BitcodeReader::parseUseLists() {
2980 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2981 return error("Invalid record");
2983 // Read all the records.
2984 SmallVector<uint64_t, 64> Record;
2986 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2988 switch (Entry.Kind) {
2989 case BitstreamEntry::SubBlock: // Handled for us already.
2990 case BitstreamEntry::Error:
2991 return error("Malformed block");
2992 case BitstreamEntry::EndBlock:
2993 return std::error_code();
2994 case BitstreamEntry::Record:
2995 // The interesting case.
2999 // Read a use list record.
3002 switch (Stream.readRecord(Entry.ID, Record)) {
3003 default: // Default behavior: unknown type.
3005 case bitc::USELIST_CODE_BB:
3008 case bitc::USELIST_CODE_DEFAULT: {
3009 unsigned RecordLength = Record.size();
3010 if (RecordLength < 3)
3011 // Records should have at least an ID and two indexes.
3012 return error("Invalid record");
3013 unsigned ID = Record.back();
3018 assert(ID < FunctionBBs.size() && "Basic block not found");
3019 V = FunctionBBs[ID];
3022 unsigned NumUses = 0;
3023 SmallDenseMap<const Use *, unsigned, 16> Order;
3024 for (const Use &U : V->materialized_uses()) {
3025 if (++NumUses > Record.size())
3027 Order[&U] = Record[NumUses - 1];
3029 if (Order.size() != Record.size() || NumUses > Record.size())
3030 // Mismatches can happen if the functions are being materialized lazily
3031 // (out-of-order), or a value has been upgraded.
3034 V->sortUseList([&](const Use &L, const Use &R) {
3035 return Order.lookup(&L) < Order.lookup(&R);
3043 /// When we see the block for metadata, remember where it is and then skip it.
3044 /// This lets us lazily deserialize the metadata.
3045 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3046 // Save the current stream state.
3047 uint64_t CurBit = Stream.GetCurrentBitNo();
3048 DeferredMetadataInfo.push_back(CurBit);
3050 // Skip over the block for now.
3051 if (Stream.SkipBlock())
3052 return error("Invalid record");
3053 return std::error_code();
3056 std::error_code BitcodeReader::materializeMetadata() {
3057 for (uint64_t BitPos : DeferredMetadataInfo) {
3058 // Move the bit stream to the saved position.
3059 Stream.JumpToBit(BitPos);
3060 if (std::error_code EC = parseMetadata(true))
3063 DeferredMetadataInfo.clear();
3064 return std::error_code();
3067 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3069 void BitcodeReader::saveMetadataList(
3070 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) {
3071 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) {
3072 Metadata *MD = MetadataList[ID];
3073 auto *N = dyn_cast_or_null<MDNode>(MD);
3074 assert((!N || (N->isResolved() || N->isTemporary())) &&
3075 "Found non-resolved non-temp MDNode while saving metadata");
3076 // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3077 // Note that in the !OnlyTempMD case we need to save all Metadata, not
3078 // just MDNode, as we may have references to other types of module-level
3079 // metadata (e.g. ValueAsMetadata) from instructions.
3080 if (!OnlyTempMD || (N && N->isTemporary())) {
3081 // Will call this after materializing each function, in order to
3082 // handle remapping of the function's instructions/metadata.
3083 // See if we already have an entry in that case.
3084 if (OnlyTempMD && MetadataToIDs.count(MD)) {
3085 assert(MetadataToIDs[MD] == ID && "Inconsistent metadata value id");
3088 MetadataToIDs[MD] = ID;
3093 /// When we see the block for a function body, remember where it is and then
3094 /// skip it. This lets us lazily deserialize the functions.
3095 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3096 // Get the function we are talking about.
3097 if (FunctionsWithBodies.empty())
3098 return error("Insufficient function protos");
3100 Function *Fn = FunctionsWithBodies.back();
3101 FunctionsWithBodies.pop_back();
3103 // Save the current stream state.
3104 uint64_t CurBit = Stream.GetCurrentBitNo();
3106 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3107 "Mismatch between VST and scanned function offsets");
3108 DeferredFunctionInfo[Fn] = CurBit;
3110 // Skip over the function block for now.
3111 if (Stream.SkipBlock())
3112 return error("Invalid record");
3113 return std::error_code();
3116 std::error_code BitcodeReader::globalCleanup() {
3117 // Patch the initializers for globals and aliases up.
3118 resolveGlobalAndAliasInits();
3119 if (!GlobalInits.empty() || !AliasInits.empty())
3120 return error("Malformed global initializer set");
3122 // Look for intrinsic functions which need to be upgraded at some point
3123 for (Function &F : *TheModule) {
3125 if (UpgradeIntrinsicFunction(&F, NewFn))
3126 UpgradedIntrinsics[&F] = NewFn;
3129 // Look for global variables which need to be renamed.
3130 for (GlobalVariable &GV : TheModule->globals())
3131 UpgradeGlobalVariable(&GV);
3133 // Force deallocation of memory for these vectors to favor the client that
3134 // want lazy deserialization.
3135 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3136 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3137 return std::error_code();
3140 /// Support for lazy parsing of function bodies. This is required if we
3141 /// either have an old bitcode file without a VST forward declaration record,
3142 /// or if we have an anonymous function being materialized, since anonymous
3143 /// functions do not have a name and are therefore not in the VST.
3144 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3145 Stream.JumpToBit(NextUnreadBit);
3147 if (Stream.AtEndOfStream())
3148 return error("Could not find function in stream");
3150 if (!SeenFirstFunctionBody)
3151 return error("Trying to materialize functions before seeing function blocks");
3153 // An old bitcode file with the symbol table at the end would have
3154 // finished the parse greedily.
3155 assert(SeenValueSymbolTable);
3157 SmallVector<uint64_t, 64> Record;
3160 BitstreamEntry Entry = Stream.advance();
3161 switch (Entry.Kind) {
3163 return error("Expect SubBlock");
3164 case BitstreamEntry::SubBlock:
3167 return error("Expect function block");
3168 case bitc::FUNCTION_BLOCK_ID:
3169 if (std::error_code EC = rememberAndSkipFunctionBody())
3171 NextUnreadBit = Stream.GetCurrentBitNo();
3172 return std::error_code();
3178 std::error_code BitcodeReader::parseBitcodeVersion() {
3179 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3180 return error("Invalid record");
3182 // Read all the records.
3183 SmallVector<uint64_t, 64> Record;
3185 BitstreamEntry Entry = Stream.advance();
3187 switch (Entry.Kind) {
3189 case BitstreamEntry::Error:
3190 return error("Malformed block");
3191 case BitstreamEntry::EndBlock:
3192 return std::error_code();
3193 case BitstreamEntry::Record:
3194 // The interesting case.
3200 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3202 default: // Default behavior: reject
3203 return error("Invalid value");
3204 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x
3206 convertToString(Record, 0, ProducerIdentification);
3209 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
3210 unsigned epoch = (unsigned)Record[0];
3211 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3213 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3214 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3221 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3222 bool ShouldLazyLoadMetadata) {
3224 Stream.JumpToBit(ResumeBit);
3225 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3226 return error("Invalid record");
3228 SmallVector<uint64_t, 64> Record;
3229 std::vector<std::string> SectionTable;
3230 std::vector<std::string> GCTable;
3232 // Read all the records for this module.
3234 BitstreamEntry Entry = Stream.advance();
3236 switch (Entry.Kind) {
3237 case BitstreamEntry::Error:
3238 return error("Malformed block");
3239 case BitstreamEntry::EndBlock:
3240 return globalCleanup();
3242 case BitstreamEntry::SubBlock:
3244 default: // Skip unknown content.
3245 if (Stream.SkipBlock())
3246 return error("Invalid record");
3248 case bitc::BLOCKINFO_BLOCK_ID:
3249 if (Stream.ReadBlockInfoBlock())
3250 return error("Malformed block");
3252 case bitc::PARAMATTR_BLOCK_ID:
3253 if (std::error_code EC = parseAttributeBlock())
3256 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3257 if (std::error_code EC = parseAttributeGroupBlock())
3260 case bitc::TYPE_BLOCK_ID_NEW:
3261 if (std::error_code EC = parseTypeTable())
3264 case bitc::VALUE_SYMTAB_BLOCK_ID:
3265 if (!SeenValueSymbolTable) {
3266 // Either this is an old form VST without function index and an
3267 // associated VST forward declaration record (which would have caused
3268 // the VST to be jumped to and parsed before it was encountered
3269 // normally in the stream), or there were no function blocks to
3270 // trigger an earlier parsing of the VST.
3271 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3272 if (std::error_code EC = parseValueSymbolTable())
3274 SeenValueSymbolTable = true;
3276 // We must have had a VST forward declaration record, which caused
3277 // the parser to jump to and parse the VST earlier.
3278 assert(VSTOffset > 0);
3279 if (Stream.SkipBlock())
3280 return error("Invalid record");
3283 case bitc::CONSTANTS_BLOCK_ID:
3284 if (std::error_code EC = parseConstants())
3286 if (std::error_code EC = resolveGlobalAndAliasInits())
3289 case bitc::METADATA_BLOCK_ID:
3290 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3291 if (std::error_code EC = rememberAndSkipMetadata())
3295 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3296 if (std::error_code EC = parseMetadata(true))
3299 case bitc::METADATA_KIND_BLOCK_ID:
3300 if (std::error_code EC = parseMetadataKinds())
3303 case bitc::FUNCTION_BLOCK_ID:
3304 // If this is the first function body we've seen, reverse the
3305 // FunctionsWithBodies list.
3306 if (!SeenFirstFunctionBody) {
3307 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3308 if (std::error_code EC = globalCleanup())
3310 SeenFirstFunctionBody = true;
3313 if (VSTOffset > 0) {
3314 // If we have a VST forward declaration record, make sure we
3315 // parse the VST now if we haven't already. It is needed to
3316 // set up the DeferredFunctionInfo vector for lazy reading.
3317 if (!SeenValueSymbolTable) {
3318 if (std::error_code EC =
3319 BitcodeReader::parseValueSymbolTable(VSTOffset))
3321 SeenValueSymbolTable = true;
3322 // Fall through so that we record the NextUnreadBit below.
3323 // This is necessary in case we have an anonymous function that
3324 // is later materialized. Since it will not have a VST entry we
3325 // need to fall back to the lazy parse to find its offset.
3327 // If we have a VST forward declaration record, but have already
3328 // parsed the VST (just above, when the first function body was
3329 // encountered here), then we are resuming the parse after
3330 // materializing functions. The ResumeBit points to the
3331 // start of the last function block recorded in the
3332 // DeferredFunctionInfo map. Skip it.
3333 if (Stream.SkipBlock())
3334 return error("Invalid record");
3339 // Support older bitcode files that did not have the function
3340 // index in the VST, nor a VST forward declaration record, as
3341 // well as anonymous functions that do not have VST entries.
3342 // Build the DeferredFunctionInfo vector on the fly.
3343 if (std::error_code EC = rememberAndSkipFunctionBody())
3346 // Suspend parsing when we reach the function bodies. Subsequent
3347 // materialization calls will resume it when necessary. If the bitcode
3348 // file is old, the symbol table will be at the end instead and will not
3349 // have been seen yet. In this case, just finish the parse now.
3350 if (SeenValueSymbolTable) {
3351 NextUnreadBit = Stream.GetCurrentBitNo();
3352 return std::error_code();
3355 case bitc::USELIST_BLOCK_ID:
3356 if (std::error_code EC = parseUseLists())
3359 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3360 if (std::error_code EC = parseOperandBundleTags())
3366 case BitstreamEntry::Record:
3367 // The interesting case.
3373 auto BitCode = Stream.readRecord(Entry.ID, Record);
3375 default: break; // Default behavior, ignore unknown content.
3376 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
3377 if (Record.size() < 1)
3378 return error("Invalid record");
3379 // Only version #0 and #1 are supported so far.
3380 unsigned module_version = Record[0];
3381 switch (module_version) {
3383 return error("Invalid value");
3385 UseRelativeIDs = false;
3388 UseRelativeIDs = true;
3393 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3395 if (convertToString(Record, 0, S))
3396 return error("Invalid record");
3397 TheModule->setTargetTriple(S);
3400 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3402 if (convertToString(Record, 0, S))
3403 return error("Invalid record");
3404 TheModule->setDataLayout(S);
3407 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3409 if (convertToString(Record, 0, S))
3410 return error("Invalid record");
3411 TheModule->setModuleInlineAsm(S);
3414 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3415 // FIXME: Remove in 4.0.
3417 if (convertToString(Record, 0, S))
3418 return error("Invalid record");
3422 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3424 if (convertToString(Record, 0, S))
3425 return error("Invalid record");
3426 SectionTable.push_back(S);
3429 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]