Replace push_back(Constructor(foo)) with emplace_back(foo) for non-trivial types
[oota-llvm.git] / lib / Bitcode / Reader / BitcodeReader.cpp
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Support/DataStream.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <deque>
37 using namespace llvm;
38
39 namespace {
40 enum {
41   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
42 };
43
44 class BitcodeReaderValueList {
45   std::vector<WeakVH> ValuePtrs;
46
47   /// ResolveConstants - As we resolve forward-referenced constants, we add
48   /// information about them to this vector.  This allows us to resolve them in
49   /// bulk instead of resolving each reference at a time.  See the code in
50   /// ResolveConstantForwardRefs for more information about this.
51   ///
52   /// The key of this vector is the placeholder constant, the value is the slot
53   /// number that holds the resolved value.
54   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
55   ResolveConstantsTy ResolveConstants;
56   LLVMContext &Context;
57 public:
58   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
59   ~BitcodeReaderValueList() {
60     assert(ResolveConstants.empty() && "Constants not resolved?");
61   }
62
63   // vector compatibility methods
64   unsigned size() const { return ValuePtrs.size(); }
65   void resize(unsigned N) { ValuePtrs.resize(N); }
66   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
67
68   void clear() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70     ValuePtrs.clear();
71   }
72
73   Value *operator[](unsigned i) const {
74     assert(i < ValuePtrs.size());
75     return ValuePtrs[i];
76   }
77
78   Value *back() const { return ValuePtrs.back(); }
79     void pop_back() { ValuePtrs.pop_back(); }
80   bool empty() const { return ValuePtrs.empty(); }
81   void shrinkTo(unsigned N) {
82     assert(N <= size() && "Invalid shrinkTo request!");
83     ValuePtrs.resize(N);
84   }
85
86   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
87   Value *getValueFwdRef(unsigned Idx, Type *Ty);
88
89   void AssignValue(Value *V, unsigned Idx);
90
91   /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
92   /// resolves any forward references.
93   void ResolveConstantForwardRefs();
94 };
95
96 class BitcodeReaderMDValueList {
97   unsigned NumFwdRefs;
98   bool AnyFwdRefs;
99   unsigned MinFwdRef;
100   unsigned MaxFwdRef;
101   std::vector<TrackingMDRef> MDValuePtrs;
102
103   LLVMContext &Context;
104 public:
105   BitcodeReaderMDValueList(LLVMContext &C)
106       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
107
108   // vector compatibility methods
109   unsigned size() const       { return MDValuePtrs.size(); }
110   void resize(unsigned N)     { MDValuePtrs.resize(N); }
111   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
112   void clear()                { MDValuePtrs.clear();  }
113   Metadata *back() const      { return MDValuePtrs.back(); }
114   void pop_back()             { MDValuePtrs.pop_back(); }
115   bool empty() const          { return MDValuePtrs.empty(); }
116
117   Metadata *operator[](unsigned i) const {
118     assert(i < MDValuePtrs.size());
119     return MDValuePtrs[i];
120   }
121
122   void shrinkTo(unsigned N) {
123     assert(N <= size() && "Invalid shrinkTo request!");
124     MDValuePtrs.resize(N);
125   }
126
127   Metadata *getValueFwdRef(unsigned Idx);
128   void AssignValue(Metadata *MD, unsigned Idx);
129   void tryToResolveCycles();
130 };
131
132 class BitcodeReader : public GVMaterializer {
133   LLVMContext &Context;
134   DiagnosticHandlerFunction DiagnosticHandler;
135   Module *TheModule;
136   std::unique_ptr<MemoryBuffer> Buffer;
137   std::unique_ptr<BitstreamReader> StreamFile;
138   BitstreamCursor Stream;
139   DataStreamer *LazyStreamer;
140   uint64_t NextUnreadBit;
141   bool SeenValueSymbolTable;
142
143   std::vector<Type*> TypeList;
144   BitcodeReaderValueList ValueList;
145   BitcodeReaderMDValueList MDValueList;
146   std::vector<Comdat *> ComdatList;
147   SmallVector<Instruction *, 64> InstructionList;
148
149   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
150   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
151   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
152   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
153
154   SmallVector<Instruction*, 64> InstsWithTBAATag;
155
156   /// MAttributes - The set of attributes by index.  Index zero in the
157   /// file is for null, and is thus not represented here.  As such all indices
158   /// are off by one.
159   std::vector<AttributeSet> MAttributes;
160
161   /// \brief The set of attribute groups.
162   std::map<unsigned, AttributeSet> MAttributeGroups;
163
164   /// FunctionBBs - While parsing a function body, this is a list of the basic
165   /// blocks for the function.
166   std::vector<BasicBlock*> FunctionBBs;
167
168   // When reading the module header, this list is populated with functions that
169   // have bodies later in the file.
170   std::vector<Function*> FunctionsWithBodies;
171
172   // When intrinsic functions are encountered which require upgrading they are
173   // stored here with their replacement function.
174   typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
175   UpgradedIntrinsicMap UpgradedIntrinsics;
176
177   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
178   DenseMap<unsigned, unsigned> MDKindMap;
179
180   // Several operations happen after the module header has been read, but
181   // before function bodies are processed. This keeps track of whether
182   // we've done this yet.
183   bool SeenFirstFunctionBody;
184
185   /// DeferredFunctionInfo - When function bodies are initially scanned, this
186   /// map contains info about where to find deferred function body in the
187   /// stream.
188   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
189
190   /// When Metadata block is initially scanned when parsing the module, we may
191   /// choose to defer parsing of the metadata. This vector contains info about
192   /// which Metadata blocks are deferred.
193   std::vector<uint64_t> DeferredMetadataInfo;
194
195   /// These are basic blocks forward-referenced by block addresses.  They are
196   /// inserted lazily into functions when they're loaded.  The basic block ID is
197   /// its index into the vector.
198   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
199   std::deque<Function *> BasicBlockFwdRefQueue;
200
201   /// UseRelativeIDs - Indicates that we are using a new encoding for
202   /// instruction operands where most operands in the current
203   /// FUNCTION_BLOCK are encoded relative to the instruction number,
204   /// for a more compact encoding.  Some instruction operands are not
205   /// relative to the instruction ID: basic block numbers, and types.
206   /// Once the old style function blocks have been phased out, we would
207   /// not need this flag.
208   bool UseRelativeIDs;
209
210   /// True if all functions will be materialized, negating the need to process
211   /// (e.g.) blockaddress forward references.
212   bool WillMaterializeAllForwardRefs;
213
214   /// Functions that have block addresses taken.  This is usually empty.
215   SmallPtrSet<const Function *, 4> BlockAddressesTaken;
216
217   /// True if any Metadata block has been materialized.
218   bool IsMetadataMaterialized;
219
220   bool StripDebugInfo = false;
221
222 public:
223   std::error_code Error(BitcodeError E, const Twine &Message);
224   std::error_code Error(BitcodeError E);
225   std::error_code Error(const Twine &Message);
226
227   explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
228                          DiagnosticHandlerFunction DiagnosticHandler);
229   explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C,
230                          DiagnosticHandlerFunction DiagnosticHandler);
231   ~BitcodeReader() override { FreeState(); }
232
233   std::error_code materializeForwardReferencedFunctions();
234
235   void FreeState();
236
237   void releaseBuffer();
238
239   bool isDematerializable(const GlobalValue *GV) const override;
240   std::error_code materialize(GlobalValue *GV) override;
241   std::error_code materializeModule(Module *M) override;
242   std::vector<StructType *> getIdentifiedStructTypes() const override;
243   void dematerialize(GlobalValue *GV) override;
244
245   /// @brief Main interface to parsing a bitcode buffer.
246   /// @returns true if an error occurred.
247   std::error_code ParseBitcodeInto(Module *M,
248                                    bool ShouldLazyLoadMetadata = false);
249
250   /// @brief Cheap mechanism to just extract module triple
251   /// @returns true if an error occurred.
252   ErrorOr<std::string> parseTriple();
253
254   static uint64_t decodeSignRotatedValue(uint64_t V);
255
256   /// Materialize any deferred Metadata block.
257   std::error_code materializeMetadata() override;
258
259   void setStripDebugInfo() override;
260
261 private:
262   std::vector<StructType *> IdentifiedStructTypes;
263   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
264   StructType *createIdentifiedStructType(LLVMContext &Context);
265
266   Type *getTypeByID(unsigned ID);
267   Value *getFnValueByID(unsigned ID, Type *Ty) {
268     if (Ty && Ty->isMetadataTy())
269       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
270     return ValueList.getValueFwdRef(ID, Ty);
271   }
272   Metadata *getFnMetadataByID(unsigned ID) {
273     return MDValueList.getValueFwdRef(ID);
274   }
275   BasicBlock *getBasicBlock(unsigned ID) const {
276     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
277     return FunctionBBs[ID];
278   }
279   AttributeSet getAttributes(unsigned i) const {
280     if (i-1 < MAttributes.size())
281       return MAttributes[i-1];
282     return AttributeSet();
283   }
284
285   /// getValueTypePair - Read a value/type pair out of the specified record from
286   /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
287   /// Return true on failure.
288   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
289                         unsigned InstNum, Value *&ResVal) {
290     if (Slot == Record.size()) return true;
291     unsigned ValNo = (unsigned)Record[Slot++];
292     // Adjust the ValNo, if it was encoded relative to the InstNum.
293     if (UseRelativeIDs)
294       ValNo = InstNum - ValNo;
295     if (ValNo < InstNum) {
296       // If this is not a forward reference, just return the value we already
297       // have.
298       ResVal = getFnValueByID(ValNo, nullptr);
299       return ResVal == nullptr;
300     }
301     if (Slot == Record.size())
302       return true;
303
304     unsigned TypeNo = (unsigned)Record[Slot++];
305     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
306     return ResVal == nullptr;
307   }
308
309   /// popValue - Read a value out of the specified record from slot 'Slot'.
310   /// Increment Slot past the number of slots used by the value in the record.
311   /// Return true if there is an error.
312   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                 unsigned InstNum, Type *Ty, Value *&ResVal) {
314     if (getValue(Record, Slot, InstNum, Ty, ResVal))
315       return true;
316     // All values currently take a single record slot.
317     ++Slot;
318     return false;
319   }
320
321   /// getValue -- Like popValue, but does not increment the Slot number.
322   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
323                 unsigned InstNum, Type *Ty, Value *&ResVal) {
324     ResVal = getValue(Record, Slot, InstNum, Ty);
325     return ResVal == nullptr;
326   }
327
328   /// getValue -- Version of getValue that returns ResVal directly,
329   /// or 0 if there is an error.
330   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
331                   unsigned InstNum, Type *Ty) {
332     if (Slot == Record.size()) return nullptr;
333     unsigned ValNo = (unsigned)Record[Slot];
334     // Adjust the ValNo, if it was encoded relative to the InstNum.
335     if (UseRelativeIDs)
336       ValNo = InstNum - ValNo;
337     return getFnValueByID(ValNo, Ty);
338   }
339
340   /// getValueSigned -- Like getValue, but decodes signed VBRs.
341   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
342                         unsigned InstNum, Type *Ty) {
343     if (Slot == Record.size()) return nullptr;
344     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
345     // Adjust the ValNo, if it was encoded relative to the InstNum.
346     if (UseRelativeIDs)
347       ValNo = InstNum - ValNo;
348     return getFnValueByID(ValNo, Ty);
349   }
350
351   /// Converts alignment exponent (i.e. power of two (or zero)) to the
352   /// corresponding alignment to use. If alignment is too large, returns
353   /// a corresponding error code.
354   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
355   std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
356   std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false);
357   std::error_code ParseAttributeBlock();
358   std::error_code ParseAttributeGroupBlock();
359   std::error_code ParseTypeTable();
360   std::error_code ParseTypeTableBody();
361
362   std::error_code ParseValueSymbolTable();
363   std::error_code ParseConstants();
364   std::error_code RememberAndSkipFunctionBody();
365   /// Save the positions of the Metadata blocks and skip parsing the blocks.
366   std::error_code rememberAndSkipMetadata();
367   std::error_code ParseFunctionBody(Function *F);
368   std::error_code GlobalCleanup();
369   std::error_code ResolveGlobalAndAliasInits();
370   std::error_code ParseMetadata();
371   std::error_code ParseMetadataAttachment(Function &F);
372   ErrorOr<std::string> parseModuleTriple();
373   std::error_code ParseUseLists();
374   std::error_code InitStream();
375   std::error_code InitStreamFromBuffer();
376   std::error_code InitLazyStream();
377   std::error_code FindFunctionInStream(
378       Function *F,
379       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
380 };
381 } // namespace
382
383 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
384                                              DiagnosticSeverity Severity,
385                                              const Twine &Msg)
386     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
387
388 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
389
390 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
391                              std::error_code EC, const Twine &Message) {
392   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
393   DiagnosticHandler(DI);
394   return EC;
395 }
396
397 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
398                              std::error_code EC) {
399   return Error(DiagnosticHandler, EC, EC.message());
400 }
401
402 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
403                              const Twine &Message) {
404   return Error(DiagnosticHandler,
405                make_error_code(BitcodeError::CorruptedBitcode), Message);
406 }
407
408 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
409   return ::Error(DiagnosticHandler, make_error_code(E), Message);
410 }
411
412 std::error_code BitcodeReader::Error(const Twine &Message) {
413   return ::Error(DiagnosticHandler,
414                  make_error_code(BitcodeError::CorruptedBitcode), Message);
415 }
416
417 std::error_code BitcodeReader::Error(BitcodeError E) {
418   return ::Error(DiagnosticHandler, make_error_code(E));
419 }
420
421 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
422                                                 LLVMContext &C) {
423   if (F)
424     return F;
425   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
426 }
427
428 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
429                              DiagnosticHandlerFunction DiagnosticHandler)
430     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
431       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
432       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
433       MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
434       WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {}
435
436 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C,
437                              DiagnosticHandlerFunction DiagnosticHandler)
438     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
439       TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer),
440       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
441       MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
442       WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {}
443
444 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
445   if (WillMaterializeAllForwardRefs)
446     return std::error_code();
447
448   // Prevent recursion.
449   WillMaterializeAllForwardRefs = true;
450
451   while (!BasicBlockFwdRefQueue.empty()) {
452     Function *F = BasicBlockFwdRefQueue.front();
453     BasicBlockFwdRefQueue.pop_front();
454     assert(F && "Expected valid function");
455     if (!BasicBlockFwdRefs.count(F))
456       // Already materialized.
457       continue;
458
459     // Check for a function that isn't materializable to prevent an infinite
460     // loop.  When parsing a blockaddress stored in a global variable, there
461     // isn't a trivial way to check if a function will have a body without a
462     // linear search through FunctionsWithBodies, so just check it here.
463     if (!F->isMaterializable())
464       return Error("Never resolved function from blockaddress");
465
466     // Try to materialize F.
467     if (std::error_code EC = materialize(F))
468       return EC;
469   }
470   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
471
472   // Reset state.
473   WillMaterializeAllForwardRefs = false;
474   return std::error_code();
475 }
476
477 void BitcodeReader::FreeState() {
478   Buffer = nullptr;
479   std::vector<Type*>().swap(TypeList);
480   ValueList.clear();
481   MDValueList.clear();
482   std::vector<Comdat *>().swap(ComdatList);
483
484   std::vector<AttributeSet>().swap(MAttributes);
485   std::vector<BasicBlock*>().swap(FunctionBBs);
486   std::vector<Function*>().swap(FunctionsWithBodies);
487   DeferredFunctionInfo.clear();
488   DeferredMetadataInfo.clear();
489   MDKindMap.clear();
490
491   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
492   BasicBlockFwdRefQueue.clear();
493 }
494
495 //===----------------------------------------------------------------------===//
496 //  Helper functions to implement forward reference resolution, etc.
497 //===----------------------------------------------------------------------===//
498
499 /// ConvertToString - Convert a string from a record into an std::string, return
500 /// true on failure.
501 template<typename StrTy>
502 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
503                             StrTy &Result) {
504   if (Idx > Record.size())
505     return true;
506
507   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
508     Result += (char)Record[i];
509   return false;
510 }
511
512 static bool hasImplicitComdat(size_t Val) {
513   switch (Val) {
514   default:
515     return false;
516   case 1:  // Old WeakAnyLinkage
517   case 4:  // Old LinkOnceAnyLinkage
518   case 10: // Old WeakODRLinkage
519   case 11: // Old LinkOnceODRLinkage
520     return true;
521   }
522 }
523
524 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
525   switch (Val) {
526   default: // Map unknown/new linkages to external
527   case 0:
528     return GlobalValue::ExternalLinkage;
529   case 2:
530     return GlobalValue::AppendingLinkage;
531   case 3:
532     return GlobalValue::InternalLinkage;
533   case 5:
534     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
535   case 6:
536     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
537   case 7:
538     return GlobalValue::ExternalWeakLinkage;
539   case 8:
540     return GlobalValue::CommonLinkage;
541   case 9:
542     return GlobalValue::PrivateLinkage;
543   case 12:
544     return GlobalValue::AvailableExternallyLinkage;
545   case 13:
546     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
547   case 14:
548     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
549   case 15:
550     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
551   case 1: // Old value with implicit comdat.
552   case 16:
553     return GlobalValue::WeakAnyLinkage;
554   case 10: // Old value with implicit comdat.
555   case 17:
556     return GlobalValue::WeakODRLinkage;
557   case 4: // Old value with implicit comdat.
558   case 18:
559     return GlobalValue::LinkOnceAnyLinkage;
560   case 11: // Old value with implicit comdat.
561   case 19:
562     return GlobalValue::LinkOnceODRLinkage;
563   }
564 }
565
566 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
567   switch (Val) {
568   default: // Map unknown visibilities to default.
569   case 0: return GlobalValue::DefaultVisibility;
570   case 1: return GlobalValue::HiddenVisibility;
571   case 2: return GlobalValue::ProtectedVisibility;
572   }
573 }
574
575 static GlobalValue::DLLStorageClassTypes
576 GetDecodedDLLStorageClass(unsigned Val) {
577   switch (Val) {
578   default: // Map unknown values to default.
579   case 0: return GlobalValue::DefaultStorageClass;
580   case 1: return GlobalValue::DLLImportStorageClass;
581   case 2: return GlobalValue::DLLExportStorageClass;
582   }
583 }
584
585 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
586   switch (Val) {
587     case 0: return GlobalVariable::NotThreadLocal;
588     default: // Map unknown non-zero value to general dynamic.
589     case 1: return GlobalVariable::GeneralDynamicTLSModel;
590     case 2: return GlobalVariable::LocalDynamicTLSModel;
591     case 3: return GlobalVariable::InitialExecTLSModel;
592     case 4: return GlobalVariable::LocalExecTLSModel;
593   }
594 }
595
596 static int GetDecodedCastOpcode(unsigned Val) {
597   switch (Val) {
598   default: return -1;
599   case bitc::CAST_TRUNC   : return Instruction::Trunc;
600   case bitc::CAST_ZEXT    : return Instruction::ZExt;
601   case bitc::CAST_SEXT    : return Instruction::SExt;
602   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
603   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
604   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
605   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
606   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
607   case bitc::CAST_FPEXT   : return Instruction::FPExt;
608   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
609   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
610   case bitc::CAST_BITCAST : return Instruction::BitCast;
611   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
612   }
613 }
614
615 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
616   bool IsFP = Ty->isFPOrFPVectorTy();
617   // BinOps are only valid for int/fp or vector of int/fp types
618   if (!IsFP && !Ty->isIntOrIntVectorTy())
619     return -1;
620
621   switch (Val) {
622   default:
623     return -1;
624   case bitc::BINOP_ADD:
625     return IsFP ? Instruction::FAdd : Instruction::Add;
626   case bitc::BINOP_SUB:
627     return IsFP ? Instruction::FSub : Instruction::Sub;
628   case bitc::BINOP_MUL:
629     return IsFP ? Instruction::FMul : Instruction::Mul;
630   case bitc::BINOP_UDIV:
631     return IsFP ? -1 : Instruction::UDiv;
632   case bitc::BINOP_SDIV:
633     return IsFP ? Instruction::FDiv : Instruction::SDiv;
634   case bitc::BINOP_UREM:
635     return IsFP ? -1 : Instruction::URem;
636   case bitc::BINOP_SREM:
637     return IsFP ? Instruction::FRem : Instruction::SRem;
638   case bitc::BINOP_SHL:
639     return IsFP ? -1 : Instruction::Shl;
640   case bitc::BINOP_LSHR:
641     return IsFP ? -1 : Instruction::LShr;
642   case bitc::BINOP_ASHR:
643     return IsFP ? -1 : Instruction::AShr;
644   case bitc::BINOP_AND:
645     return IsFP ? -1 : Instruction::And;
646   case bitc::BINOP_OR:
647     return IsFP ? -1 : Instruction::Or;
648   case bitc::BINOP_XOR:
649     return IsFP ? -1 : Instruction::Xor;
650   }
651 }
652
653 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
654   switch (Val) {
655   default: return AtomicRMWInst::BAD_BINOP;
656   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
657   case bitc::RMW_ADD: return AtomicRMWInst::Add;
658   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
659   case bitc::RMW_AND: return AtomicRMWInst::And;
660   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
661   case bitc::RMW_OR: return AtomicRMWInst::Or;
662   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
663   case bitc::RMW_MAX: return AtomicRMWInst::Max;
664   case bitc::RMW_MIN: return AtomicRMWInst::Min;
665   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
666   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
667   }
668 }
669
670 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
671   switch (Val) {
672   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
673   case bitc::ORDERING_UNORDERED: return Unordered;
674   case bitc::ORDERING_MONOTONIC: return Monotonic;
675   case bitc::ORDERING_ACQUIRE: return Acquire;
676   case bitc::ORDERING_RELEASE: return Release;
677   case bitc::ORDERING_ACQREL: return AcquireRelease;
678   default: // Map unknown orderings to sequentially-consistent.
679   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
680   }
681 }
682
683 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
684   switch (Val) {
685   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
686   default: // Map unknown scopes to cross-thread.
687   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
688   }
689 }
690
691 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
692   switch (Val) {
693   default: // Map unknown selection kinds to any.
694   case bitc::COMDAT_SELECTION_KIND_ANY:
695     return Comdat::Any;
696   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
697     return Comdat::ExactMatch;
698   case bitc::COMDAT_SELECTION_KIND_LARGEST:
699     return Comdat::Largest;
700   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
701     return Comdat::NoDuplicates;
702   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
703     return Comdat::SameSize;
704   }
705 }
706
707 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
708   switch (Val) {
709   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
710   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
711   }
712 }
713
714 namespace llvm {
715 namespace {
716   /// @brief A class for maintaining the slot number definition
717   /// as a placeholder for the actual definition for forward constants defs.
718   class ConstantPlaceHolder : public ConstantExpr {
719     void operator=(const ConstantPlaceHolder &) = delete;
720   public:
721     // allocate space for exactly one operand
722     void *operator new(size_t s) {
723       return User::operator new(s, 1);
724     }
725     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
726       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
727       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
728     }
729
730     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
731     static bool classof(const Value *V) {
732       return isa<ConstantExpr>(V) &&
733              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
734     }
735
736
737     /// Provide fast operand accessors
738     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
739   };
740 }
741
742 // FIXME: can we inherit this from ConstantExpr?
743 template <>
744 struct OperandTraits<ConstantPlaceHolder> :
745   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
746 };
747 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
748 }
749
750
751 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
752   if (Idx == size()) {
753     push_back(V);
754     return;
755   }
756
757   if (Idx >= size())
758     resize(Idx+1);
759
760   WeakVH &OldV = ValuePtrs[Idx];
761   if (!OldV) {
762     OldV = V;
763     return;
764   }
765
766   // Handle constants and non-constants (e.g. instrs) differently for
767   // efficiency.
768   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
769     ResolveConstants.push_back(std::make_pair(PHC, Idx));
770     OldV = V;
771   } else {
772     // If there was a forward reference to this value, replace it.
773     Value *PrevVal = OldV;
774     OldV->replaceAllUsesWith(V);
775     delete PrevVal;
776   }
777 }
778
779
780 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
781                                                     Type *Ty) {
782   if (Idx >= size())
783     resize(Idx + 1);
784
785   if (Value *V = ValuePtrs[Idx]) {
786     if (Ty != V->getType())
787       report_fatal_error("Type mismatch in constant table!");
788     return cast<Constant>(V);
789   }
790
791   // Create and return a placeholder, which will later be RAUW'd.
792   Constant *C = new ConstantPlaceHolder(Ty, Context);
793   ValuePtrs[Idx] = C;
794   return C;
795 }
796
797 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
798   // Bail out for a clearly invalid value. This would make us call resize(0)
799   if (Idx == UINT_MAX)
800     return nullptr;
801
802   if (Idx >= size())
803     resize(Idx + 1);
804
805   if (Value *V = ValuePtrs[Idx]) {
806     // If the types don't match, it's invalid.
807     if (Ty && Ty != V->getType())
808       return nullptr;
809     return V;
810   }
811
812   // No type specified, must be invalid reference.
813   if (!Ty) return nullptr;
814
815   // Create and return a placeholder, which will later be RAUW'd.
816   Value *V = new Argument(Ty);
817   ValuePtrs[Idx] = V;
818   return V;
819 }
820
821 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
822 /// resolves any forward references.  The idea behind this is that we sometimes
823 /// get constants (such as large arrays) which reference *many* forward ref
824 /// constants.  Replacing each of these causes a lot of thrashing when
825 /// building/reuniquing the constant.  Instead of doing this, we look at all the
826 /// uses and rewrite all the place holders at once for any constant that uses
827 /// a placeholder.
828 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
829   // Sort the values by-pointer so that they are efficient to look up with a
830   // binary search.
831   std::sort(ResolveConstants.begin(), ResolveConstants.end());
832
833   SmallVector<Constant*, 64> NewOps;
834
835   while (!ResolveConstants.empty()) {
836     Value *RealVal = operator[](ResolveConstants.back().second);
837     Constant *Placeholder = ResolveConstants.back().first;
838     ResolveConstants.pop_back();
839
840     // Loop over all users of the placeholder, updating them to reference the
841     // new value.  If they reference more than one placeholder, update them all
842     // at once.
843     while (!Placeholder->use_empty()) {
844       auto UI = Placeholder->user_begin();
845       User *U = *UI;
846
847       // If the using object isn't uniqued, just update the operands.  This
848       // handles instructions and initializers for global variables.
849       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
850         UI.getUse().set(RealVal);
851         continue;
852       }
853
854       // Otherwise, we have a constant that uses the placeholder.  Replace that
855       // constant with a new constant that has *all* placeholder uses updated.
856       Constant *UserC = cast<Constant>(U);
857       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
858            I != E; ++I) {
859         Value *NewOp;
860         if (!isa<ConstantPlaceHolder>(*I)) {
861           // Not a placeholder reference.
862           NewOp = *I;
863         } else if (*I == Placeholder) {
864           // Common case is that it just references this one placeholder.
865           NewOp = RealVal;
866         } else {
867           // Otherwise, look up the placeholder in ResolveConstants.
868           ResolveConstantsTy::iterator It =
869             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
870                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
871                                                             0));
872           assert(It != ResolveConstants.end() && It->first == *I);
873           NewOp = operator[](It->second);
874         }
875
876         NewOps.push_back(cast<Constant>(NewOp));
877       }
878
879       // Make the new constant.
880       Constant *NewC;
881       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
882         NewC = ConstantArray::get(UserCA->getType(), NewOps);
883       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
884         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
885       } else if (isa<ConstantVector>(UserC)) {
886         NewC = ConstantVector::get(NewOps);
887       } else {
888         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
889         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
890       }
891
892       UserC->replaceAllUsesWith(NewC);
893       UserC->destroyConstant();
894       NewOps.clear();
895     }
896
897     // Update all ValueHandles, they should be the only users at this point.
898     Placeholder->replaceAllUsesWith(RealVal);
899     delete Placeholder;
900   }
901 }
902
903 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
904   if (Idx == size()) {
905     push_back(MD);
906     return;
907   }
908
909   if (Idx >= size())
910     resize(Idx+1);
911
912   TrackingMDRef &OldMD = MDValuePtrs[Idx];
913   if (!OldMD) {
914     OldMD.reset(MD);
915     return;
916   }
917
918   // If there was a forward reference to this value, replace it.
919   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
920   PrevMD->replaceAllUsesWith(MD);
921   --NumFwdRefs;
922 }
923
924 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
925   if (Idx >= size())
926     resize(Idx + 1);
927
928   if (Metadata *MD = MDValuePtrs[Idx])
929     return MD;
930
931   // Track forward refs to be resolved later.
932   if (AnyFwdRefs) {
933     MinFwdRef = std::min(MinFwdRef, Idx);
934     MaxFwdRef = std::max(MaxFwdRef, Idx);
935   } else {
936     AnyFwdRefs = true;
937     MinFwdRef = MaxFwdRef = Idx;
938   }
939   ++NumFwdRefs;
940
941   // Create and return a placeholder, which will later be RAUW'd.
942   Metadata *MD = MDNode::getTemporary(Context, None).release();
943   MDValuePtrs[Idx].reset(MD);
944   return MD;
945 }
946
947 void BitcodeReaderMDValueList::tryToResolveCycles() {
948   if (!AnyFwdRefs)
949     // Nothing to do.
950     return;
951
952   if (NumFwdRefs)
953     // Still forward references... can't resolve cycles.
954     return;
955
956   // Resolve any cycles.
957   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
958     auto &MD = MDValuePtrs[I];
959     auto *N = dyn_cast_or_null<MDNode>(MD);
960     if (!N)
961       continue;
962
963     assert(!N->isTemporary() && "Unexpected forward reference");
964     N->resolveCycles();
965   }
966
967   // Make sure we return early again until there's another forward ref.
968   AnyFwdRefs = false;
969 }
970
971 Type *BitcodeReader::getTypeByID(unsigned ID) {
972   // The type table size is always specified correctly.
973   if (ID >= TypeList.size())
974     return nullptr;
975
976   if (Type *Ty = TypeList[ID])
977     return Ty;
978
979   // If we have a forward reference, the only possible case is when it is to a
980   // named struct.  Just create a placeholder for now.
981   return TypeList[ID] = createIdentifiedStructType(Context);
982 }
983
984 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
985                                                       StringRef Name) {
986   auto *Ret = StructType::create(Context, Name);
987   IdentifiedStructTypes.push_back(Ret);
988   return Ret;
989 }
990
991 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
992   auto *Ret = StructType::create(Context);
993   IdentifiedStructTypes.push_back(Ret);
994   return Ret;
995 }
996
997
998 //===----------------------------------------------------------------------===//
999 //  Functions for parsing blocks from the bitcode file
1000 //===----------------------------------------------------------------------===//
1001
1002
1003 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1004 /// been decoded from the given integer. This function must stay in sync with
1005 /// 'encodeLLVMAttributesForBitcode'.
1006 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1007                                            uint64_t EncodedAttrs) {
1008   // FIXME: Remove in 4.0.
1009
1010   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1011   // the bits above 31 down by 11 bits.
1012   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1013   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1014          "Alignment must be a power of two.");
1015
1016   if (Alignment)
1017     B.addAlignmentAttr(Alignment);
1018   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1019                 (EncodedAttrs & 0xffff));
1020 }
1021
1022 std::error_code BitcodeReader::ParseAttributeBlock() {
1023   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1024     return Error("Invalid record");
1025
1026   if (!MAttributes.empty())
1027     return Error("Invalid multiple blocks");
1028
1029   SmallVector<uint64_t, 64> Record;
1030
1031   SmallVector<AttributeSet, 8> Attrs;
1032
1033   // Read all the records.
1034   while (1) {
1035     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1036
1037     switch (Entry.Kind) {
1038     case BitstreamEntry::SubBlock: // Handled for us already.
1039     case BitstreamEntry::Error:
1040       return Error("Malformed block");
1041     case BitstreamEntry::EndBlock:
1042       return std::error_code();
1043     case BitstreamEntry::Record:
1044       // The interesting case.
1045       break;
1046     }
1047
1048     // Read a record.
1049     Record.clear();
1050     switch (Stream.readRecord(Entry.ID, Record)) {
1051     default:  // Default behavior: ignore.
1052       break;
1053     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1054       // FIXME: Remove in 4.0.
1055       if (Record.size() & 1)
1056         return Error("Invalid record");
1057
1058       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1059         AttrBuilder B;
1060         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1061         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1062       }
1063
1064       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1065       Attrs.clear();
1066       break;
1067     }
1068     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1069       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1070         Attrs.push_back(MAttributeGroups[Record[i]]);
1071
1072       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1073       Attrs.clear();
1074       break;
1075     }
1076     }
1077   }
1078 }
1079
1080 // Returns Attribute::None on unrecognized codes.
1081 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
1082   switch (Code) {
1083   default:
1084     return Attribute::None;
1085   case bitc::ATTR_KIND_ALIGNMENT:
1086     return Attribute::Alignment;
1087   case bitc::ATTR_KIND_ALWAYS_INLINE:
1088     return Attribute::AlwaysInline;
1089   case bitc::ATTR_KIND_BUILTIN:
1090     return Attribute::Builtin;
1091   case bitc::ATTR_KIND_BY_VAL:
1092     return Attribute::ByVal;
1093   case bitc::ATTR_KIND_IN_ALLOCA:
1094     return Attribute::InAlloca;
1095   case bitc::ATTR_KIND_COLD:
1096     return Attribute::Cold;
1097   case bitc::ATTR_KIND_CONVERGENT:
1098     return Attribute::Convergent;
1099   case bitc::ATTR_KIND_INLINE_HINT:
1100     return Attribute::InlineHint;
1101   case bitc::ATTR_KIND_IN_REG:
1102     return Attribute::InReg;
1103   case bitc::ATTR_KIND_JUMP_TABLE:
1104     return Attribute::JumpTable;
1105   case bitc::ATTR_KIND_MIN_SIZE:
1106     return Attribute::MinSize;
1107   case bitc::ATTR_KIND_NAKED:
1108     return Attribute::Naked;
1109   case bitc::ATTR_KIND_NEST:
1110     return Attribute::Nest;
1111   case bitc::ATTR_KIND_NO_ALIAS:
1112     return Attribute::NoAlias;
1113   case bitc::ATTR_KIND_NO_BUILTIN:
1114     return Attribute::NoBuiltin;
1115   case bitc::ATTR_KIND_NO_CAPTURE:
1116     return Attribute::NoCapture;
1117   case bitc::ATTR_KIND_NO_DUPLICATE:
1118     return Attribute::NoDuplicate;
1119   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1120     return Attribute::NoImplicitFloat;
1121   case bitc::ATTR_KIND_NO_INLINE:
1122     return Attribute::NoInline;
1123   case bitc::ATTR_KIND_NON_LAZY_BIND:
1124     return Attribute::NonLazyBind;
1125   case bitc::ATTR_KIND_NON_NULL:
1126     return Attribute::NonNull;
1127   case bitc::ATTR_KIND_DEREFERENCEABLE:
1128     return Attribute::Dereferenceable;
1129   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1130     return Attribute::DereferenceableOrNull;
1131   case bitc::ATTR_KIND_NO_RED_ZONE:
1132     return Attribute::NoRedZone;
1133   case bitc::ATTR_KIND_NO_RETURN:
1134     return Attribute::NoReturn;
1135   case bitc::ATTR_KIND_NO_UNWIND:
1136     return Attribute::NoUnwind;
1137   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1138     return Attribute::OptimizeForSize;
1139   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1140     return Attribute::OptimizeNone;
1141   case bitc::ATTR_KIND_READ_NONE:
1142     return Attribute::ReadNone;
1143   case bitc::ATTR_KIND_READ_ONLY:
1144     return Attribute::ReadOnly;
1145   case bitc::ATTR_KIND_RETURNED:
1146     return Attribute::Returned;
1147   case bitc::ATTR_KIND_RETURNS_TWICE:
1148     return Attribute::ReturnsTwice;
1149   case bitc::ATTR_KIND_S_EXT:
1150     return Attribute::SExt;
1151   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1152     return Attribute::StackAlignment;
1153   case bitc::ATTR_KIND_STACK_PROTECT:
1154     return Attribute::StackProtect;
1155   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1156     return Attribute::StackProtectReq;
1157   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1158     return Attribute::StackProtectStrong;
1159   case bitc::ATTR_KIND_STRUCT_RET:
1160     return Attribute::StructRet;
1161   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1162     return Attribute::SanitizeAddress;
1163   case bitc::ATTR_KIND_SANITIZE_THREAD:
1164     return Attribute::SanitizeThread;
1165   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1166     return Attribute::SanitizeMemory;
1167   case bitc::ATTR_KIND_UW_TABLE:
1168     return Attribute::UWTable;
1169   case bitc::ATTR_KIND_Z_EXT:
1170     return Attribute::ZExt;
1171   }
1172 }
1173
1174 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1175                                                    unsigned &Alignment) {
1176   // Note: Alignment in bitcode files is incremented by 1, so that zero
1177   // can be used for default alignment.
1178   if (Exponent > Value::MaxAlignmentExponent + 1)
1179     return Error("Invalid alignment value");
1180   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1181   return std::error_code();
1182 }
1183
1184 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
1185                                              Attribute::AttrKind *Kind) {
1186   *Kind = GetAttrFromCode(Code);
1187   if (*Kind == Attribute::None)
1188     return Error(BitcodeError::CorruptedBitcode,
1189                  "Unknown attribute kind (" + Twine(Code) + ")");
1190   return std::error_code();
1191 }
1192
1193 std::error_code BitcodeReader::ParseAttributeGroupBlock() {
1194   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1195     return Error("Invalid record");
1196
1197   if (!MAttributeGroups.empty())
1198     return Error("Invalid multiple blocks");
1199
1200   SmallVector<uint64_t, 64> Record;
1201
1202   // Read all the records.
1203   while (1) {
1204     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1205
1206     switch (Entry.Kind) {
1207     case BitstreamEntry::SubBlock: // Handled for us already.
1208     case BitstreamEntry::Error:
1209       return Error("Malformed block");
1210     case BitstreamEntry::EndBlock:
1211       return std::error_code();
1212     case BitstreamEntry::Record:
1213       // The interesting case.
1214       break;
1215     }
1216
1217     // Read a record.
1218     Record.clear();
1219     switch (Stream.readRecord(Entry.ID, Record)) {
1220     default:  // Default behavior: ignore.
1221       break;
1222     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1223       if (Record.size() < 3)
1224         return Error("Invalid record");
1225
1226       uint64_t GrpID = Record[0];
1227       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1228
1229       AttrBuilder B;
1230       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1231         if (Record[i] == 0) {        // Enum attribute
1232           Attribute::AttrKind Kind;
1233           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
1234             return EC;
1235
1236           B.addAttribute(Kind);
1237         } else if (Record[i] == 1) { // Integer attribute
1238           Attribute::AttrKind Kind;
1239           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
1240             return EC;
1241           if (Kind == Attribute::Alignment)
1242             B.addAlignmentAttr(Record[++i]);
1243           else if (Kind == Attribute::StackAlignment)
1244             B.addStackAlignmentAttr(Record[++i]);
1245           else if (Kind == Attribute::Dereferenceable)
1246             B.addDereferenceableAttr(Record[++i]);
1247           else if (Kind == Attribute::DereferenceableOrNull)
1248             B.addDereferenceableOrNullAttr(Record[++i]);
1249         } else {                     // String attribute
1250           assert((Record[i] == 3 || Record[i] == 4) &&
1251                  "Invalid attribute group entry");
1252           bool HasValue = (Record[i++] == 4);
1253           SmallString<64> KindStr;
1254           SmallString<64> ValStr;
1255
1256           while (Record[i] != 0 && i != e)
1257             KindStr += Record[i++];
1258           assert(Record[i] == 0 && "Kind string not null terminated");
1259
1260           if (HasValue) {
1261             // Has a value associated with it.
1262             ++i; // Skip the '0' that terminates the "kind" string.
1263             while (Record[i] != 0 && i != e)
1264               ValStr += Record[i++];
1265             assert(Record[i] == 0 && "Value string not null terminated");
1266           }
1267
1268           B.addAttribute(KindStr.str(), ValStr.str());
1269         }
1270       }
1271
1272       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1273       break;
1274     }
1275     }
1276   }
1277 }
1278
1279 std::error_code BitcodeReader::ParseTypeTable() {
1280   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1281     return Error("Invalid record");
1282
1283   return ParseTypeTableBody();
1284 }
1285
1286 std::error_code BitcodeReader::ParseTypeTableBody() {
1287   if (!TypeList.empty())
1288     return Error("Invalid multiple blocks");
1289
1290   SmallVector<uint64_t, 64> Record;
1291   unsigned NumRecords = 0;
1292
1293   SmallString<64> TypeName;
1294
1295   // Read all the records for this type table.
1296   while (1) {
1297     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1298
1299     switch (Entry.Kind) {
1300     case BitstreamEntry::SubBlock: // Handled for us already.
1301     case BitstreamEntry::Error:
1302       return Error("Malformed block");
1303     case BitstreamEntry::EndBlock:
1304       if (NumRecords != TypeList.size())
1305         return Error("Malformed block");
1306       return std::error_code();
1307     case BitstreamEntry::Record:
1308       // The interesting case.
1309       break;
1310     }
1311
1312     // Read a record.
1313     Record.clear();
1314     Type *ResultTy = nullptr;
1315     switch (Stream.readRecord(Entry.ID, Record)) {
1316     default:
1317       return Error("Invalid value");
1318     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1319       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1320       // type list.  This allows us to reserve space.
1321       if (Record.size() < 1)
1322         return Error("Invalid record");
1323       TypeList.resize(Record[0]);
1324       continue;
1325     case bitc::TYPE_CODE_VOID:      // VOID
1326       ResultTy = Type::getVoidTy(Context);
1327       break;
1328     case bitc::TYPE_CODE_HALF:     // HALF
1329       ResultTy = Type::getHalfTy(Context);
1330       break;
1331     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1332       ResultTy = Type::getFloatTy(Context);
1333       break;
1334     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1335       ResultTy = Type::getDoubleTy(Context);
1336       break;
1337     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1338       ResultTy = Type::getX86_FP80Ty(Context);
1339       break;
1340     case bitc::TYPE_CODE_FP128:     // FP128
1341       ResultTy = Type::getFP128Ty(Context);
1342       break;
1343     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1344       ResultTy = Type::getPPC_FP128Ty(Context);
1345       break;
1346     case bitc::TYPE_CODE_LABEL:     // LABEL
1347       ResultTy = Type::getLabelTy(Context);
1348       break;
1349     case bitc::TYPE_CODE_METADATA:  // METADATA
1350       ResultTy = Type::getMetadataTy(Context);
1351       break;
1352     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1353       ResultTy = Type::getX86_MMXTy(Context);
1354       break;
1355     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1356       if (Record.size() < 1)
1357         return Error("Invalid record");
1358
1359       uint64_t NumBits = Record[0];
1360       if (NumBits < IntegerType::MIN_INT_BITS ||
1361           NumBits > IntegerType::MAX_INT_BITS)
1362         return Error("Bitwidth for integer type out of range");
1363       ResultTy = IntegerType::get(Context, NumBits);
1364       break;
1365     }
1366     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1367                                     //          [pointee type, address space]
1368       if (Record.size() < 1)
1369         return Error("Invalid record");
1370       unsigned AddressSpace = 0;
1371       if (Record.size() == 2)
1372         AddressSpace = Record[1];
1373       ResultTy = getTypeByID(Record[0]);
1374       if (!ResultTy ||
1375           !PointerType::isValidElementType(ResultTy))
1376         return Error("Invalid type");
1377       ResultTy = PointerType::get(ResultTy, AddressSpace);
1378       break;
1379     }
1380     case bitc::TYPE_CODE_FUNCTION_OLD: {
1381       // FIXME: attrid is dead, remove it in LLVM 4.0
1382       // FUNCTION: [vararg, attrid, retty, paramty x N]
1383       if (Record.size() < 3)
1384         return Error("Invalid record");
1385       SmallVector<Type*, 8> ArgTys;
1386       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1387         if (Type *T = getTypeByID(Record[i]))
1388           ArgTys.push_back(T);
1389         else
1390           break;
1391       }
1392
1393       ResultTy = getTypeByID(Record[2]);
1394       if (!ResultTy || ArgTys.size() < Record.size()-3)
1395         return Error("Invalid type");
1396
1397       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1398       break;
1399     }
1400     case bitc::TYPE_CODE_FUNCTION: {
1401       // FUNCTION: [vararg, retty, paramty x N]
1402       if (Record.size() < 2)
1403         return Error("Invalid record");
1404       SmallVector<Type*, 8> ArgTys;
1405       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1406         if (Type *T = getTypeByID(Record[i])) {
1407           if (!FunctionType::isValidArgumentType(T))
1408             return Error("Invalid function argument type");
1409           ArgTys.push_back(T);
1410         }
1411         else
1412           break;
1413       }
1414
1415       ResultTy = getTypeByID(Record[1]);
1416       if (!ResultTy || ArgTys.size() < Record.size()-2)
1417         return Error("Invalid type");
1418
1419       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1420       break;
1421     }
1422     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1423       if (Record.size() < 1)
1424         return Error("Invalid record");
1425       SmallVector<Type*, 8> EltTys;
1426       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1427         if (Type *T = getTypeByID(Record[i]))
1428           EltTys.push_back(T);
1429         else
1430           break;
1431       }
1432       if (EltTys.size() != Record.size()-1)
1433         return Error("Invalid type");
1434       ResultTy = StructType::get(Context, EltTys, Record[0]);
1435       break;
1436     }
1437     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1438       if (ConvertToString(Record, 0, TypeName))
1439         return Error("Invalid record");
1440       continue;
1441
1442     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1443       if (Record.size() < 1)
1444         return Error("Invalid record");
1445
1446       if (NumRecords >= TypeList.size())
1447         return Error("Invalid TYPE table");
1448
1449       // Check to see if this was forward referenced, if so fill in the temp.
1450       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1451       if (Res) {
1452         Res->setName(TypeName);
1453         TypeList[NumRecords] = nullptr;
1454       } else  // Otherwise, create a new struct.
1455         Res = createIdentifiedStructType(Context, TypeName);
1456       TypeName.clear();
1457
1458       SmallVector<Type*, 8> EltTys;
1459       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1460         if (Type *T = getTypeByID(Record[i]))
1461           EltTys.push_back(T);
1462         else
1463           break;
1464       }
1465       if (EltTys.size() != Record.size()-1)
1466         return Error("Invalid record");
1467       Res->setBody(EltTys, Record[0]);
1468       ResultTy = Res;
1469       break;
1470     }
1471     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1472       if (Record.size() != 1)
1473         return Error("Invalid record");
1474
1475       if (NumRecords >= TypeList.size())
1476         return Error("Invalid TYPE table");
1477
1478       // Check to see if this was forward referenced, if so fill in the temp.
1479       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1480       if (Res) {
1481         Res->setName(TypeName);
1482         TypeList[NumRecords] = nullptr;
1483       } else  // Otherwise, create a new struct with no body.
1484         Res = createIdentifiedStructType(Context, TypeName);
1485       TypeName.clear();
1486       ResultTy = Res;
1487       break;
1488     }
1489     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1490       if (Record.size() < 2)
1491         return Error("Invalid record");
1492       ResultTy = getTypeByID(Record[1]);
1493       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1494         return Error("Invalid type");
1495       ResultTy = ArrayType::get(ResultTy, Record[0]);
1496       break;
1497     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1498       if (Record.size() < 2)
1499         return Error("Invalid record");
1500       ResultTy = getTypeByID(Record[1]);
1501       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1502         return Error("Invalid type");
1503       ResultTy = VectorType::get(ResultTy, Record[0]);
1504       break;
1505     }
1506
1507     if (NumRecords >= TypeList.size())
1508       return Error("Invalid TYPE table");
1509     if (TypeList[NumRecords])
1510       return Error(
1511           "Invalid TYPE table: Only named structs can be forward referenced");
1512     assert(ResultTy && "Didn't read a type?");
1513     TypeList[NumRecords++] = ResultTy;
1514   }
1515 }
1516
1517 std::error_code BitcodeReader::ParseValueSymbolTable() {
1518   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1519     return Error("Invalid record");
1520
1521   SmallVector<uint64_t, 64> Record;
1522
1523   Triple TT(TheModule->getTargetTriple());
1524
1525   // Read all the records for this value table.
1526   SmallString<128> ValueName;
1527   while (1) {
1528     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1529
1530     switch (Entry.Kind) {
1531     case BitstreamEntry::SubBlock: // Handled for us already.
1532     case BitstreamEntry::Error:
1533       return Error("Malformed block");
1534     case BitstreamEntry::EndBlock:
1535       return std::error_code();
1536     case BitstreamEntry::Record:
1537       // The interesting case.
1538       break;
1539     }
1540
1541     // Read a record.
1542     Record.clear();
1543     switch (Stream.readRecord(Entry.ID, Record)) {
1544     default:  // Default behavior: unknown type.
1545       break;
1546     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1547       if (ConvertToString(Record, 1, ValueName))
1548         return Error("Invalid record");
1549       unsigned ValueID = Record[0];
1550       if (ValueID >= ValueList.size() || !ValueList[ValueID])
1551         return Error("Invalid record");
1552       Value *V = ValueList[ValueID];
1553
1554       V->setName(StringRef(ValueName.data(), ValueName.size()));
1555       if (auto *GO = dyn_cast<GlobalObject>(V)) {
1556         if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1557           if (TT.isOSBinFormatMachO())
1558             GO->setComdat(nullptr);
1559           else
1560             GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1561         }
1562       }
1563       ValueName.clear();
1564       break;
1565     }
1566     case bitc::VST_CODE_BBENTRY: {
1567       if (ConvertToString(Record, 1, ValueName))
1568         return Error("Invalid record");
1569       BasicBlock *BB = getBasicBlock(Record[0]);
1570       if (!BB)
1571         return Error("Invalid record");
1572
1573       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1574       ValueName.clear();
1575       break;
1576     }
1577     }
1578   }
1579 }
1580
1581 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1582
1583 std::error_code BitcodeReader::ParseMetadata() {
1584   IsMetadataMaterialized = true;
1585   unsigned NextMDValueNo = MDValueList.size();
1586
1587   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1588     return Error("Invalid record");
1589
1590   SmallVector<uint64_t, 64> Record;
1591
1592   auto getMD =
1593       [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
1594   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1595     if (ID)
1596       return getMD(ID - 1);
1597     return nullptr;
1598   };
1599   auto getMDString = [&](unsigned ID) -> MDString *{
1600     // This requires that the ID is not really a forward reference.  In
1601     // particular, the MDString must already have been resolved.
1602     return cast_or_null<MDString>(getMDOrNull(ID));
1603   };
1604
1605 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1606   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1607
1608   // Read all the records.
1609   while (1) {
1610     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1611
1612     switch (Entry.Kind) {
1613     case BitstreamEntry::SubBlock: // Handled for us already.
1614     case BitstreamEntry::Error:
1615       return Error("Malformed block");
1616     case BitstreamEntry::EndBlock:
1617       MDValueList.tryToResolveCycles();
1618       return std::error_code();
1619     case BitstreamEntry::Record:
1620       // The interesting case.
1621       break;
1622     }
1623
1624     // Read a record.
1625     Record.clear();
1626     unsigned Code = Stream.readRecord(Entry.ID, Record);
1627     bool IsDistinct = false;
1628     switch (Code) {
1629     default:  // Default behavior: ignore.
1630       break;
1631     case bitc::METADATA_NAME: {
1632       // Read name of the named metadata.
1633       SmallString<8> Name(Record.begin(), Record.end());
1634       Record.clear();
1635       Code = Stream.ReadCode();
1636
1637       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1638       unsigned NextBitCode = Stream.readRecord(Code, Record);
1639       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1640
1641       // Read named metadata elements.
1642       unsigned Size = Record.size();
1643       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1644       for (unsigned i = 0; i != Size; ++i) {
1645         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1646         if (!MD)
1647           return Error("Invalid record");
1648         NMD->addOperand(MD);
1649       }
1650       break;
1651     }
1652     case bitc::METADATA_OLD_FN_NODE: {
1653       // FIXME: Remove in 4.0.
1654       // This is a LocalAsMetadata record, the only type of function-local
1655       // metadata.
1656       if (Record.size() % 2 == 1)
1657         return Error("Invalid record");
1658
1659       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1660       // to be legal, but there's no upgrade path.
1661       auto dropRecord = [&] {
1662         MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++);
1663       };
1664       if (Record.size() != 2) {
1665         dropRecord();
1666         break;
1667       }
1668
1669       Type *Ty = getTypeByID(Record[0]);
1670       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1671         dropRecord();
1672         break;
1673       }
1674
1675       MDValueList.AssignValue(
1676           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1677           NextMDValueNo++);
1678       break;
1679     }
1680     case bitc::METADATA_OLD_NODE: {
1681       // FIXME: Remove in 4.0.
1682       if (Record.size() % 2 == 1)
1683         return Error("Invalid record");
1684
1685       unsigned Size = Record.size();
1686       SmallVector<Metadata *, 8> Elts;
1687       for (unsigned i = 0; i != Size; i += 2) {
1688         Type *Ty = getTypeByID(Record[i]);
1689         if (!Ty)
1690           return Error("Invalid record");
1691         if (Ty->isMetadataTy())
1692           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1693         else if (!Ty->isVoidTy()) {
1694           auto *MD =
1695               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1696           assert(isa<ConstantAsMetadata>(MD) &&
1697                  "Expected non-function-local metadata");
1698           Elts.push_back(MD);
1699         } else
1700           Elts.push_back(nullptr);
1701       }
1702       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1703       break;
1704     }
1705     case bitc::METADATA_VALUE: {
1706       if (Record.size() != 2)
1707         return Error("Invalid record");
1708
1709       Type *Ty = getTypeByID(Record[0]);
1710       if (Ty->isMetadataTy() || Ty->isVoidTy())
1711         return Error("Invalid record");
1712
1713       MDValueList.AssignValue(
1714           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1715           NextMDValueNo++);
1716       break;
1717     }
1718     case bitc::METADATA_DISTINCT_NODE:
1719       IsDistinct = true;
1720       // fallthrough...
1721     case bitc::METADATA_NODE: {
1722       SmallVector<Metadata *, 8> Elts;
1723       Elts.reserve(Record.size());
1724       for (unsigned ID : Record)
1725         Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
1726       MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
1727                                          : MDNode::get(Context, Elts),
1728                               NextMDValueNo++);
1729       break;
1730     }
1731     case bitc::METADATA_LOCATION: {
1732       if (Record.size() != 5)
1733         return Error("Invalid record");
1734
1735       unsigned Line = Record[1];
1736       unsigned Column = Record[2];
1737       MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
1738       Metadata *InlinedAt =
1739           Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
1740       MDValueList.AssignValue(
1741           GET_OR_DISTINCT(DILocation, Record[0],
1742                           (Context, Line, Column, Scope, InlinedAt)),
1743           NextMDValueNo++);
1744       break;
1745     }
1746     case bitc::METADATA_GENERIC_DEBUG: {
1747       if (Record.size() < 4)
1748         return Error("Invalid record");
1749
1750       unsigned Tag = Record[1];
1751       unsigned Version = Record[2];
1752
1753       if (Tag >= 1u << 16 || Version != 0)
1754         return Error("Invalid record");
1755
1756       auto *Header = getMDString(Record[3]);
1757       SmallVector<Metadata *, 8> DwarfOps;
1758       for (unsigned I = 4, E = Record.size(); I != E; ++I)
1759         DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
1760                                      : nullptr);
1761       MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0],
1762                                               (Context, Tag, Header, DwarfOps)),
1763                               NextMDValueNo++);
1764       break;
1765     }
1766     case bitc::METADATA_SUBRANGE: {
1767       if (Record.size() != 3)
1768         return Error("Invalid record");
1769
1770       MDValueList.AssignValue(
1771           GET_OR_DISTINCT(DISubrange, Record[0],
1772                           (Context, Record[1], unrotateSign(Record[2]))),
1773           NextMDValueNo++);
1774       break;
1775     }
1776     case bitc::METADATA_ENUMERATOR: {
1777       if (Record.size() != 3)
1778         return Error("Invalid record");
1779
1780       MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0],
1781                                               (Context, unrotateSign(Record[1]),
1782                                                getMDString(Record[2]))),
1783                               NextMDValueNo++);
1784       break;
1785     }
1786     case bitc::METADATA_BASIC_TYPE: {
1787       if (Record.size() != 6)
1788         return Error("Invalid record");
1789
1790       MDValueList.AssignValue(
1791           GET_OR_DISTINCT(DIBasicType, Record[0],
1792                           (Context, Record[1], getMDString(Record[2]),
1793                            Record[3], Record[4], Record[5])),
1794           NextMDValueNo++);
1795       break;
1796     }
1797     case bitc::METADATA_DERIVED_TYPE: {
1798       if (Record.size() != 12)
1799         return Error("Invalid record");
1800
1801       MDValueList.AssignValue(
1802           GET_OR_DISTINCT(DIDerivedType, Record[0],
1803                           (Context, Record[1], getMDString(Record[2]),
1804                            getMDOrNull(Record[3]), Record[4],
1805                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
1806                            Record[7], Record[8], Record[9], Record[10],
1807                            getMDOrNull(Record[11]))),
1808           NextMDValueNo++);
1809       break;
1810     }
1811     case bitc::METADATA_COMPOSITE_TYPE: {
1812       if (Record.size() != 16)
1813         return Error("Invalid record");
1814
1815       MDValueList.AssignValue(
1816           GET_OR_DISTINCT(DICompositeType, Record[0],
1817                           (Context, Record[1], getMDString(Record[2]),
1818                            getMDOrNull(Record[3]), Record[4],
1819                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
1820                            Record[7], Record[8], Record[9], Record[10],
1821                            getMDOrNull(Record[11]), Record[12],
1822                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
1823                            getMDString(Record[15]))),
1824           NextMDValueNo++);
1825       break;
1826     }
1827     case bitc::METADATA_SUBROUTINE_TYPE: {
1828       if (Record.size() != 3)
1829         return Error("Invalid record");
1830
1831       MDValueList.AssignValue(
1832           GET_OR_DISTINCT(DISubroutineType, Record[0],
1833                           (Context, Record[1], getMDOrNull(Record[2]))),
1834           NextMDValueNo++);
1835       break;
1836     }
1837     case bitc::METADATA_FILE: {
1838       if (Record.size() != 3)
1839         return Error("Invalid record");
1840
1841       MDValueList.AssignValue(
1842           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
1843                                               getMDString(Record[2]))),
1844           NextMDValueNo++);
1845       break;
1846     }
1847     case bitc::METADATA_COMPILE_UNIT: {
1848       if (Record.size() < 14 || Record.size() > 15)
1849         return Error("Invalid record");
1850
1851       MDValueList.AssignValue(
1852           GET_OR_DISTINCT(DICompileUnit, Record[0],
1853                           (Context, Record[1], getMDOrNull(Record[2]),
1854                            getMDString(Record[3]), Record[4],
1855                            getMDString(Record[5]), Record[6],
1856                            getMDString(Record[7]), Record[8],
1857                            getMDOrNull(Record[9]), getMDOrNull(Record[10]),
1858                            getMDOrNull(Record[11]), getMDOrNull(Record[12]),
1859                            getMDOrNull(Record[13]),
1860                            Record.size() == 14 ? 0 : Record[14])),
1861           NextMDValueNo++);
1862       break;
1863     }
1864     case bitc::METADATA_SUBPROGRAM: {
1865       if (Record.size() != 19)
1866         return Error("Invalid record");
1867
1868       MDValueList.AssignValue(
1869           GET_OR_DISTINCT(
1870               DISubprogram, Record[0],
1871               (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
1872                getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
1873                getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
1874                getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
1875                Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]),
1876                getMDOrNull(Record[17]), getMDOrNull(Record[18]))),
1877           NextMDValueNo++);
1878       break;
1879     }
1880     case bitc::METADATA_LEXICAL_BLOCK: {
1881       if (Record.size() != 5)
1882         return Error("Invalid record");
1883
1884       MDValueList.AssignValue(
1885           GET_OR_DISTINCT(DILexicalBlock, Record[0],
1886                           (Context, getMDOrNull(Record[1]),
1887                            getMDOrNull(Record[2]), Record[3], Record[4])),
1888           NextMDValueNo++);
1889       break;
1890     }
1891     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
1892       if (Record.size() != 4)
1893         return Error("Invalid record");
1894
1895       MDValueList.AssignValue(
1896           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
1897                           (Context, getMDOrNull(Record[1]),
1898                            getMDOrNull(Record[2]), Record[3])),
1899           NextMDValueNo++);
1900       break;
1901     }
1902     case bitc::METADATA_NAMESPACE: {
1903       if (Record.size() != 5)
1904         return Error("Invalid record");
1905
1906       MDValueList.AssignValue(
1907           GET_OR_DISTINCT(DINamespace, Record[0],
1908                           (Context, getMDOrNull(Record[1]),
1909                            getMDOrNull(Record[2]), getMDString(Record[3]),
1910                            Record[4])),
1911           NextMDValueNo++);
1912       break;
1913     }
1914     case bitc::METADATA_TEMPLATE_TYPE: {
1915       if (Record.size() != 3)
1916         return Error("Invalid record");
1917
1918       MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
1919                                               Record[0],
1920                                               (Context, getMDString(Record[1]),
1921                                                getMDOrNull(Record[2]))),
1922                               NextMDValueNo++);
1923       break;
1924     }
1925     case bitc::METADATA_TEMPLATE_VALUE: {
1926       if (Record.size() != 5)
1927         return Error("Invalid record");
1928
1929       MDValueList.AssignValue(
1930           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
1931                           (Context, Record[1], getMDString(Record[2]),
1932                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
1933           NextMDValueNo++);
1934       break;
1935     }
1936     case bitc::METADATA_GLOBAL_VAR: {
1937       if (Record.size() != 11)
1938         return Error("Invalid record");
1939
1940       MDValueList.AssignValue(
1941           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
1942                           (Context, getMDOrNull(Record[1]),
1943                            getMDString(Record[2]), getMDString(Record[3]),
1944                            getMDOrNull(Record[4]), Record[5],
1945                            getMDOrNull(Record[6]), Record[7], Record[8],
1946                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
1947           NextMDValueNo++);
1948       break;
1949     }
1950     case bitc::METADATA_LOCAL_VAR: {
1951       // 10th field is for the obseleted 'inlinedAt:' field.
1952       if (Record.size() != 9 && Record.size() != 10)
1953         return Error("Invalid record");
1954
1955       MDValueList.AssignValue(
1956           GET_OR_DISTINCT(DILocalVariable, Record[0],
1957                           (Context, Record[1], getMDOrNull(Record[2]),
1958                            getMDString(Record[3]), getMDOrNull(Record[4]),
1959                            Record[5], getMDOrNull(Record[6]), Record[7],
1960                            Record[8])),
1961           NextMDValueNo++);
1962       break;
1963     }
1964     case bitc::METADATA_EXPRESSION: {
1965       if (Record.size() < 1)
1966         return Error("Invalid record");
1967
1968       MDValueList.AssignValue(
1969           GET_OR_DISTINCT(DIExpression, Record[0],
1970                           (Context, makeArrayRef(Record).slice(1))),
1971           NextMDValueNo++);
1972       break;
1973     }
1974     case bitc::METADATA_OBJC_PROPERTY: {
1975       if (Record.size() != 8)
1976         return Error("Invalid record");
1977
1978       MDValueList.AssignValue(
1979           GET_OR_DISTINCT(DIObjCProperty, Record[0],
1980                           (Context, getMDString(Record[1]),
1981                            getMDOrNull(Record[2]), Record[3],
1982                            getMDString(Record[4]), getMDString(Record[5]),
1983                            Record[6], getMDOrNull(Record[7]))),
1984           NextMDValueNo++);
1985       break;
1986     }
1987     case bitc::METADATA_IMPORTED_ENTITY: {
1988       if (Record.size() != 6)
1989         return Error("Invalid record");
1990
1991       MDValueList.AssignValue(
1992           GET_OR_DISTINCT(DIImportedEntity, Record[0],
1993                           (Context, Record[1], getMDOrNull(Record[2]),
1994                            getMDOrNull(Record[3]), Record[4],
1995                            getMDString(Record[5]))),
1996           NextMDValueNo++);
1997       break;
1998     }
1999     case bitc::METADATA_STRING: {
2000       std::string String(Record.begin(), Record.end());
2001       llvm::UpgradeMDStringConstant(String);
2002       Metadata *MD = MDString::get(Context, String);
2003       MDValueList.AssignValue(MD, NextMDValueNo++);
2004       break;
2005     }
2006     case bitc::METADATA_KIND: {
2007       if (Record.size() < 2)
2008         return Error("Invalid record");
2009
2010       unsigned Kind = Record[0];
2011       SmallString<8> Name(Record.begin()+1, Record.end());
2012
2013       unsigned NewKind = TheModule->getMDKindID(Name.str());
2014       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2015         return Error("Conflicting METADATA_KIND records");
2016       break;
2017     }
2018     }
2019   }
2020 #undef GET_OR_DISTINCT
2021 }
2022
2023 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
2024 /// the LSB for dense VBR encoding.
2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2026   if ((V & 1) == 0)
2027     return V >> 1;
2028   if (V != 1)
2029     return -(V >> 1);
2030   // There is no such thing as -0 with integers.  "-0" really means MININT.
2031   return 1ULL << 63;
2032 }
2033
2034 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
2035 /// values and aliases that we can.
2036 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
2037   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2038   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2039   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2040   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2041
2042   GlobalInitWorklist.swap(GlobalInits);
2043   AliasInitWorklist.swap(AliasInits);
2044   FunctionPrefixWorklist.swap(FunctionPrefixes);
2045   FunctionPrologueWorklist.swap(FunctionPrologues);
2046
2047   while (!GlobalInitWorklist.empty()) {
2048     unsigned ValID = GlobalInitWorklist.back().second;
2049     if (ValID >= ValueList.size()) {
2050       // Not ready to resolve this yet, it requires something later in the file.
2051       GlobalInits.push_back(GlobalInitWorklist.back());
2052     } else {
2053       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2054         GlobalInitWorklist.back().first->setInitializer(C);
2055       else
2056         return Error("Expected a constant");
2057     }
2058     GlobalInitWorklist.pop_back();
2059   }
2060
2061   while (!AliasInitWorklist.empty()) {
2062     unsigned ValID = AliasInitWorklist.back().second;
2063     if (ValID >= ValueList.size()) {
2064       AliasInits.push_back(AliasInitWorklist.back());
2065     } else {
2066       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2067         AliasInitWorklist.back().first->setAliasee(C);
2068       else
2069         return Error("Expected a constant");
2070     }
2071     AliasInitWorklist.pop_back();
2072   }
2073
2074   while (!FunctionPrefixWorklist.empty()) {
2075     unsigned ValID = FunctionPrefixWorklist.back().second;
2076     if (ValID >= ValueList.size()) {
2077       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2078     } else {
2079       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2080         FunctionPrefixWorklist.back().first->setPrefixData(C);
2081       else
2082         return Error("Expected a constant");
2083     }
2084     FunctionPrefixWorklist.pop_back();
2085   }
2086
2087   while (!FunctionPrologueWorklist.empty()) {
2088     unsigned ValID = FunctionPrologueWorklist.back().second;
2089     if (ValID >= ValueList.size()) {
2090       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2091     } else {
2092       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2093         FunctionPrologueWorklist.back().first->setPrologueData(C);
2094       else
2095         return Error("Expected a constant");
2096     }
2097     FunctionPrologueWorklist.pop_back();
2098   }
2099
2100   return std::error_code();
2101 }
2102
2103 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2104   SmallVector<uint64_t, 8> Words(Vals.size());
2105   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2106                  BitcodeReader::decodeSignRotatedValue);
2107
2108   return APInt(TypeBits, Words);
2109 }
2110
2111 std::error_code BitcodeReader::ParseConstants() {
2112   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2113     return Error("Invalid record");
2114
2115   SmallVector<uint64_t, 64> Record;
2116
2117   // Read all the records for this value table.
2118   Type *CurTy = Type::getInt32Ty(Context);
2119   unsigned NextCstNo = ValueList.size();
2120   while (1) {
2121     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2122
2123     switch (Entry.Kind) {
2124     case BitstreamEntry::SubBlock: // Handled for us already.
2125     case BitstreamEntry::Error:
2126       return Error("Malformed block");
2127     case BitstreamEntry::EndBlock:
2128       if (NextCstNo != ValueList.size())
2129         return Error("Invalid ronstant reference");
2130
2131       // Once all the constants have been read, go through and resolve forward
2132       // references.
2133       ValueList.ResolveConstantForwardRefs();
2134       return std::error_code();
2135     case BitstreamEntry::Record:
2136       // The interesting case.
2137       break;
2138     }
2139
2140     // Read a record.
2141     Record.clear();
2142     Value *V = nullptr;
2143     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2144     switch (BitCode) {
2145     default:  // Default behavior: unknown constant
2146     case bitc::CST_CODE_UNDEF:     // UNDEF
2147       V = UndefValue::get(CurTy);
2148       break;
2149     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2150       if (Record.empty())
2151         return Error("Invalid record");
2152       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2153         return Error("Invalid record");
2154       CurTy = TypeList[Record[0]];
2155       continue;  // Skip the ValueList manipulation.
2156     case bitc::CST_CODE_NULL:      // NULL
2157       V = Constant::getNullValue(CurTy);
2158       break;
2159     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2160       if (!CurTy->isIntegerTy() || Record.empty())
2161         return Error("Invalid record");
2162       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2163       break;
2164     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2165       if (!CurTy->isIntegerTy() || Record.empty())
2166         return Error("Invalid record");
2167
2168       APInt VInt = ReadWideAPInt(Record,
2169                                  cast<IntegerType>(CurTy)->getBitWidth());
2170       V = ConstantInt::get(Context, VInt);
2171
2172       break;
2173     }
2174     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2175       if (Record.empty())
2176         return Error("Invalid record");
2177       if (CurTy->isHalfTy())
2178         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2179                                              APInt(16, (uint16_t)Record[0])));
2180       else if (CurTy->isFloatTy())
2181         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2182                                              APInt(32, (uint32_t)Record[0])));
2183       else if (CurTy->isDoubleTy())
2184         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2185                                              APInt(64, Record[0])));
2186       else if (CurTy->isX86_FP80Ty()) {
2187         // Bits are not stored the same way as a normal i80 APInt, compensate.
2188         uint64_t Rearrange[2];
2189         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2190         Rearrange[1] = Record[0] >> 48;
2191         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2192                                              APInt(80, Rearrange)));
2193       } else if (CurTy->isFP128Ty())
2194         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2195                                              APInt(128, Record)));
2196       else if (CurTy->isPPC_FP128Ty())
2197         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2198                                              APInt(128, Record)));
2199       else
2200         V = UndefValue::get(CurTy);
2201       break;
2202     }
2203
2204     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2205       if (Record.empty())
2206         return Error("Invalid record");
2207
2208       unsigned Size = Record.size();
2209       SmallVector<Constant*, 16> Elts;
2210
2211       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2212         for (unsigned i = 0; i != Size; ++i)
2213           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2214                                                      STy->getElementType(i)));
2215         V = ConstantStruct::get(STy, Elts);
2216       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2217         Type *EltTy = ATy->getElementType();
2218         for (unsigned i = 0; i != Size; ++i)
2219           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2220         V = ConstantArray::get(ATy, Elts);
2221       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2222         Type *EltTy = VTy->getElementType();
2223         for (unsigned i = 0; i != Size; ++i)
2224           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2225         V = ConstantVector::get(Elts);
2226       } else {
2227         V = UndefValue::get(CurTy);
2228       }
2229       break;
2230     }
2231     case bitc::CST_CODE_STRING:    // STRING: [values]
2232     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2233       if (Record.empty())
2234         return Error("Invalid record");
2235
2236       SmallString<16> Elts(Record.begin(), Record.end());
2237       V = ConstantDataArray::getString(Context, Elts,
2238                                        BitCode == bitc::CST_CODE_CSTRING);
2239       break;
2240     }
2241     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2242       if (Record.empty())
2243         return Error("Invalid record");
2244
2245       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2246       unsigned Size = Record.size();
2247
2248       if (EltTy->isIntegerTy(8)) {
2249         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2250         if (isa<VectorType>(CurTy))
2251           V = ConstantDataVector::get(Context, Elts);
2252         else
2253           V = ConstantDataArray::get(Context, Elts);
2254       } else if (EltTy->isIntegerTy(16)) {
2255         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2256         if (isa<VectorType>(CurTy))
2257           V = ConstantDataVector::get(Context, Elts);
2258         else
2259           V = ConstantDataArray::get(Context, Elts);
2260       } else if (EltTy->isIntegerTy(32)) {
2261         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2262         if (isa<VectorType>(CurTy))
2263           V = ConstantDataVector::get(Context, Elts);
2264         else
2265           V = ConstantDataArray::get(Context, Elts);
2266       } else if (EltTy->isIntegerTy(64)) {
2267         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2268         if (isa<VectorType>(CurTy))
2269           V = ConstantDataVector::get(Context, Elts);
2270         else
2271           V = ConstantDataArray::get(Context, Elts);
2272       } else if (EltTy->isFloatTy()) {
2273         SmallVector<float, 16> Elts(Size);
2274         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
2275         if (isa<VectorType>(CurTy))
2276           V = ConstantDataVector::get(Context, Elts);
2277         else
2278           V = ConstantDataArray::get(Context, Elts);
2279       } else if (EltTy->isDoubleTy()) {
2280         SmallVector<double, 16> Elts(Size);
2281         std::transform(Record.begin(), Record.end(), Elts.begin(),
2282                        BitsToDouble);
2283         if (isa<VectorType>(CurTy))
2284           V = ConstantDataVector::get(Context, Elts);
2285         else
2286           V = ConstantDataArray::get(Context, Elts);
2287       } else {
2288         return Error("Invalid type for value");
2289       }
2290       break;
2291     }
2292
2293     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2294       if (Record.size() < 3)
2295         return Error("Invalid record");
2296       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
2297       if (Opc < 0) {
2298         V = UndefValue::get(CurTy);  // Unknown binop.
2299       } else {
2300         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2301         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2302         unsigned Flags = 0;
2303         if (Record.size() >= 4) {
2304           if (Opc == Instruction::Add ||
2305               Opc == Instruction::Sub ||
2306               Opc == Instruction::Mul ||
2307               Opc == Instruction::Shl) {
2308             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2309               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2310             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2311               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2312           } else if (Opc == Instruction::SDiv ||
2313                      Opc == Instruction::UDiv ||
2314                      Opc == Instruction::LShr ||
2315                      Opc == Instruction::AShr) {
2316             if (Record[3] & (1 << bitc::PEO_EXACT))
2317               Flags |= SDivOperator::IsExact;
2318           }
2319         }
2320         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2321       }
2322       break;
2323     }
2324     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2325       if (Record.size() < 3)
2326         return Error("Invalid record");
2327       int Opc = GetDecodedCastOpcode(Record[0]);
2328       if (Opc < 0) {
2329         V = UndefValue::get(CurTy);  // Unknown cast.
2330       } else {
2331         Type *OpTy = getTypeByID(Record[1]);
2332         if (!OpTy)
2333           return Error("Invalid record");
2334         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2335         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2336         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2337       }
2338       break;
2339     }
2340     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2341     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2342       unsigned OpNum = 0;
2343       Type *PointeeType = nullptr;
2344       if (Record.size() % 2)
2345         PointeeType = getTypeByID(Record[OpNum++]);
2346       SmallVector<Constant*, 16> Elts;
2347       while (OpNum != Record.size()) {
2348         Type *ElTy = getTypeByID(Record[OpNum++]);
2349         if (!ElTy)
2350           return Error("Invalid record");
2351         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2352       }
2353
2354       if (PointeeType &&
2355           PointeeType !=
2356               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2357                   ->getElementType())
2358         return Error("Explicit gep operator type does not match pointee type "
2359                      "of pointer operand");
2360
2361       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2362       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2363                                          BitCode ==
2364                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2365       break;
2366     }
2367     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2368       if (Record.size() < 3)
2369         return Error("Invalid record");
2370
2371       Type *SelectorTy = Type::getInt1Ty(Context);
2372
2373       // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
2374       // vector. Otherwise, it must be a single bit.
2375       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2376         SelectorTy = VectorType::get(Type::getInt1Ty(Context),
2377                                      VTy->getNumElements());
2378
2379       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2380                                                               SelectorTy),
2381                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2382                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2383       break;
2384     }
2385     case bitc::CST_CODE_CE_EXTRACTELT
2386         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2387       if (Record.size() < 3)
2388         return Error("Invalid record");
2389       VectorType *OpTy =
2390         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2391       if (!OpTy)
2392         return Error("Invalid record");
2393       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2394       Constant *Op1 = nullptr;
2395       if (Record.size() == 4) {
2396         Type *IdxTy = getTypeByID(Record[2]);
2397         if (!IdxTy)
2398           return Error("Invalid record");
2399         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2400       } else // TODO: Remove with llvm 4.0
2401         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2402       if (!Op1)
2403         return Error("Invalid record");
2404       V = ConstantExpr::getExtractElement(Op0, Op1);
2405       break;
2406     }
2407     case bitc::CST_CODE_CE_INSERTELT
2408         : { // CE_INSERTELT: [opval, opval, opty, opval]
2409       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2410       if (Record.size() < 3 || !OpTy)
2411         return Error("Invalid record");
2412       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2413       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2414                                                   OpTy->getElementType());
2415       Constant *Op2 = nullptr;
2416       if (Record.size() == 4) {
2417         Type *IdxTy = getTypeByID(Record[2]);
2418         if (!IdxTy)
2419           return Error("Invalid record");
2420         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2421       } else // TODO: Remove with llvm 4.0
2422         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2423       if (!Op2)
2424         return Error("Invalid record");
2425       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2426       break;
2427     }
2428     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2429       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2430       if (Record.size() < 3 || !OpTy)
2431         return Error("Invalid record");
2432       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2433       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2434       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2435                                                  OpTy->getNumElements());
2436       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2437       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2438       break;
2439     }
2440     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2441       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2442       VectorType *OpTy =
2443         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2444       if (Record.size() < 4 || !RTy || !OpTy)
2445         return Error("Invalid record");
2446       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2447       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2448       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2449                                                  RTy->getNumElements());
2450       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2451       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2452       break;
2453     }
2454     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2455       if (Record.size() < 4)
2456         return Error("Invalid record");
2457       Type *OpTy = getTypeByID(Record[0]);
2458       if (!OpTy)
2459         return Error("Invalid record");
2460       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2461       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2462
2463       if (OpTy->isFPOrFPVectorTy())
2464         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2465       else
2466         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2467       break;
2468     }
2469     // This maintains backward compatibility, pre-asm dialect keywords.
2470     // FIXME: Remove with the 4.0 release.
2471     case bitc::CST_CODE_INLINEASM_OLD: {
2472       if (Record.size() < 2)
2473         return Error("Invalid record");
2474       std::string AsmStr, ConstrStr;
2475       bool HasSideEffects = Record[0] & 1;
2476       bool IsAlignStack = Record[0] >> 1;
2477       unsigned AsmStrSize = Record[1];
2478       if (2+AsmStrSize >= Record.size())
2479         return Error("Invalid record");
2480       unsigned ConstStrSize = Record[2+AsmStrSize];
2481       if (3+AsmStrSize+ConstStrSize > Record.size())
2482         return Error("Invalid record");
2483
2484       for (unsigned i = 0; i != AsmStrSize; ++i)
2485         AsmStr += (char)Record[2+i];
2486       for (unsigned i = 0; i != ConstStrSize; ++i)
2487         ConstrStr += (char)Record[3+AsmStrSize+i];
2488       PointerType *PTy = cast<PointerType>(CurTy);
2489       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2490                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2491       break;
2492     }
2493     // This version adds support for the asm dialect keywords (e.g.,
2494     // inteldialect).
2495     case bitc::CST_CODE_INLINEASM: {
2496       if (Record.size() < 2)
2497         return Error("Invalid record");
2498       std::string AsmStr, ConstrStr;
2499       bool HasSideEffects = Record[0] & 1;
2500       bool IsAlignStack = (Record[0] >> 1) & 1;
2501       unsigned AsmDialect = Record[0] >> 2;
2502       unsigned AsmStrSize = Record[1];
2503       if (2+AsmStrSize >= Record.size())
2504         return Error("Invalid record");
2505       unsigned ConstStrSize = Record[2+AsmStrSize];
2506       if (3+AsmStrSize+ConstStrSize > Record.size())
2507         return Error("Invalid record");
2508
2509       for (unsigned i = 0; i != AsmStrSize; ++i)
2510         AsmStr += (char)Record[2+i];
2511       for (unsigned i = 0; i != ConstStrSize; ++i)
2512         ConstrStr += (char)Record[3+AsmStrSize+i];
2513       PointerType *PTy = cast<PointerType>(CurTy);
2514       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2515                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2516                          InlineAsm::AsmDialect(AsmDialect));
2517       break;
2518     }
2519     case bitc::CST_CODE_BLOCKADDRESS:{
2520       if (Record.size() < 3)
2521         return Error("Invalid record");
2522       Type *FnTy = getTypeByID(Record[0]);
2523       if (!FnTy)
2524         return Error("Invalid record");
2525       Function *Fn =
2526         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2527       if (!Fn)
2528         return Error("Invalid record");
2529
2530       // Don't let Fn get dematerialized.
2531       BlockAddressesTaken.insert(Fn);
2532
2533       // If the function is already parsed we can insert the block address right
2534       // away.
2535       BasicBlock *BB;
2536       unsigned BBID = Record[2];
2537       if (!BBID)
2538         // Invalid reference to entry block.
2539         return Error("Invalid ID");
2540       if (!Fn->empty()) {
2541         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2542         for (size_t I = 0, E = BBID; I != E; ++I) {
2543           if (BBI == BBE)
2544             return Error("Invalid ID");
2545           ++BBI;
2546         }
2547         BB = BBI;
2548       } else {
2549         // Otherwise insert a placeholder and remember it so it can be inserted
2550         // when the function is parsed.
2551         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2552         if (FwdBBs.empty())
2553           BasicBlockFwdRefQueue.push_back(Fn);
2554         if (FwdBBs.size() < BBID + 1)
2555           FwdBBs.resize(BBID + 1);
2556         if (!FwdBBs[BBID])
2557           FwdBBs[BBID] = BasicBlock::Create(Context);
2558         BB = FwdBBs[BBID];
2559       }
2560       V = BlockAddress::get(Fn, BB);
2561       break;
2562     }
2563     }
2564
2565     ValueList.AssignValue(V, NextCstNo);
2566     ++NextCstNo;
2567   }
2568 }
2569
2570 std::error_code BitcodeReader::ParseUseLists() {
2571   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2572     return Error("Invalid record");
2573
2574   // Read all the records.
2575   SmallVector<uint64_t, 64> Record;
2576   while (1) {
2577     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2578
2579     switch (Entry.Kind) {
2580     case BitstreamEntry::SubBlock: // Handled for us already.
2581     case BitstreamEntry::Error:
2582       return Error("Malformed block");
2583     case BitstreamEntry::EndBlock:
2584       return std::error_code();
2585     case BitstreamEntry::Record:
2586       // The interesting case.
2587       break;
2588     }
2589
2590     // Read a use list record.
2591     Record.clear();
2592     bool IsBB = false;
2593     switch (Stream.readRecord(Entry.ID, Record)) {
2594     default:  // Default behavior: unknown type.
2595       break;
2596     case bitc::USELIST_CODE_BB:
2597       IsBB = true;
2598       // fallthrough
2599     case bitc::USELIST_CODE_DEFAULT: {
2600       unsigned RecordLength = Record.size();
2601       if (RecordLength < 3)
2602         // Records should have at least an ID and two indexes.
2603         return Error("Invalid record");
2604       unsigned ID = Record.back();
2605       Record.pop_back();
2606
2607       Value *V;
2608       if (IsBB) {
2609         assert(ID < FunctionBBs.size() && "Basic block not found");
2610         V = FunctionBBs[ID];
2611       } else
2612         V = ValueList[ID];
2613       unsigned NumUses = 0;
2614       SmallDenseMap<const Use *, unsigned, 16> Order;
2615       for (const Use &U : V->uses()) {
2616         if (++NumUses > Record.size())
2617           break;
2618         Order[&U] = Record[NumUses - 1];
2619       }
2620       if (Order.size() != Record.size() || NumUses > Record.size())
2621         // Mismatches can happen if the functions are being materialized lazily
2622         // (out-of-order), or a value has been upgraded.
2623         break;
2624
2625       V->sortUseList([&](const Use &L, const Use &R) {
2626         return Order.lookup(&L) < Order.lookup(&R);
2627       });
2628       break;
2629     }
2630     }
2631   }
2632 }
2633
2634 /// When we see the block for metadata, remember where it is and then skip it.
2635 /// This lets us lazily deserialize the metadata.
2636 std::error_code BitcodeReader::rememberAndSkipMetadata() {
2637   // Save the current stream state.
2638   uint64_t CurBit = Stream.GetCurrentBitNo();
2639   DeferredMetadataInfo.push_back(CurBit);
2640
2641   // Skip over the block for now.
2642   if (Stream.SkipBlock())
2643     return Error("Invalid record");
2644   return std::error_code();
2645 }
2646
2647 std::error_code BitcodeReader::materializeMetadata() {
2648   for (uint64_t BitPos : DeferredMetadataInfo) {
2649     // Move the bit stream to the saved position.
2650     Stream.JumpToBit(BitPos);
2651     if (std::error_code EC = ParseMetadata())
2652       return EC;
2653   }
2654   DeferredMetadataInfo.clear();
2655   return std::error_code();
2656 }
2657
2658 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2659
2660 /// RememberAndSkipFunctionBody - When we see the block for a function body,
2661 /// remember where it is and then skip it.  This lets us lazily deserialize the
2662 /// functions.
2663 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
2664   // Get the function we are talking about.
2665   if (FunctionsWithBodies.empty())
2666     return Error("Insufficient function protos");
2667
2668   Function *Fn = FunctionsWithBodies.back();
2669   FunctionsWithBodies.pop_back();
2670
2671   // Save the current stream state.
2672   uint64_t CurBit = Stream.GetCurrentBitNo();
2673   DeferredFunctionInfo[Fn] = CurBit;
2674
2675   // Skip over the function block for now.
2676   if (Stream.SkipBlock())
2677     return Error("Invalid record");
2678   return std::error_code();
2679 }
2680
2681 std::error_code BitcodeReader::GlobalCleanup() {
2682   // Patch the initializers for globals and aliases up.
2683   ResolveGlobalAndAliasInits();
2684   if (!GlobalInits.empty() || !AliasInits.empty())
2685     return Error("Malformed global initializer set");
2686
2687   // Look for intrinsic functions which need to be upgraded at some point
2688   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2689        FI != FE; ++FI) {
2690     Function *NewFn;
2691     if (UpgradeIntrinsicFunction(FI, NewFn))
2692       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
2693   }
2694
2695   // Look for global variables which need to be renamed.
2696   for (Module::global_iterator
2697          GI = TheModule->global_begin(), GE = TheModule->global_end();
2698        GI != GE;) {
2699     GlobalVariable *GV = GI++;
2700     UpgradeGlobalVariable(GV);
2701   }
2702
2703   // Force deallocation of memory for these vectors to favor the client that
2704   // want lazy deserialization.
2705   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2706   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2707   return std::error_code();
2708 }
2709
2710 std::error_code BitcodeReader::ParseModule(bool Resume,
2711                                            bool ShouldLazyLoadMetadata) {
2712   if (Resume)
2713     Stream.JumpToBit(NextUnreadBit);
2714   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2715     return Error("Invalid record");
2716
2717   SmallVector<uint64_t, 64> Record;
2718   std::vector<std::string> SectionTable;
2719   std::vector<std::string> GCTable;
2720
2721   // Read all the records for this module.
2722   while (1) {
2723     BitstreamEntry Entry = Stream.advance();
2724
2725     switch (Entry.Kind) {
2726     case BitstreamEntry::Error:
2727       return Error("Malformed block");
2728     case BitstreamEntry::EndBlock:
2729       return GlobalCleanup();
2730
2731     case BitstreamEntry::SubBlock:
2732       switch (Entry.ID) {
2733       default:  // Skip unknown content.
2734         if (Stream.SkipBlock())
2735           return Error("Invalid record");
2736         break;
2737       case bitc::BLOCKINFO_BLOCK_ID:
2738         if (Stream.ReadBlockInfoBlock())
2739           return Error("Malformed block");
2740         break;
2741       case bitc::PARAMATTR_BLOCK_ID:
2742         if (std::error_code EC = ParseAttributeBlock())
2743           return EC;
2744         break;
2745       case bitc::PARAMATTR_GROUP_BLOCK_ID:
2746         if (std::error_code EC = ParseAttributeGroupBlock())
2747           return EC;
2748         break;
2749       case bitc::TYPE_BLOCK_ID_NEW:
2750         if (std::error_code EC = ParseTypeTable())
2751           return EC;
2752         break;
2753       case bitc::VALUE_SYMTAB_BLOCK_ID:
2754         if (std::error_code EC = ParseValueSymbolTable())
2755           return EC;
2756         SeenValueSymbolTable = true;
2757         break;
2758       case bitc::CONSTANTS_BLOCK_ID:
2759         if (std::error_code EC = ParseConstants())
2760           return EC;
2761         if (std::error_code EC = ResolveGlobalAndAliasInits())
2762           return EC;
2763         break;
2764       case bitc::METADATA_BLOCK_ID:
2765         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
2766           if (std::error_code EC = rememberAndSkipMetadata())
2767             return EC;
2768           break;
2769         }
2770         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
2771         if (std::error_code EC = ParseMetadata())
2772           return EC;
2773         break;
2774       case bitc::FUNCTION_BLOCK_ID:
2775         // If this is the first function body we've seen, reverse the
2776         // FunctionsWithBodies list.
2777         if (!SeenFirstFunctionBody) {
2778           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2779           if (std::error_code EC = GlobalCleanup())
2780             return EC;
2781           SeenFirstFunctionBody = true;
2782         }
2783
2784         if (std::error_code EC = RememberAndSkipFunctionBody())
2785           return EC;
2786         // For streaming bitcode, suspend parsing when we reach the function
2787         // bodies. Subsequent materialization calls will resume it when
2788         // necessary. For streaming, the function bodies must be at the end of
2789         // the bitcode. If the bitcode file is old, the symbol table will be
2790         // at the end instead and will not have been seen yet. In this case,
2791         // just finish the parse now.
2792         if (LazyStreamer && SeenValueSymbolTable) {
2793           NextUnreadBit = Stream.GetCurrentBitNo();
2794           return std::error_code();
2795         }
2796         break;
2797       case bitc::USELIST_BLOCK_ID:
2798         if (std::error_code EC = ParseUseLists())
2799           return EC;
2800         break;
2801       }
2802       continue;
2803
2804     case BitstreamEntry::Record:
2805       // The interesting case.
2806       break;
2807     }
2808
2809
2810     // Read a record.
2811     switch (Stream.readRecord(Entry.ID, Record)) {
2812     default: break;  // Default behavior, ignore unknown content.
2813     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2814       if (Record.size() < 1)
2815         return Error("Invalid record");
2816       // Only version #0 and #1 are supported so far.
2817       unsigned module_version = Record[0];
2818       switch (module_version) {
2819         default:
2820           return Error("Invalid value");
2821         case 0:
2822           UseRelativeIDs = false;
2823           break;
2824         case 1:
2825           UseRelativeIDs = true;
2826           break;
2827       }
2828       break;
2829     }
2830     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2831       std::string S;
2832       if (ConvertToString(Record, 0, S))
2833         return Error("Invalid record");
2834       TheModule->setTargetTriple(S);
2835       break;
2836     }
2837     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2838       std::string S;
2839       if (ConvertToString(Record, 0, S))
2840         return Error("Invalid record");
2841       TheModule->setDataLayout(S);
2842       break;
2843     }
2844     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2845       std::string S;
2846       if (ConvertToString(Record, 0, S))
2847         return Error("Invalid record");
2848       TheModule->setModuleInlineAsm(S);
2849       break;
2850     }
2851     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2852       // FIXME: Remove in 4.0.
2853       std::string S;
2854       if (ConvertToString(Record, 0, S))
2855         return Error("Invalid record");
2856       // Ignore value.
2857       break;
2858     }
2859     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2860       std::string S;
2861       if (ConvertToString(Record, 0, S))
2862         return Error("Invalid record");
2863       SectionTable.push_back(S);
2864       break;
2865     }
2866     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2867       std::string S;
2868       if (ConvertToString(Record, 0, S))
2869         return Error("Invalid record");
2870       GCTable.push_back(S);
2871       break;
2872     }
2873     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
2874       if (Record.size() < 2)
2875         return Error("Invalid record");
2876       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2877       unsigned ComdatNameSize = Record[1];
2878       std::string ComdatName;
2879       ComdatName.reserve(ComdatNameSize);
2880       for (unsigned i = 0; i != ComdatNameSize; ++i)
2881         ComdatName += (char)Record[2 + i];
2882       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
2883       C->setSelectionKind(SK);
2884       ComdatList.push_back(C);
2885       break;
2886     }
2887     // GLOBALVAR: [pointer type, isconst, initid,
2888     //             linkage, alignment, section, visibility, threadlocal,
2889     //             unnamed_addr, externally_initialized, dllstorageclass,
2890     //             comdat]
2891     case bitc::MODULE_CODE_GLOBALVAR: {
2892       if (Record.size() < 6)
2893         return Error("Invalid record");
2894       Type *Ty = getTypeByID(Record[0]);
2895       if (!Ty)
2896         return Error("Invalid record");
2897       bool isConstant = Record[1] & 1;
2898       bool explicitType = Record[1] & 2;
2899       unsigned AddressSpace;
2900       if (explicitType) {
2901         AddressSpace = Record[1] >> 2;
2902       } else {
2903         if (!Ty->isPointerTy())
2904           return Error("Invalid type for value");
2905         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2906         Ty = cast<PointerType>(Ty)->getElementType();
2907       }
2908
2909       uint64_t RawLinkage = Record[3];
2910       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2911       unsigned Alignment;
2912       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
2913         return EC;
2914       std::string Section;
2915       if (Record[5]) {
2916         if (Record[5]-1 >= SectionTable.size())
2917           return Error("Invalid ID");
2918         Section = SectionTable[Record[5]-1];
2919       }
2920       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2921       // Local linkage must have default visibility.
2922       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2923         // FIXME: Change to an error if non-default in 4.0.
2924         Visibility = GetDecodedVisibility(Record[6]);
2925
2926       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2927       if (Record.size() > 7)
2928         TLM = GetDecodedThreadLocalMode(Record[7]);
2929
2930       bool UnnamedAddr = false;
2931       if (Record.size() > 8)
2932         UnnamedAddr = Record[8];
2933
2934       bool ExternallyInitialized = false;
2935       if (Record.size() > 9)
2936         ExternallyInitialized = Record[9];
2937
2938       GlobalVariable *NewGV =
2939         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2940                            TLM, AddressSpace, ExternallyInitialized);
2941       NewGV->setAlignment(Alignment);
2942       if (!Section.empty())
2943         NewGV->setSection(Section);
2944       NewGV->setVisibility(Visibility);
2945       NewGV->setUnnamedAddr(UnnamedAddr);
2946
2947       if (Record.size() > 10)
2948         NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
2949       else
2950         UpgradeDLLImportExportLinkage(NewGV, RawLinkage);
2951
2952       ValueList.push_back(NewGV);
2953
2954       // Remember which value to use for the global initializer.
2955       if (unsigned InitID = Record[2])
2956         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2957
2958       if (Record.size() > 11) {
2959         if (unsigned ComdatID = Record[11]) {
2960           if (ComdatID > ComdatList.size())
2961             return Error("Invalid global variable comdat ID");
2962           NewGV->setComdat(ComdatList[ComdatID - 1]);
2963         }
2964       } else if (hasImplicitComdat(RawLinkage)) {
2965         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2966       }
2967       break;
2968     }
2969     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2970     //             alignment, section, visibility, gc, unnamed_addr,
2971     //             prologuedata, dllstorageclass, comdat, prefixdata]
2972     case bitc::MODULE_CODE_FUNCTION: {
2973       if (Record.size() < 8)
2974         return Error("Invalid record");
2975       Type *Ty = getTypeByID(Record[0]);
2976       if (!Ty)
2977         return Error("Invalid record");
2978       if (auto *PTy = dyn_cast<PointerType>(Ty))
2979         Ty = PTy->getElementType();
2980       auto *FTy = dyn_cast<FunctionType>(Ty);
2981       if (!FTy)
2982         return Error("Invalid type for value");
2983
2984       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2985                                         "", TheModule);
2986
2987       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2988       bool isProto = Record[2];
2989       uint64_t RawLinkage = Record[3];
2990       Func->setLinkage(getDecodedLinkage(RawLinkage));
2991       Func->setAttributes(getAttributes(Record[4]));
2992
2993       unsigned Alignment;
2994       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
2995         return EC;
2996       Func->setAlignment(Alignment);
2997       if (Record[6]) {
2998         if (Record[6]-1 >= SectionTable.size())
2999           return Error("Invalid ID");
3000         Func->setSection(SectionTable[Record[6]-1]);
3001       }
3002       // Local linkage must have default visibility.
3003       if (!Func->hasLocalLinkage())
3004         // FIXME: Change to an error if non-default in 4.0.
3005         Func->setVisibility(GetDecodedVisibility(Record[7]));
3006       if (Record.size() > 8 && Record[8]) {
3007         if (Record[8]-1 >= GCTable.size())
3008           return Error("Invalid ID");
3009         Func->setGC(GCTable[Record[8]-1].c_str());
3010       }
3011       bool UnnamedAddr = false;
3012       if (Record.size() > 9)
3013         UnnamedAddr = Record[9];
3014       Func->setUnnamedAddr(UnnamedAddr);
3015       if (Record.size() > 10 && Record[10] != 0)
3016         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3017
3018       if (Record.size() > 11)
3019         Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
3020       else
3021         UpgradeDLLImportExportLinkage(Func, RawLinkage);
3022
3023       if (Record.size() > 12) {
3024         if (unsigned ComdatID = Record[12]) {
3025           if (ComdatID > ComdatList.size())
3026             return Error("Invalid function comdat ID");
3027           Func->setComdat(ComdatList[ComdatID - 1]);
3028         }
3029       } else if (hasImplicitComdat(RawLinkage)) {
3030         Func->setComdat(reinterpret_cast<Comdat *>(1));
3031       }
3032
3033       if (Record.size() > 13 && Record[13] != 0)
3034         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3035
3036       ValueList.push_back(Func);
3037
3038       // If this is a function with a body, remember the prototype we are
3039       // creating now, so that we can match up the body with them later.
3040       if (!isProto) {
3041         Func->setIsMaterializable(true);
3042         FunctionsWithBodies.push_back(Func);
3043         if (LazyStreamer)
3044           DeferredFunctionInfo[Func] = 0;
3045       }
3046       break;
3047     }
3048     // ALIAS: [alias type, aliasee val#, linkage]
3049     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
3050     case bitc::MODULE_CODE_ALIAS: {
3051       if (Record.size() < 3)
3052         return Error("Invalid record");
3053       Type *Ty = getTypeByID(Record[0]);
3054       if (!Ty)
3055         return Error("Invalid record");
3056       auto *PTy = dyn_cast<PointerType>(Ty);
3057       if (!PTy)
3058         return Error("Invalid type for value");
3059
3060       auto *NewGA =
3061           GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule);
3062       // Old bitcode files didn't have visibility field.
3063       // Local linkage must have default visibility.
3064       if (Record.size() > 3 && !NewGA->hasLocalLinkage())
3065         // FIXME: Change to an error if non-default in 4.0.
3066         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
3067       if (Record.size() > 4)
3068         NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
3069       else
3070         UpgradeDLLImportExportLinkage(NewGA, Record[2]);
3071       if (Record.size() > 5)
3072         NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
3073       if (Record.size() > 6)
3074         NewGA->setUnnamedAddr(Record[6]);
3075       ValueList.push_back(NewGA);
3076       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
3077       break;
3078     }
3079     /// MODULE_CODE_PURGEVALS: [numvals]
3080     case bitc::MODULE_CODE_PURGEVALS:
3081       // Trim down the value list to the specified size.
3082       if (Record.size() < 1 || Record[0] > ValueList.size())
3083         return Error("Invalid record");
3084       ValueList.shrinkTo(Record[0]);
3085       break;
3086     }
3087     Record.clear();
3088   }
3089 }
3090
3091 std::error_code BitcodeReader::ParseBitcodeInto(Module *M,
3092                                                 bool ShouldLazyLoadMetadata) {
3093   TheModule = nullptr;
3094
3095   if (std::error_code EC = InitStream())
3096     return EC;
3097
3098   // Sniff for the signature.
3099   if (Stream.Read(8) != 'B' ||
3100       Stream.Read(8) != 'C' ||
3101       Stream.Read(4) != 0x0 ||
3102       Stream.Read(4) != 0xC ||
3103       Stream.Read(4) != 0xE ||
3104       Stream.Read(4) != 0xD)
3105     return Error("Invalid bitcode signature");
3106
3107   // We expect a number of well-defined blocks, though we don't necessarily
3108   // need to understand them all.
3109   while (1) {
3110     if (Stream.AtEndOfStream()) {
3111       if (TheModule)
3112         return std::error_code();
3113       // We didn't really read a proper Module.
3114       return Error("Malformed IR file");
3115     }
3116
3117     BitstreamEntry Entry =
3118       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3119
3120     switch (Entry.Kind) {
3121     case BitstreamEntry::Error:
3122       return Error("Malformed block");
3123     case BitstreamEntry::EndBlock:
3124       return std::error_code();
3125
3126     case BitstreamEntry::SubBlock:
3127       switch (Entry.ID) {
3128       case bitc::BLOCKINFO_BLOCK_ID:
3129         if (Stream.ReadBlockInfoBlock())
3130           return Error("Malformed block");
3131         break;
3132       case bitc::MODULE_BLOCK_ID:
3133         // Reject multiple MODULE_BLOCK's in a single bitstream.
3134         if (TheModule)
3135           return Error("Invalid multiple blocks");
3136         TheModule = M;
3137         if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata))
3138           return EC;
3139         if (LazyStreamer)
3140           return std::error_code();
3141         break;
3142       default:
3143         if (Stream.SkipBlock())
3144           return Error("Invalid record");
3145         break;
3146       }
3147       continue;
3148     case BitstreamEntry::Record:
3149       // There should be no records in the top-level of blocks.
3150
3151       // The ranlib in Xcode 4 will align archive members by appending newlines
3152       // to the end of them. If this file size is a multiple of 4 but not 8, we
3153       // have to read and ignore these final 4 bytes :-(
3154       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
3155           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
3156           Stream.AtEndOfStream())
3157         return std::error_code();
3158
3159       return Error("Invalid record");
3160     }
3161   }
3162 }
3163
3164 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3165   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3166     return Error("Invalid record");
3167
3168   SmallVector<uint64_t, 64> Record;
3169
3170   std::string Triple;
3171   // Read all the records for this module.
3172   while (1) {
3173     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3174
3175     switch (Entry.Kind) {
3176     case BitstreamEntry::SubBlock: // Handled for us already.
3177     case BitstreamEntry::Error:
3178       return Error("Malformed block");
3179     case BitstreamEntry::EndBlock:
3180       return Triple;
3181     case BitstreamEntry::Record:
3182       // The interesting case.
3183       break;
3184     }
3185
3186     // Read a record.
3187     switch (Stream.readRecord(Entry.ID, Record)) {
3188     default: break;  // Default behavior, ignore unknown content.
3189     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3190       std::string S;
3191       if (ConvertToString(Record, 0, S))
3192         return Error("Invalid record");
3193       Triple = S;
3194       break;
3195     }
3196     }
3197     Record.clear();
3198   }
3199   llvm_unreachable("Exit infinite loop");
3200 }
3201
3202 ErrorOr<std::string> BitcodeReader::parseTriple() {
3203   if (std::error_code EC = InitStream())
3204     return EC;
3205
3206   // Sniff for the signature.
3207   if (Stream.Read(8) != 'B' ||
3208       Stream.Read(8) != 'C' ||
3209       Stream.Read(4) != 0x0 ||
3210       Stream.Read(4) != 0xC ||
3211       Stream.Read(4) != 0xE ||
3212       Stream.Read(4) != 0xD)
3213     return Error("Invalid bitcode signature");
3214
3215   // We expect a number of well-defined blocks, though we don't necessarily
3216   // need to understand them all.
3217   while (1) {
3218     BitstreamEntry Entry = Stream.advance();
3219
3220     switch (Entry.Kind) {
3221     case BitstreamEntry::Error:
3222       return Error("Malformed block");
3223     case BitstreamEntry::EndBlock:
3224       return std::error_code();
3225
3226     case BitstreamEntry::SubBlock:
3227       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3228         return parseModuleTriple();
3229
3230       // Ignore other sub-blocks.
3231       if (Stream.SkipBlock())
3232         return Error("Malformed block");
3233       continue;
3234
3235     case BitstreamEntry::Record:
3236       Stream.skipRecord(Entry.ID);
3237       continue;
3238     }
3239   }
3240 }
3241
3242 /// ParseMetadataAttachment - Parse metadata attachments.
3243 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) {
3244   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3245     return Error("Invalid record");
3246
3247   SmallVector<uint64_t, 64> Record;
3248   while (1) {
3249     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3250
3251     switch (Entry.Kind) {
3252     case BitstreamEntry::SubBlock: // Handled for us already.
3253     case BitstreamEntry::Error:
3254       return Error("Malformed block");
3255     case BitstreamEntry::EndBlock:
3256       return std::error_code();
3257     case BitstreamEntry::Record:
3258       // The interesting case.
3259       break;
3260     }
3261
3262     // Read a metadata attachment record.
3263     Record.clear();
3264     switch (Stream.readRecord(Entry.ID, Record)) {
3265     default:  // Default behavior: ignore.
3266       break;
3267     case bitc::METADATA_ATTACHMENT: {
3268       unsigned RecordLength = Record.size();
3269       if (Record.empty())
3270         return Error("Invalid record");
3271       if (RecordLength % 2 == 0) {
3272         // A function attachment.
3273         for (unsigned I = 0; I != RecordLength; I += 2) {
3274           auto K = MDKindMap.find(Record[I]);
3275           if (K == MDKindMap.end())
3276             return Error("Invalid ID");
3277           Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]);
3278           F.setMetadata(K->second, cast<MDNode>(MD));
3279         }
3280         continue;
3281       }
3282
3283       // An instruction attachment.
3284       Instruction *Inst = InstructionList[Record[0]];
3285       for (unsigned i = 1; i != RecordLength; i = i+2) {
3286         unsigned Kind = Record[i];
3287         DenseMap<unsigned, unsigned>::iterator I =
3288           MDKindMap.find(Kind);
3289         if (I == MDKindMap.end())
3290           return Error("Invalid ID");
3291         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
3292         if (isa<LocalAsMetadata>(Node))
3293           // Drop the attachment.  This used to be legal, but there's no
3294           // upgrade path.
3295           break;
3296         Inst->setMetadata(I->second, cast<MDNode>(Node));
3297         if (I->second == LLVMContext::MD_tbaa)
3298           InstsWithTBAATag.push_back(Inst);
3299       }
3300       break;
3301     }
3302     }
3303   }
3304 }
3305
3306 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH,
3307                                               Type *ValType, Type *PtrType) {
3308   if (!isa<PointerType>(PtrType))
3309     return Error(DH, "Load/Store operand is not a pointer type");
3310   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3311
3312   if (ValType && ValType != ElemType)
3313     return Error(DH, "Explicit load/store type does not match pointee type of "
3314                      "pointer operand");
3315   if (!PointerType::isLoadableOrStorableType(ElemType))
3316     return Error(DH, "Cannot load/store from pointer");
3317   return std::error_code();
3318 }
3319
3320 /// ParseFunctionBody - Lazily parse the specified function body block.
3321 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
3322   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3323     return Error("Invalid record");
3324
3325   InstructionList.clear();
3326   unsigned ModuleValueListSize = ValueList.size();
3327   unsigned ModuleMDValueListSize = MDValueList.size();
3328
3329   // Add all the function arguments to the value table.
3330   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
3331     ValueList.push_back(I);
3332
3333   unsigned NextValueNo = ValueList.size();
3334   BasicBlock *CurBB = nullptr;
3335   unsigned CurBBNo = 0;
3336
3337   DebugLoc LastLoc;
3338   auto getLastInstruction = [&]() -> Instruction * {
3339     if (CurBB && !CurBB->empty())
3340       return &CurBB->back();
3341     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3342              !FunctionBBs[CurBBNo - 1]->empty())
3343       return &FunctionBBs[CurBBNo - 1]->back();
3344     return nullptr;
3345   };
3346
3347   // Read all the records.
3348   SmallVector<uint64_t, 64> Record;
3349   while (1) {
3350     BitstreamEntry Entry = Stream.advance();
3351
3352     switch (Entry.Kind) {
3353     case BitstreamEntry::Error:
3354       return Error("Malformed block");
3355     case BitstreamEntry::EndBlock:
3356       goto OutOfRecordLoop;
3357
3358     case BitstreamEntry::SubBlock:
3359       switch (Entry.ID) {
3360       default:  // Skip unknown content.
3361         if (Stream.SkipBlock())
3362           return Error("Invalid record");
3363         break;
3364       case bitc::CONSTANTS_BLOCK_ID:
3365         if (std::error_code EC = ParseConstants())
3366           return EC;
3367         NextValueNo = ValueList.size();
3368         break;
3369       case bitc::VALUE_SYMTAB_BLOCK_ID:
3370         if (std::error_code EC = ParseValueSymbolTable())
3371           return EC;
3372         break;
3373       case bitc::METADATA_ATTACHMENT_ID:
3374         if (std::error_code EC = ParseMetadataAttachment(*F))
3375           return EC;
3376         break;
3377       case bitc::METADATA_BLOCK_ID:
3378         if (std::error_code EC = ParseMetadata())
3379           return EC;
3380         break;
3381       case bitc::USELIST_BLOCK_ID:
3382         if (std::error_code EC = ParseUseLists())
3383           return EC;
3384         break;
3385       }
3386       continue;
3387
3388     case BitstreamEntry::Record:
3389       // The interesting case.
3390       break;
3391     }
3392
3393     // Read a record.
3394     Record.clear();
3395     Instruction *I = nullptr;
3396     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3397     switch (BitCode) {
3398     default: // Default behavior: reject
3399       return Error("Invalid value");
3400     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3401       if (Record.size() < 1 || Record[0] == 0)
3402         return Error("Invalid record");
3403       // Create all the basic blocks for the function.
3404       FunctionBBs.resize(Record[0]);
3405
3406       // See if anything took the address of blocks in this function.
3407       auto BBFRI = BasicBlockFwdRefs.find(F);
3408       if (BBFRI == BasicBlockFwdRefs.end()) {
3409         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3410           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3411       } else {
3412         auto &BBRefs = BBFRI->second;
3413         // Check for invalid basic block references.
3414         if (BBRefs.size() > FunctionBBs.size())
3415           return Error("Invalid ID");
3416         assert(!BBRefs.empty() && "Unexpected empty array");
3417         assert(!BBRefs.front() && "Invalid reference to entry block");
3418         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3419              ++I)
3420           if (I < RE && BBRefs[I]) {
3421             BBRefs[I]->insertInto(F);
3422             FunctionBBs[I] = BBRefs[I];
3423           } else {
3424             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3425           }
3426
3427         // Erase from the table.
3428         BasicBlockFwdRefs.erase(BBFRI);
3429       }
3430
3431       CurBB = FunctionBBs[0];
3432       continue;
3433     }
3434
3435     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3436       // This record indicates that the last instruction is at the same
3437       // location as the previous instruction with a location.
3438       I = getLastInstruction();
3439
3440       if (!I)
3441         return Error("Invalid record");
3442       I->setDebugLoc(LastLoc);
3443       I = nullptr;
3444       continue;
3445
3446     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3447       I = getLastInstruction();
3448       if (!I || Record.size() < 4)
3449         return Error("Invalid record");
3450
3451       unsigned Line = Record[0], Col = Record[1];
3452       unsigned ScopeID = Record[2], IAID = Record[3];
3453
3454       MDNode *Scope = nullptr, *IA = nullptr;
3455       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
3456       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
3457       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3458       I->setDebugLoc(LastLoc);
3459       I = nullptr;
3460       continue;
3461     }
3462
3463     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3464       unsigned OpNum = 0;
3465       Value *LHS, *RHS;
3466       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3467           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3468           OpNum+1 > Record.size())
3469         return Error("Invalid record");
3470
3471       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3472       if (Opc == -1)
3473         return Error("Invalid record");
3474       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3475       InstructionList.push_back(I);
3476       if (OpNum < Record.size()) {
3477         if (Opc == Instruction::Add ||
3478             Opc == Instruction::Sub ||
3479             Opc == Instruction::Mul ||
3480             Opc == Instruction::Shl) {
3481           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3482             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3483           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3484             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3485         } else if (Opc == Instruction::SDiv ||
3486                    Opc == Instruction::UDiv ||
3487                    Opc == Instruction::LShr ||
3488                    Opc == Instruction::AShr) {
3489           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3490             cast<BinaryOperator>(I)->setIsExact(true);
3491         } else if (isa<FPMathOperator>(I)) {
3492           FastMathFlags FMF;
3493           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
3494             FMF.setUnsafeAlgebra();
3495           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
3496             FMF.setNoNaNs();
3497           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
3498             FMF.setNoInfs();
3499           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
3500             FMF.setNoSignedZeros();
3501           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
3502             FMF.setAllowReciprocal();
3503           if (FMF.any())
3504             I->setFastMathFlags(FMF);
3505         }
3506
3507       }
3508       break;
3509     }
3510     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3511       unsigned OpNum = 0;
3512       Value *Op;
3513       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3514           OpNum+2 != Record.size())
3515         return Error("Invalid record");
3516
3517       Type *ResTy = getTypeByID(Record[OpNum]);
3518       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
3519       if (Opc == -1 || !ResTy)
3520         return Error("Invalid record");
3521       Instruction *Temp = nullptr;
3522       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3523         if (Temp) {
3524           InstructionList.push_back(Temp);
3525           CurBB->getInstList().push_back(Temp);
3526         }
3527       } else {
3528         I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
3529       }
3530       InstructionList.push_back(I);
3531       break;
3532     }
3533     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3534     case bitc::FUNC_CODE_INST_GEP_OLD:
3535     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3536       unsigned OpNum = 0;
3537
3538       Type *Ty;
3539       bool InBounds;
3540
3541       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3542         InBounds = Record[OpNum++];
3543         Ty = getTypeByID(Record[OpNum++]);
3544       } else {
3545         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3546         Ty = nullptr;
3547       }
3548
3549       Value *BasePtr;
3550       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3551         return Error("Invalid record");
3552
3553       if (!Ty)
3554         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
3555                  ->getElementType();
3556       else if (Ty !=
3557                cast<SequentialType>(BasePtr->getType()->getScalarType())
3558                    ->getElementType())
3559         return Error(
3560             "Explicit gep type does not match pointee type of pointer operand");
3561
3562       SmallVector<Value*, 16> GEPIdx;
3563       while (OpNum != Record.size()) {
3564         Value *Op;
3565         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3566           return Error("Invalid record");
3567         GEPIdx.push_back(Op);
3568       }
3569
3570       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3571
3572       InstructionList.push_back(I);
3573       if (InBounds)
3574         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3575       break;
3576     }
3577
3578     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3579                                        // EXTRACTVAL: [opty, opval, n x indices]
3580       unsigned OpNum = 0;
3581       Value *Agg;
3582       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3583         return Error("Invalid record");
3584
3585       unsigned RecSize = Record.size();
3586       if (OpNum == RecSize)
3587         return Error("EXTRACTVAL: Invalid instruction with 0 indices");
3588
3589       SmallVector<unsigned, 4> EXTRACTVALIdx;
3590       Type *CurTy = Agg->getType();
3591       for (; OpNum != RecSize; ++OpNum) {
3592         bool IsArray = CurTy->isArrayTy();
3593         bool IsStruct = CurTy->isStructTy();
3594         uint64_t Index = Record[OpNum];
3595
3596         if (!IsStruct && !IsArray)
3597           return Error("EXTRACTVAL: Invalid type");
3598         if ((unsigned)Index != Index)
3599           return Error("Invalid value");
3600         if (IsStruct && Index >= CurTy->subtypes().size())
3601           return Error("EXTRACTVAL: Invalid struct index");
3602         if (IsArray && Index >= CurTy->getArrayNumElements())
3603           return Error("EXTRACTVAL: Invalid array index");
3604         EXTRACTVALIdx.push_back((unsigned)Index);
3605
3606         if (IsStruct)
3607           CurTy = CurTy->subtypes()[Index];
3608         else
3609           CurTy = CurTy->subtypes()[0];
3610       }
3611
3612       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3613       InstructionList.push_back(I);
3614       break;
3615     }
3616
3617     case bitc::FUNC_CODE_INST_INSERTVAL: {
3618                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3619       unsigned OpNum = 0;
3620       Value *Agg;
3621       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3622         return Error("Invalid record");
3623       Value *Val;
3624       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3625         return Error("Invalid record");
3626
3627       unsigned RecSize = Record.size();
3628       if (OpNum == RecSize)
3629         return Error("INSERTVAL: Invalid instruction with 0 indices");
3630
3631       SmallVector<unsigned, 4> INSERTVALIdx;
3632       Type *CurTy = Agg->getType();
3633       for (; OpNum != RecSize; ++OpNum) {
3634         bool IsArray = CurTy->isArrayTy();
3635         bool IsStruct = CurTy->isStructTy();
3636         uint64_t Index = Record[OpNum];
3637
3638         if (!IsStruct && !IsArray)
3639           return Error("INSERTVAL: Invalid type");
3640         if ((unsigned)Index != Index)
3641           return Error("Invalid value");
3642         if (IsStruct && Index >= CurTy->subtypes().size())
3643           return Error("INSERTVAL: Invalid struct index");
3644         if (IsArray && Index >= CurTy->getArrayNumElements())
3645           return Error("INSERTVAL: Invalid array index");
3646
3647         INSERTVALIdx.push_back((unsigned)Index);
3648         if (IsStruct)
3649           CurTy = CurTy->subtypes()[Index];
3650         else
3651           CurTy = CurTy->subtypes()[0];
3652       }
3653
3654       if (CurTy != Val->getType())
3655         return Error("Inserted value type doesn't match aggregate type");
3656
3657       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3658       InstructionList.push_back(I);
3659       break;
3660     }
3661
3662     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3663       // obsolete form of select
3664       // handles select i1 ... in old bitcode
3665       unsigned OpNum = 0;
3666       Value *TrueVal, *FalseVal, *Cond;
3667       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3668           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3669           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3670         return Error("Invalid record");
3671
3672       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3673       InstructionList.push_back(I);
3674       break;
3675     }
3676
3677     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3678       // new form of select
3679       // handles select i1 or select [N x i1]
3680       unsigned OpNum = 0;
3681       Value *TrueVal, *FalseVal, *Cond;
3682       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3683           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3684           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3685         return Error("Invalid record");
3686
3687       // select condition can be either i1 or [N x i1]
3688       if (VectorType* vector_type =
3689           dyn_cast<VectorType>(Cond->getType())) {
3690         // expect <n x i1>
3691         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3692           return Error("Invalid type for value");
3693       } else {
3694         // expect i1
3695         if (Cond->getType() != Type::getInt1Ty(Context))
3696           return Error("Invalid type for value");
3697       }
3698
3699       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3700       InstructionList.push_back(I);
3701       break;
3702     }
3703
3704     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3705       unsigned OpNum = 0;
3706       Value *Vec, *Idx;
3707       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3708           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3709         return Error("Invalid record");
3710       if (!Vec->getType()->isVectorTy())
3711         return Error("Invalid type for value");
3712       I = ExtractElementInst::Create(Vec, Idx);
3713       InstructionList.push_back(I);
3714       break;
3715     }
3716
3717     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3718       unsigned OpNum = 0;
3719       Value *Vec, *Elt, *Idx;
3720       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3721         return Error("Invalid record");
3722       if (!Vec->getType()->isVectorTy())
3723         return Error("Invalid type for value");
3724       if (popValue(Record, OpNum, NextValueNo,
3725                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3726           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3727         return Error("Invalid record");
3728       I = InsertElementInst::Create(Vec, Elt, Idx);
3729       InstructionList.push_back(I);
3730       break;
3731     }
3732
3733     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3734       unsigned OpNum = 0;
3735       Value *Vec1, *Vec2, *Mask;
3736       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3737           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3738         return Error("Invalid record");
3739
3740       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3741         return Error("Invalid record");
3742       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3743         return Error("Invalid type for value");
3744       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3745       InstructionList.push_back(I);
3746       break;
3747     }
3748
3749     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3750       // Old form of ICmp/FCmp returning bool
3751       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3752       // both legal on vectors but had different behaviour.
3753     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3754       // FCmp/ICmp returning bool or vector of bool
3755
3756       unsigned OpNum = 0;
3757       Value *LHS, *RHS;
3758       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3759           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3760           OpNum+1 != Record.size())
3761         return Error("Invalid record");
3762
3763       if (LHS->getType()->isFPOrFPVectorTy())
3764         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
3765       else
3766         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
3767       InstructionList.push_back(I);
3768       break;
3769     }
3770
3771     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3772       {
3773         unsigned Size = Record.size();
3774         if (Size == 0) {
3775           I = ReturnInst::Create(Context);
3776           InstructionList.push_back(I);
3777           break;
3778         }
3779
3780         unsigned OpNum = 0;
3781         Value *Op = nullptr;
3782         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3783           return Error("Invalid record");
3784         if (OpNum != Record.size())
3785           return Error("Invalid record");
3786
3787         I = ReturnInst::Create(Context, Op);
3788         InstructionList.push_back(I);
3789         break;
3790       }
3791     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3792       if (Record.size() != 1 && Record.size() != 3)
3793         return Error("Invalid record");
3794       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3795       if (!TrueDest)
3796         return Error("Invalid record");
3797
3798       if (Record.size() == 1) {
3799         I = BranchInst::Create(TrueDest);
3800         InstructionList.push_back(I);
3801       }
3802       else {
3803         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3804         Value *Cond = getValue(Record, 2, NextValueNo,
3805                                Type::getInt1Ty(Context));
3806         if (!FalseDest || !Cond)
3807           return Error("Invalid record");
3808         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3809         InstructionList.push_back(I);
3810       }
3811       break;
3812     }
3813     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3814       // Check magic
3815       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3816         // "New" SwitchInst format with case ranges. The changes to write this
3817         // format were reverted but we still recognize bitcode that uses it.
3818         // Hopefully someday we will have support for case ranges and can use
3819         // this format again.
3820
3821         Type *OpTy = getTypeByID(Record[1]);
3822         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3823
3824         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3825         BasicBlock *Default = getBasicBlock(Record[3]);
3826         if (!OpTy || !Cond || !Default)
3827           return Error("Invalid record");
3828
3829         unsigned NumCases = Record[4];
3830
3831         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3832         InstructionList.push_back(SI);
3833
3834         unsigned CurIdx = 5;
3835         for (unsigned i = 0; i != NumCases; ++i) {
3836           SmallVector<ConstantInt*, 1> CaseVals;
3837           unsigned NumItems = Record[CurIdx++];
3838           for (unsigned ci = 0; ci != NumItems; ++ci) {
3839             bool isSingleNumber = Record[CurIdx++];
3840
3841             APInt Low;
3842             unsigned ActiveWords = 1;
3843             if (ValueBitWidth > 64)
3844               ActiveWords = Record[CurIdx++];
3845             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3846                                 ValueBitWidth);
3847             CurIdx += ActiveWords;
3848
3849             if (!isSingleNumber) {
3850               ActiveWords = 1;
3851               if (ValueBitWidth > 64)
3852                 ActiveWords = Record[CurIdx++];
3853               APInt High =
3854                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3855                                 ValueBitWidth);
3856               CurIdx += ActiveWords;
3857
3858               // FIXME: It is not clear whether values in the range should be
3859               // compared as signed or unsigned values. The partially
3860               // implemented changes that used this format in the past used
3861               // unsigned comparisons.
3862               for ( ; Low.ule(High); ++Low)
3863                 CaseVals.push_back(ConstantInt::get(Context, Low));
3864             } else
3865               CaseVals.push_back(ConstantInt::get(Context, Low));
3866           }
3867           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3868           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3869                  cve = CaseVals.end(); cvi != cve; ++cvi)
3870             SI->addCase(*cvi, DestBB);
3871         }
3872         I = SI;
3873         break;
3874       }
3875
3876       // Old SwitchInst format without case ranges.
3877
3878       if (Record.size() < 3 || (Record.size() & 1) == 0)
3879         return Error("Invalid record");
3880       Type *OpTy = getTypeByID(Record[0]);
3881       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3882       BasicBlock *Default = getBasicBlock(Record[2]);
3883       if (!OpTy || !Cond || !Default)
3884         return Error("Invalid record");
3885       unsigned NumCases = (Record.size()-3)/2;
3886       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3887       InstructionList.push_back(SI);
3888       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3889         ConstantInt *CaseVal =
3890           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3891         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3892         if (!CaseVal || !DestBB) {
3893           delete SI;
3894           return Error("Invalid record");
3895         }
3896         SI->addCase(CaseVal, DestBB);
3897       }
3898       I = SI;
3899       break;
3900     }
3901     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3902       if (Record.size() < 2)
3903         return Error("Invalid record");
3904       Type *OpTy = getTypeByID(Record[0]);
3905       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
3906       if (!OpTy || !Address)
3907         return Error("Invalid record");
3908       unsigned NumDests = Record.size()-2;
3909       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3910       InstructionList.push_back(IBI);
3911       for (unsigned i = 0, e = NumDests; i != e; ++i) {
3912         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3913           IBI->addDestination(DestBB);
3914         } else {
3915           delete IBI;
3916           return Error("Invalid record");
3917         }
3918       }
3919       I = IBI;
3920       break;
3921     }
3922
3923     case bitc::FUNC_CODE_INST_INVOKE: {
3924       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3925       if (Record.size() < 4)
3926         return Error("Invalid record");
3927       unsigned OpNum = 0;
3928       AttributeSet PAL = getAttributes(Record[OpNum++]);
3929       unsigned CCInfo = Record[OpNum++];
3930       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
3931       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
3932
3933       FunctionType *FTy = nullptr;
3934       if (CCInfo >> 13 & 1 &&
3935           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
3936         return Error("Explicit invoke type is not a function type");
3937
3938       Value *Callee;
3939       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3940         return Error("Invalid record");
3941
3942       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3943       if (!CalleeTy)
3944         return Error("Callee is not a pointer");
3945       if (!FTy) {
3946         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
3947         if (!FTy)
3948           return Error("Callee is not of pointer to function type");
3949       } else if (CalleeTy->getElementType() != FTy)
3950         return Error("Explicit invoke type does not match pointee type of "
3951                      "callee operand");
3952       if (Record.size() < FTy->getNumParams() + OpNum)
3953         return Error("Insufficient operands to call");
3954
3955       SmallVector<Value*, 16> Ops;
3956       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3957         Ops.push_back(getValue(Record, OpNum, NextValueNo,
3958                                FTy->getParamType(i)));
3959         if (!Ops.back())
3960           return Error("Invalid record");
3961       }
3962
3963       if (!FTy->isVarArg()) {
3964         if (Record.size() != OpNum)
3965           return Error("Invalid record");
3966       } else {
3967         // Read type/value pairs for varargs params.
3968         while (OpNum != Record.size()) {
3969           Value *Op;
3970           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3971             return Error("Invalid record");
3972           Ops.push_back(Op);
3973         }
3974       }
3975
3976       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3977       InstructionList.push_back(I);
3978       cast<InvokeInst>(I)
3979           ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo));
3980       cast<InvokeInst>(I)->setAttributes(PAL);
3981       break;
3982     }
3983     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3984       unsigned Idx = 0;
3985       Value *Val = nullptr;
3986       if (getValueTypePair(Record, Idx, NextValueNo, Val))
3987         return Error("Invalid record");
3988       I = ResumeInst::Create(Val);
3989       InstructionList.push_back(I);
3990       break;
3991     }
3992     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3993       I = new UnreachableInst(Context);
3994       InstructionList.push_back(I);
3995       break;
3996     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3997       if (Record.size() < 1 || ((Record.size()-1)&1))
3998         return Error("Invalid record");
3999       Type *Ty = getTypeByID(Record[0]);
4000       if (!Ty)
4001         return Error("Invalid record");
4002
4003       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4004       InstructionList.push_back(PN);
4005
4006       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4007         Value *V;
4008         // With the new function encoding, it is possible that operands have
4009         // negative IDs (for forward references).  Use a signed VBR
4010         // representation to keep the encoding small.
4011         if (UseRelativeIDs)
4012           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4013         else
4014           V = getValue(Record, 1+i, NextValueNo, Ty);
4015         BasicBlock *BB = getBasicBlock(Record[2+i]);
4016         if (!V || !BB)
4017           return Error("Invalid record");
4018         PN->addIncoming(V, BB);
4019       }
4020       I = PN;
4021       break;
4022     }
4023
4024     case bitc::FUNC_CODE_INST_LANDINGPAD: {
4025       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4026       unsigned Idx = 0;
4027       if (Record.size() < 4)
4028         return Error("Invalid record");
4029       Type *Ty = getTypeByID(Record[Idx++]);
4030       if (!Ty)
4031         return Error("Invalid record");
4032       Value *PersFn = nullptr;
4033       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4034         return Error("Invalid record");
4035
4036       bool IsCleanup = !!Record[Idx++];
4037       unsigned NumClauses = Record[Idx++];
4038       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
4039       LP->setCleanup(IsCleanup);
4040       for (unsigned J = 0; J != NumClauses; ++J) {
4041         LandingPadInst::ClauseType CT =
4042           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4043         Value *Val;
4044
4045         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4046           delete LP;
4047           return Error("Invalid record");
4048         }
4049
4050         assert((CT != LandingPadInst::Catch ||
4051                 !isa<ArrayType>(Val->getType())) &&
4052                "Catch clause has a invalid type!");
4053         assert((CT != LandingPadInst::Filter ||
4054                 isa<ArrayType>(Val->getType())) &&
4055                "Filter clause has invalid type!");
4056         LP->addClause(cast<Constant>(Val));
4057       }
4058
4059       I = LP;
4060       InstructionList.push_back(I);
4061       break;
4062     }
4063
4064     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4065       if (Record.size() != 4)
4066         return Error("Invalid record");
4067       uint64_t AlignRecord = Record[3];
4068       const uint64_t InAllocaMask = uint64_t(1) << 5;
4069       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4070       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4071       bool InAlloca = AlignRecord & InAllocaMask;
4072       Type *Ty = getTypeByID(Record[0]);
4073       if ((AlignRecord & ExplicitTypeMask) == 0) {
4074         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4075         if (!PTy)
4076           return Error("Old-style alloca with a non-pointer type");
4077         Ty = PTy->getElementType();
4078       }
4079       Type *OpTy = getTypeByID(Record[1]);
4080       Value *Size = getFnValueByID(Record[2], OpTy);
4081       unsigned Align;
4082       if (std::error_code EC =
4083               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4084         return EC;
4085       }
4086       if (!Ty || !Size)
4087         return Error("Invalid record");
4088       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4089       AI->setUsedWithInAlloca(InAlloca);
4090       I = AI;
4091       InstructionList.push_back(I);
4092       break;
4093     }
4094     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4095       unsigned OpNum = 0;
4096       Value *Op;
4097       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4098           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4099         return Error("Invalid record");
4100
4101       Type *Ty = nullptr;
4102       if (OpNum + 3 == Record.size())
4103         Ty = getTypeByID(Record[OpNum++]);
4104       if (std::error_code EC =
4105               TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType()))
4106         return EC;
4107       if (!Ty)
4108         Ty = cast<PointerType>(Op->getType())->getElementType();
4109
4110       unsigned Align;
4111       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4112         return EC;
4113       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4114
4115       InstructionList.push_back(I);
4116       break;
4117     }
4118     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4119        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4120       unsigned OpNum = 0;
4121       Value *Op;
4122       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4123           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4124         return Error("Invalid record");
4125
4126       Type *Ty = nullptr;
4127       if (OpNum + 5 == Record.size())
4128         Ty = getTypeByID(Record[OpNum++]);
4129       if (std::error_code EC =
4130               TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType()))
4131         return EC;
4132       if (!Ty)
4133         Ty = cast<PointerType>(Op->getType())->getElementType();
4134
4135       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
4136       if (Ordering == NotAtomic || Ordering == Release ||
4137           Ordering == AcquireRelease)
4138         return Error("Invalid record");
4139       if (Ordering != NotAtomic && Record[OpNum] == 0)
4140         return Error("Invalid record");
4141       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
4142
4143       unsigned Align;
4144       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4145         return EC;
4146       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4147
4148       InstructionList.push_back(I);
4149       break;
4150     }
4151     case bitc::FUNC_CODE_INST_STORE:
4152     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4153       unsigned OpNum = 0;
4154       Value *Val, *Ptr;
4155       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4156           (BitCode == bitc::FUNC_CODE_INST_STORE
4157                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4158                : popValue(Record, OpNum, NextValueNo,
4159                           cast<PointerType>(Ptr->getType())->getElementType(),
4160                           Val)) ||
4161           OpNum + 2 != Record.size())
4162         return Error("Invalid record");
4163
4164       if (std::error_code EC = TypeCheckLoadStoreInst(
4165               DiagnosticHandler, Val->getType(), Ptr->getType()))
4166         return EC;
4167       unsigned Align;
4168       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4169         return EC;
4170       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4171       InstructionList.push_back(I);
4172       break;
4173     }
4174     case bitc::FUNC_CODE_INST_STOREATOMIC:
4175     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4176       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4177       unsigned OpNum = 0;
4178       Value *Val, *Ptr;
4179       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4180           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4181                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4182                : popValue(Record, OpNum, NextValueNo,
4183                           cast<PointerType>(Ptr->getType())->getElementType(),
4184                           Val)) ||
4185           OpNum + 4 != Record.size())
4186         return Error("Invalid record");
4187
4188       if (std::error_code EC = TypeCheckLoadStoreInst(
4189               DiagnosticHandler, Val->getType(), Ptr->getType()))
4190         return EC;
4191       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
4192       if (Ordering == NotAtomic || Ordering == Acquire ||
4193           Ordering == AcquireRelease)
4194         return Error("Invalid record");
4195       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
4196       if (Ordering != NotAtomic && Record[OpNum] == 0)
4197         return Error("Invalid record");
4198
4199       unsigned Align;
4200       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4201         return EC;
4202       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4203       InstructionList.push_back(I);
4204       break;
4205     }
4206     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4207     case bitc::FUNC_CODE_INST_CMPXCHG: {
4208       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4209       //          failureordering?, isweak?]
4210       unsigned OpNum = 0;
4211       Value *Ptr, *Cmp, *New;
4212       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4213           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4214                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4215                : popValue(Record, OpNum, NextValueNo,
4216                           cast<PointerType>(Ptr->getType())->getElementType(),
4217                           Cmp)) ||
4218           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4219           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4220         return Error("Invalid record");
4221       AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
4222       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
4223         return Error("Invalid record");
4224       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
4225
4226       if (std::error_code EC = TypeCheckLoadStoreInst(
4227               DiagnosticHandler, Cmp->getType(), Ptr->getType()))
4228         return EC;
4229       AtomicOrdering FailureOrdering;
4230       if (Record.size() < 7)
4231         FailureOrdering =
4232             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4233       else
4234         FailureOrdering = GetDecodedOrdering(Record[OpNum+3]);
4235
4236       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4237                                 SynchScope);
4238       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4239
4240       if (Record.size() < 8) {
4241         // Before weak cmpxchgs existed, the instruction simply returned the
4242         // value loaded from memory, so bitcode files from that era will be
4243         // expecting the first component of a modern cmpxchg.
4244         CurBB->getInstList().push_back(I);
4245         I = ExtractValueInst::Create(I, 0);
4246       } else {
4247         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4248       }
4249
4250       InstructionList.push_back(I);
4251       break;
4252     }
4253     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4254       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4255       unsigned OpNum = 0;
4256       Value *Ptr, *Val;
4257       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4258           popValue(Record, OpNum, NextValueNo,
4259                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4260           OpNum+4 != Record.size())
4261         return Error("Invalid record");
4262       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
4263       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4264           Operation > AtomicRMWInst::LAST_BINOP)
4265         return Error("Invalid record");
4266       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
4267       if (Ordering == NotAtomic || Ordering == Unordered)
4268         return Error("Invalid record");
4269       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
4270       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
4271       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4272       InstructionList.push_back(I);
4273       break;
4274     }
4275     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
4276       if (2 != Record.size())
4277         return Error("Invalid record");
4278       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
4279       if (Ordering == NotAtomic || Ordering == Unordered ||
4280           Ordering == Monotonic)
4281         return Error("Invalid record");
4282       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
4283       I = new FenceInst(Context, Ordering, SynchScope);
4284       InstructionList.push_back(I);
4285       break;
4286     }
4287     case bitc::FUNC_CODE_INST_CALL: {
4288       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
4289       if (Record.size() < 3)
4290         return Error("Invalid record");
4291
4292       unsigned OpNum = 0;
4293       AttributeSet PAL = getAttributes(Record[OpNum++]);
4294       unsigned CCInfo = Record[OpNum++];
4295
4296       FunctionType *FTy = nullptr;
4297       if (CCInfo >> 15 & 1 &&
4298           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4299         return Error("Explicit call type is not a function type");
4300
4301       Value *Callee;
4302       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4303         return Error("Invalid record");
4304
4305       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4306       if (!OpTy)
4307         return Error("Callee is not a pointer type");
4308       if (!FTy) {
4309         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4310         if (!FTy)
4311           return Error("Callee is not of pointer to function type");
4312       } else if (OpTy->getElementType() != FTy)
4313         return Error("Explicit call type does not match pointee type of "
4314                      "callee operand");
4315       if (Record.size() < FTy->getNumParams() + OpNum)
4316         return Error("Insufficient operands to call");
4317
4318       SmallVector<Value*, 16> Args;
4319       // Read the fixed params.
4320       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4321         if (FTy->getParamType(i)->isLabelTy())
4322           Args.push_back(getBasicBlock(Record[OpNum]));
4323         else
4324           Args.push_back(getValue(Record, OpNum, NextValueNo,
4325                                   FTy->getParamType(i)));
4326         if (!Args.back())
4327           return Error("Invalid record");
4328       }
4329
4330       // Read type/value pairs for varargs params.
4331       if (!FTy->isVarArg()) {
4332         if (OpNum != Record.size())
4333           return Error("Invalid record");
4334       } else {
4335         while (OpNum != Record.size()) {
4336           Value *Op;
4337           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4338             return Error("Invalid record");
4339           Args.push_back(Op);
4340         }
4341       }
4342
4343       I = CallInst::Create(FTy, Callee, Args);
4344       InstructionList.push_back(I);
4345       cast<CallInst>(I)->setCallingConv(
4346           static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
4347       CallInst::TailCallKind TCK = CallInst::TCK_None;
4348       if (CCInfo & 1)
4349         TCK = CallInst::TCK_Tail;
4350       if (CCInfo & (1 << 14))
4351         TCK = CallInst::TCK_MustTail;
4352       cast<CallInst>(I)->setTailCallKind(TCK);
4353       cast<CallInst>(I)->setAttributes(PAL);
4354       break;
4355     }
4356     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4357       if (Record.size() < 3)
4358         return Error("Invalid record");
4359       Type *OpTy = getTypeByID(Record[0]);
4360       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4361       Type *ResTy = getTypeByID(Record[2]);
4362       if (!OpTy || !Op || !ResTy)
4363         return Error("Invalid record");
4364       I = new VAArgInst(Op, ResTy);
4365       InstructionList.push_back(I);
4366       break;
4367     }
4368     }
4369
4370     // Add instruction to end of current BB.  If there is no current BB, reject
4371     // this file.
4372     if (!CurBB) {
4373       delete I;
4374       return Error("Invalid instruction with no BB");
4375     }
4376     CurBB->getInstList().push_back(I);
4377
4378     // If this was a terminator instruction, move to the next block.
4379     if (isa<TerminatorInst>(I)) {
4380       ++CurBBNo;
4381       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4382     }
4383
4384     // Non-void values get registered in the value table for future use.
4385     if (I && !I->getType()->isVoidTy())
4386       ValueList.AssignValue(I, NextValueNo++);
4387   }
4388
4389 OutOfRecordLoop:
4390
4391   // Check the function list for unresolved values.
4392   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4393     if (!A->getParent()) {
4394       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4395       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4396         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4397           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4398           delete A;
4399         }
4400       }
4401       return Error("Never resolved value found in function");
4402     }
4403   }
4404
4405   // FIXME: Check for unresolved forward-declared metadata references
4406   // and clean up leaks.
4407
4408   // Trim the value list down to the size it was before we parsed this function.
4409   ValueList.shrinkTo(ModuleValueListSize);
4410   MDValueList.shrinkTo(ModuleMDValueListSize);
4411   std::vector<BasicBlock*>().swap(FunctionBBs);
4412   return std::error_code();
4413 }
4414
4415 /// Find the function body in the bitcode stream
4416 std::error_code BitcodeReader::FindFunctionInStream(
4417     Function *F,
4418     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4419   while (DeferredFunctionInfoIterator->second == 0) {
4420     if (Stream.AtEndOfStream())
4421       return Error("Could not find function in stream");
4422     // ParseModule will parse the next body in the stream and set its
4423     // position in the DeferredFunctionInfo map.
4424     if (std::error_code EC = ParseModule(true))
4425       return EC;
4426   }
4427   return std::error_code();
4428 }
4429
4430 //===----------------------------------------------------------------------===//
4431 // GVMaterializer implementation
4432 //===----------------------------------------------------------------------===//
4433
4434 void BitcodeReader::releaseBuffer() { Buffer.release(); }
4435
4436 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
4437   if (std::error_code EC = materializeMetadata())
4438     return EC;
4439
4440   Function *F = dyn_cast<Function>(GV);
4441   // If it's not a function or is already material, ignore the request.
4442   if (!F || !F->isMaterializable())
4443     return std::error_code();
4444
4445   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4446   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4447   // If its position is recorded as 0, its body is somewhere in the stream
4448   // but we haven't seen it yet.
4449   if (DFII->second == 0 && LazyStreamer)
4450     if (std::error_code EC = FindFunctionInStream(F, DFII))
4451       return EC;
4452
4453   // Move the bit stream to the saved position of the deferred function body.
4454   Stream.JumpToBit(DFII->second);
4455
4456   if (std::error_code EC = ParseFunctionBody(F))
4457     return EC;
4458   F->setIsMaterializable(false);
4459
4460   if (StripDebugInfo)
4461     stripDebugInfo(*F);
4462
4463   // Upgrade any old intrinsic calls in the function.
4464   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
4465        E = UpgradedIntrinsics.end(); I != E; ++I) {
4466     if (I->first != I->second) {
4467       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
4468            UI != UE;) {
4469         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
4470           UpgradeIntrinsicCall(CI, I->second);
4471       }
4472     }
4473   }
4474
4475   // Bring in any functions that this function forward-referenced via
4476   // blockaddresses.
4477   return materializeForwardReferencedFunctions();
4478 }
4479
4480 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
4481   const Function *F = dyn_cast<Function>(GV);
4482   if (!F || F->isDeclaration())
4483     return false;
4484
4485   // Dematerializing F would leave dangling references that wouldn't be
4486   // reconnected on re-materialization.
4487   if (BlockAddressesTaken.count(F))
4488     return false;
4489
4490   return DeferredFunctionInfo.count(const_cast<Function*>(F));
4491 }
4492
4493 void BitcodeReader::dematerialize(GlobalValue *GV) {
4494   Function *F = dyn_cast<Function>(GV);
4495   // If this function isn't dematerializable, this is a noop.
4496   if (!F || !isDematerializable(F))
4497     return;
4498
4499   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
4500
4501   // Just forget the function body, we can remat it later.
4502   F->dropAllReferences();
4503   F->setIsMaterializable(true);
4504 }
4505
4506 std::error_code BitcodeReader::materializeModule(Module *M) {
4507   assert(M == TheModule &&
4508          "Can only Materialize the Module this BitcodeReader is attached to.");
4509
4510   if (std::error_code EC = materializeMetadata())
4511     return EC;
4512
4513   // Promise to materialize all forward references.
4514   WillMaterializeAllForwardRefs = true;
4515
4516   // Iterate over the module, deserializing any functions that are still on
4517   // disk.
4518   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
4519        F != E; ++F) {
4520     if (std::error_code EC = materialize(F))
4521       return EC;
4522   }
4523   // At this point, if there are any function bodies, the current bit is
4524   // pointing to the END_BLOCK record after them. Now make sure the rest
4525   // of the bits in the module have been read.
4526   if (NextUnreadBit)
4527     ParseModule(true);
4528
4529   // Check that all block address forward references got resolved (as we
4530   // promised above).
4531   if (!BasicBlockFwdRefs.empty())
4532     return Error("Never resolved function from blockaddress");
4533
4534   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4535   // delete the old functions to clean up. We can't do this unless the entire
4536   // module is materialized because there could always be another function body
4537   // with calls to the old function.
4538   for (std::vector<std::pair<Function*, Function*> >::iterator I =
4539        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
4540     if (I->first != I->second) {
4541       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
4542            UI != UE;) {
4543         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
4544           UpgradeIntrinsicCall(CI, I->second);
4545       }
4546       if (!I->first->use_empty())
4547         I->first->replaceAllUsesWith(I->second);
4548       I->first->eraseFromParent();
4549     }
4550   }
4551   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
4552
4553   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
4554     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
4555
4556   UpgradeDebugInfo(*M);
4557   return std::error_code();
4558 }
4559
4560 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4561   return IdentifiedStructTypes;
4562 }
4563
4564 std::error_code BitcodeReader::InitStream() {
4565   if (LazyStreamer)
4566     return InitLazyStream();
4567   return InitStreamFromBuffer();
4568 }
4569
4570 std::error_code BitcodeReader::InitStreamFromBuffer() {
4571   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
4572   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
4573
4574   if (Buffer->getBufferSize() & 3)
4575     return Error("Invalid bitcode signature");
4576
4577   // If we have a wrapper header, parse it and ignore the non-bc file contents.
4578   // The magic number is 0x0B17C0DE stored in little endian.
4579   if (isBitcodeWrapper(BufPtr, BufEnd))
4580     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
4581       return Error("Invalid bitcode wrapper header");
4582
4583   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
4584   Stream.init(&*StreamFile);
4585
4586   return std::error_code();
4587 }
4588
4589 std::error_code BitcodeReader::InitLazyStream() {
4590   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
4591   // see it.
4592   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
4593   StreamingMemoryObject &Bytes = *OwnedBytes;
4594   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
4595   Stream.init(&*StreamFile);
4596
4597   unsigned char buf[16];
4598   if (Bytes.readBytes(buf, 16, 0) != 16)
4599     return Error("Invalid bitcode signature");
4600
4601   if (!isBitcode(buf, buf + 16))
4602     return Error("Invalid bitcode signature");
4603
4604   if (isBitcodeWrapper(buf, buf + 4)) {
4605     const unsigned char *bitcodeStart = buf;
4606     const unsigned char *bitcodeEnd = buf + 16;
4607     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
4608     Bytes.dropLeadingBytes(bitcodeStart - buf);
4609     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
4610   }
4611   return std::error_code();
4612 }
4613
4614 namespace {
4615 class BitcodeErrorCategoryType : public std::error_category {
4616   const char *name() const LLVM_NOEXCEPT override {
4617     return "llvm.bitcode";
4618   }
4619   std::string message(int IE) const override {
4620     BitcodeError E = static_cast<BitcodeError>(IE);
4621     switch (E) {
4622     case BitcodeError::InvalidBitcodeSignature:
4623       return "Invalid bitcode signature";
4624     case BitcodeError::CorruptedBitcode:
4625       return "Corrupted bitcode";
4626     }
4627     llvm_unreachable("Unknown error type!");
4628   }
4629 };
4630 }
4631
4632 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
4633
4634 const std::error_category &llvm::BitcodeErrorCategory() {
4635   return *ErrorCategory;
4636 }
4637
4638 //===----------------------------------------------------------------------===//
4639 // External interface
4640 //===----------------------------------------------------------------------===//
4641
4642 /// \brief Get a lazy one-at-time loading module from bitcode.
4643 ///
4644 /// This isn't always used in a lazy context.  In particular, it's also used by
4645 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
4646 /// in forward-referenced functions from block address references.
4647 ///
4648 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to
4649 /// materialize everything -- in particular, if this isn't truly lazy.
4650 static ErrorOr<Module *>
4651 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
4652                          LLVMContext &Context, bool WillMaterializeAll,
4653                          DiagnosticHandlerFunction DiagnosticHandler,
4654                          bool ShouldLazyLoadMetadata = false) {
4655   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
4656   BitcodeReader *R =
4657       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
4658   M->setMaterializer(R);
4659
4660   auto cleanupOnError = [&](std::error_code EC) {
4661     R->releaseBuffer(); // Never take ownership on error.
4662     delete M;  // Also deletes R.
4663     return EC;
4664   };
4665
4666   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
4667   if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata))
4668     return cleanupOnError(EC);
4669
4670   if (!WillMaterializeAll)
4671     // Resolve forward references from blockaddresses.
4672     if (std::error_code EC = R->materializeForwardReferencedFunctions())
4673       return cleanupOnError(EC);
4674
4675   Buffer.release(); // The BitcodeReader owns it now.
4676   return M;
4677 }
4678
4679 ErrorOr<Module *>
4680 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
4681                            LLVMContext &Context,
4682                            DiagnosticHandlerFunction DiagnosticHandler,
4683                            bool ShouldLazyLoadMetadata) {
4684   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
4685                                   DiagnosticHandler, ShouldLazyLoadMetadata);
4686 }
4687
4688 ErrorOr<std::unique_ptr<Module>>
4689 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer,
4690                                LLVMContext &Context,
4691                                DiagnosticHandlerFunction DiagnosticHandler) {
4692   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
4693   BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler);
4694   M->setMaterializer(R);
4695   if (std::error_code EC = R->ParseBitcodeInto(M.get()))
4696     return EC;
4697   return std::move(M);
4698 }
4699
4700 ErrorOr<Module *>
4701 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
4702                        DiagnosticHandlerFunction DiagnosticHandler) {
4703   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
4704   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
4705       std::move(Buf), Context, true, DiagnosticHandler);
4706   if (!ModuleOrErr)
4707     return ModuleOrErr;
4708   Module *M = ModuleOrErr.get();
4709   // Read in the entire module, and destroy the BitcodeReader.
4710   if (std::error_code EC = M->materializeAllPermanently()) {
4711     delete M;
4712     return EC;
4713   }
4714
4715   // TODO: Restore the use-lists to the in-memory state when the bitcode was
4716   // written.  We must defer until the Module has been fully materialized.
4717
4718   return M;
4719 }
4720
4721 std::string
4722 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
4723                              DiagnosticHandlerFunction DiagnosticHandler) {
4724   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
4725   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
4726                                             DiagnosticHandler);
4727   ErrorOr<std::string> Triple = R->parseTriple();
4728   if (Triple.getError())
4729     return "";
4730   return Triple.get();
4731 }