Do not use global typedef for MDKindID.
[oota-llvm.git] / lib / Bitcode / Reader / BitcodeReader.cpp
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Metadata.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/AutoUpgrade.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/OperandTraits.h"
30 using namespace llvm;
31
32 void BitcodeReader::FreeState() {
33   delete Buffer;
34   Buffer = 0;
35   std::vector<PATypeHolder>().swap(TypeList);
36   ValueList.clear();
37   MDValueList.clear();
38
39   std::vector<AttrListPtr>().swap(MAttributes);
40   std::vector<BasicBlock*>().swap(FunctionBBs);
41   std::vector<Function*>().swap(FunctionsWithBodies);
42   DeferredFunctionInfo.clear();
43 }
44
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   }
80 }
81
82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83   switch (Val) {
84   default: // Map unknown visibilities to default.
85   case 0: return GlobalValue::DefaultVisibility;
86   case 1: return GlobalValue::HiddenVisibility;
87   case 2: return GlobalValue::ProtectedVisibility;
88   }
89 }
90
91 static int GetDecodedCastOpcode(unsigned Val) {
92   switch (Val) {
93   default: return -1;
94   case bitc::CAST_TRUNC   : return Instruction::Trunc;
95   case bitc::CAST_ZEXT    : return Instruction::ZExt;
96   case bitc::CAST_SEXT    : return Instruction::SExt;
97   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102   case bitc::CAST_FPEXT   : return Instruction::FPExt;
103   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105   case bitc::CAST_BITCAST : return Instruction::BitCast;
106   }
107 }
108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109   switch (Val) {
110   default: return -1;
111   case bitc::BINOP_ADD:
112     return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113   case bitc::BINOP_SUB:
114     return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115   case bitc::BINOP_MUL:
116     return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117   case bitc::BINOP_UDIV: return Instruction::UDiv;
118   case bitc::BINOP_SDIV:
119     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120   case bitc::BINOP_UREM: return Instruction::URem;
121   case bitc::BINOP_SREM:
122     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123   case bitc::BINOP_SHL:  return Instruction::Shl;
124   case bitc::BINOP_LSHR: return Instruction::LShr;
125   case bitc::BINOP_ASHR: return Instruction::AShr;
126   case bitc::BINOP_AND:  return Instruction::And;
127   case bitc::BINOP_OR:   return Instruction::Or;
128   case bitc::BINOP_XOR:  return Instruction::Xor;
129   }
130 }
131
132 namespace llvm {
133 namespace {
134   /// @brief A class for maintaining the slot number definition
135   /// as a placeholder for the actual definition for forward constants defs.
136   class ConstantPlaceHolder : public ConstantExpr {
137     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139   public:
140     // allocate space for exactly one operand
141     void *operator new(size_t s) {
142       return User::operator new(s, 1);
143     }
144     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147     }
148
149     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150     static inline bool classof(const ConstantPlaceHolder *) { return true; }
151     static bool classof(const Value *V) {
152       return isa<ConstantExpr>(V) &&
153              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154     }
155
156
157     /// Provide fast operand accessors
158     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159   };
160 }
161
162 // FIXME: can we inherit this from ConstantExpr?
163 template <>
164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165 };
166 }
167
168
169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170   if (Idx == size()) {
171     push_back(V);
172     return;
173   }
174
175   if (Idx >= size())
176     resize(Idx+1);
177
178   WeakVH &OldV = ValuePtrs[Idx];
179   if (OldV == 0) {
180     OldV = V;
181     return;
182   }
183
184   // Handle constants and non-constants (e.g. instrs) differently for
185   // efficiency.
186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
188     OldV = V;
189   } else {
190     // If there was a forward reference to this value, replace it.
191     Value *PrevVal = OldV;
192     OldV->replaceAllUsesWith(V);
193     delete PrevVal;
194   }
195 }
196
197
198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                     const Type *Ty) {
200   if (Idx >= size())
201     resize(Idx + 1);
202
203   if (Value *V = ValuePtrs[Idx]) {
204     assert(Ty == V->getType() && "Type mismatch in constant table!");
205     return cast<Constant>(V);
206   }
207
208   // Create and return a placeholder, which will later be RAUW'd.
209   Constant *C = new ConstantPlaceHolder(Ty, Context);
210   ValuePtrs[Idx] = C;
211   return C;
212 }
213
214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215   if (Idx >= size())
216     resize(Idx + 1);
217
218   if (Value *V = ValuePtrs[Idx]) {
219     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220     return V;
221   }
222
223   // No type specified, must be invalid reference.
224   if (Ty == 0) return 0;
225
226   // Create and return a placeholder, which will later be RAUW'd.
227   Value *V = new Argument(Ty);
228   ValuePtrs[Idx] = V;
229   return V;
230 }
231
232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233 /// resolves any forward references.  The idea behind this is that we sometimes
234 /// get constants (such as large arrays) which reference *many* forward ref
235 /// constants.  Replacing each of these causes a lot of thrashing when
236 /// building/reuniquing the constant.  Instead of doing this, we look at all the
237 /// uses and rewrite all the place holders at once for any constant that uses
238 /// a placeholder.
239 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240   // Sort the values by-pointer so that they are efficient to look up with a
241   // binary search.
242   std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244   SmallVector<Constant*, 64> NewOps;
245
246   while (!ResolveConstants.empty()) {
247     Value *RealVal = operator[](ResolveConstants.back().second);
248     Constant *Placeholder = ResolveConstants.back().first;
249     ResolveConstants.pop_back();
250
251     // Loop over all users of the placeholder, updating them to reference the
252     // new value.  If they reference more than one placeholder, update them all
253     // at once.
254     while (!Placeholder->use_empty()) {
255       Value::use_iterator UI = Placeholder->use_begin();
256
257       // If the using object isn't uniqued, just update the operands.  This
258       // handles instructions and initializers for global variables.
259       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260         UI.getUse().set(RealVal);
261         continue;
262       }
263
264       // Otherwise, we have a constant that uses the placeholder.  Replace that
265       // constant with a new constant that has *all* placeholder uses updated.
266       Constant *UserC = cast<Constant>(*UI);
267       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268            I != E; ++I) {
269         Value *NewOp;
270         if (!isa<ConstantPlaceHolder>(*I)) {
271           // Not a placeholder reference.
272           NewOp = *I;
273         } else if (*I == Placeholder) {
274           // Common case is that it just references this one placeholder.
275           NewOp = RealVal;
276         } else {
277           // Otherwise, look up the placeholder in ResolveConstants.
278           ResolveConstantsTy::iterator It =
279             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                             0));
282           assert(It != ResolveConstants.end() && It->first == *I);
283           NewOp = operator[](It->second);
284         }
285
286         NewOps.push_back(cast<Constant>(NewOp));
287       }
288
289       // Make the new constant.
290       Constant *NewC;
291       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                         NewOps.size());
294       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                          UserCS->getType()->isPacked());
297       } else if (isa<ConstantVector>(UserC)) {
298         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299       } else {
300         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302                                                           NewOps.size());
303       }
304
305       UserC->replaceAllUsesWith(NewC);
306       UserC->destroyConstant();
307       NewOps.clear();
308     }
309
310     // Update all ValueHandles, they should be the only users at this point.
311     Placeholder->replaceAllUsesWith(RealVal);
312     delete Placeholder;
313   }
314 }
315
316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317   if (Idx == size()) {
318     push_back(V);
319     return;
320   }
321
322   if (Idx >= size())
323     resize(Idx+1);
324
325   WeakVH &OldV = MDValuePtrs[Idx];
326   if (OldV == 0) {
327     OldV = V;
328     return;
329   }
330
331   // If there was a forward reference to this value, replace it.
332   Value *PrevVal = OldV;
333   OldV->replaceAllUsesWith(V);
334   delete PrevVal;
335   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336   // value for Idx.
337   MDValuePtrs[Idx] = V;
338 }
339
340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341   if (Idx >= size())
342     resize(Idx + 1);
343
344   if (Value *V = MDValuePtrs[Idx]) {
345     assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!");
346     return V;
347   }
348
349   // Create and return a placeholder, which will later be RAUW'd.
350   Value *V = new Argument(Type::getMetadataTy(Context));
351   MDValuePtrs[Idx] = V;
352   return V;
353 }
354
355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356   // If the TypeID is in range, return it.
357   if (ID < TypeList.size())
358     return TypeList[ID].get();
359   if (!isTypeTable) return 0;
360
361   // The type table allows forward references.  Push as many Opaque types as
362   // needed to get up to ID.
363   while (TypeList.size() <= ID)
364     TypeList.push_back(OpaqueType::get(Context));
365   return TypeList.back().get();
366 }
367
368 //===----------------------------------------------------------------------===//
369 //  Functions for parsing blocks from the bitcode file
370 //===----------------------------------------------------------------------===//
371
372 bool BitcodeReader::ParseAttributeBlock() {
373   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374     return Error("Malformed block record");
375
376   if (!MAttributes.empty())
377     return Error("Multiple PARAMATTR blocks found!");
378
379   SmallVector<uint64_t, 64> Record;
380
381   SmallVector<AttributeWithIndex, 8> Attrs;
382
383   // Read all the records.
384   while (1) {
385     unsigned Code = Stream.ReadCode();
386     if (Code == bitc::END_BLOCK) {
387       if (Stream.ReadBlockEnd())
388         return Error("Error at end of PARAMATTR block");
389       return false;
390     }
391
392     if (Code == bitc::ENTER_SUBBLOCK) {
393       // No known subblocks, always skip them.
394       Stream.ReadSubBlockID();
395       if (Stream.SkipBlock())
396         return Error("Malformed block record");
397       continue;
398     }
399
400     if (Code == bitc::DEFINE_ABBREV) {
401       Stream.ReadAbbrevRecord();
402       continue;
403     }
404
405     // Read a record.
406     Record.clear();
407     switch (Stream.ReadRecord(Code, Record)) {
408     default:  // Default behavior: ignore.
409       break;
410     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411       if (Record.size() & 1)
412         return Error("Invalid ENTRY record");
413
414       // FIXME : Remove this autoupgrade code in LLVM 3.0.
415       // If Function attributes are using index 0 then transfer them
416       // to index ~0. Index 0 is used for return value attributes but used to be
417       // used for function attributes.
418       Attributes RetAttribute = Attribute::None;
419       Attributes FnAttribute = Attribute::None;
420       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421         // FIXME: remove in LLVM 3.0
422         // The alignment is stored as a 16-bit raw value from bits 31--16.
423         // We shift the bits above 31 down by 11 bits.
424
425         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426         if (Alignment && !isPowerOf2_32(Alignment))
427           return Error("Alignment is not a power of two.");
428
429         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430         if (Alignment)
431           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433         Record[i+1] = ReconstitutedAttr;
434
435         if (Record[i] == 0)
436           RetAttribute = Record[i+1];
437         else if (Record[i] == ~0U)
438           FnAttribute = Record[i+1];
439       }
440
441       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442                               Attribute::ReadOnly|Attribute::ReadNone);
443
444       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445           (RetAttribute & OldRetAttrs) != 0) {
446         if (FnAttribute == Attribute::None) { // add a slot so they get added.
447           Record.push_back(~0U);
448           Record.push_back(0);
449         }
450
451         FnAttribute  |= RetAttribute & OldRetAttrs;
452         RetAttribute &= ~OldRetAttrs;
453       }
454
455       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456         if (Record[i] == 0) {
457           if (RetAttribute != Attribute::None)
458             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459         } else if (Record[i] == ~0U) {
460           if (FnAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462         } else if (Record[i+1] != Attribute::None)
463           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
464       }
465
466       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467       Attrs.clear();
468       break;
469     }
470     }
471   }
472 }
473
474
475 bool BitcodeReader::ParseTypeTable() {
476   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477     return Error("Malformed block record");
478
479   if (!TypeList.empty())
480     return Error("Multiple TYPE_BLOCKs found!");
481
482   SmallVector<uint64_t, 64> Record;
483   unsigned NumRecords = 0;
484
485   // Read all the records for this type table.
486   while (1) {
487     unsigned Code = Stream.ReadCode();
488     if (Code == bitc::END_BLOCK) {
489       if (NumRecords != TypeList.size())
490         return Error("Invalid type forward reference in TYPE_BLOCK");
491       if (Stream.ReadBlockEnd())
492         return Error("Error at end of type table block");
493       return false;
494     }
495
496     if (Code == bitc::ENTER_SUBBLOCK) {
497       // No known subblocks, always skip them.
498       Stream.ReadSubBlockID();
499       if (Stream.SkipBlock())
500         return Error("Malformed block record");
501       continue;
502     }
503
504     if (Code == bitc::DEFINE_ABBREV) {
505       Stream.ReadAbbrevRecord();
506       continue;
507     }
508
509     // Read a record.
510     Record.clear();
511     const Type *ResultTy = 0;
512     switch (Stream.ReadRecord(Code, Record)) {
513     default:  // Default behavior: unknown type.
514       ResultTy = 0;
515       break;
516     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518       // type list.  This allows us to reserve space.
519       if (Record.size() < 1)
520         return Error("Invalid TYPE_CODE_NUMENTRY record");
521       TypeList.reserve(Record[0]);
522       continue;
523     case bitc::TYPE_CODE_VOID:      // VOID
524       ResultTy = Type::getVoidTy(Context);
525       break;
526     case bitc::TYPE_CODE_FLOAT:     // FLOAT
527       ResultTy = Type::getFloatTy(Context);
528       break;
529     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
530       ResultTy = Type::getDoubleTy(Context);
531       break;
532     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
533       ResultTy = Type::getX86_FP80Ty(Context);
534       break;
535     case bitc::TYPE_CODE_FP128:     // FP128
536       ResultTy = Type::getFP128Ty(Context);
537       break;
538     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539       ResultTy = Type::getPPC_FP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_LABEL:     // LABEL
542       ResultTy = Type::getLabelTy(Context);
543       break;
544     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
545       ResultTy = 0;
546       break;
547     case bitc::TYPE_CODE_METADATA:  // METADATA
548       ResultTy = Type::getMetadataTy(Context);
549       break;
550     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
551       if (Record.size() < 1)
552         return Error("Invalid Integer type record");
553
554       ResultTy = IntegerType::get(Context, Record[0]);
555       break;
556     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557                                     //          [pointee type, address space]
558       if (Record.size() < 1)
559         return Error("Invalid POINTER type record");
560       unsigned AddressSpace = 0;
561       if (Record.size() == 2)
562         AddressSpace = Record[1];
563       ResultTy = PointerType::get(getTypeByID(Record[0], true),
564                                         AddressSpace);
565       break;
566     }
567     case bitc::TYPE_CODE_FUNCTION: {
568       // FIXME: attrid is dead, remove it in LLVM 3.0
569       // FUNCTION: [vararg, attrid, retty, paramty x N]
570       if (Record.size() < 3)
571         return Error("Invalid FUNCTION type record");
572       std::vector<const Type*> ArgTys;
573       for (unsigned i = 3, e = Record.size(); i != e; ++i)
574         ArgTys.push_back(getTypeByID(Record[i], true));
575
576       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577                                    Record[0]);
578       break;
579     }
580     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
581       if (Record.size() < 1)
582         return Error("Invalid STRUCT type record");
583       std::vector<const Type*> EltTys;
584       for (unsigned i = 1, e = Record.size(); i != e; ++i)
585         EltTys.push_back(getTypeByID(Record[i], true));
586       ResultTy = StructType::get(Context, EltTys, Record[0]);
587       break;
588     }
589     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
590       if (Record.size() < 2)
591         return Error("Invalid ARRAY type record");
592       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593       break;
594     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
595       if (Record.size() < 2)
596         return Error("Invalid VECTOR type record");
597       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598       break;
599     }
600
601     if (NumRecords == TypeList.size()) {
602       // If this is a new type slot, just append it.
603       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604       ++NumRecords;
605     } else if (ResultTy == 0) {
606       // Otherwise, this was forward referenced, so an opaque type was created,
607       // but the result type is actually just an opaque.  Leave the one we
608       // created previously.
609       ++NumRecords;
610     } else {
611       // Otherwise, this was forward referenced, so an opaque type was created.
612       // Resolve the opaque type to the real type now.
613       assert(NumRecords < TypeList.size() && "Typelist imbalance");
614       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
615
616       // Don't directly push the new type on the Tab. Instead we want to replace
617       // the opaque type we previously inserted with the new concrete value. The
618       // refinement from the abstract (opaque) type to the new type causes all
619       // uses of the abstract type to use the concrete type (NewTy). This will
620       // also cause the opaque type to be deleted.
621       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
622
623       // This should have replaced the old opaque type with the new type in the
624       // value table... or with a preexisting type that was already in the
625       // system.  Let's just make sure it did.
626       assert(TypeList[NumRecords-1].get() != OldTy &&
627              "refineAbstractType didn't work!");
628     }
629   }
630 }
631
632
633 bool BitcodeReader::ParseTypeSymbolTable() {
634   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635     return Error("Malformed block record");
636
637   SmallVector<uint64_t, 64> Record;
638
639   // Read all the records for this type table.
640   std::string TypeName;
641   while (1) {
642     unsigned Code = Stream.ReadCode();
643     if (Code == bitc::END_BLOCK) {
644       if (Stream.ReadBlockEnd())
645         return Error("Error at end of type symbol table block");
646       return false;
647     }
648
649     if (Code == bitc::ENTER_SUBBLOCK) {
650       // No known subblocks, always skip them.
651       Stream.ReadSubBlockID();
652       if (Stream.SkipBlock())
653         return Error("Malformed block record");
654       continue;
655     }
656
657     if (Code == bitc::DEFINE_ABBREV) {
658       Stream.ReadAbbrevRecord();
659       continue;
660     }
661
662     // Read a record.
663     Record.clear();
664     switch (Stream.ReadRecord(Code, Record)) {
665     default:  // Default behavior: unknown type.
666       break;
667     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
668       if (ConvertToString(Record, 1, TypeName))
669         return Error("Invalid TST_ENTRY record");
670       unsigned TypeID = Record[0];
671       if (TypeID >= TypeList.size())
672         return Error("Invalid Type ID in TST_ENTRY record");
673
674       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675       TypeName.clear();
676       break;
677     }
678   }
679 }
680
681 bool BitcodeReader::ParseValueSymbolTable() {
682   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683     return Error("Malformed block record");
684
685   SmallVector<uint64_t, 64> Record;
686
687   // Read all the records for this value table.
688   SmallString<128> ValueName;
689   while (1) {
690     unsigned Code = Stream.ReadCode();
691     if (Code == bitc::END_BLOCK) {
692       if (Stream.ReadBlockEnd())
693         return Error("Error at end of value symbol table block");
694       return false;
695     }
696     if (Code == bitc::ENTER_SUBBLOCK) {
697       // No known subblocks, always skip them.
698       Stream.ReadSubBlockID();
699       if (Stream.SkipBlock())
700         return Error("Malformed block record");
701       continue;
702     }
703
704     if (Code == bitc::DEFINE_ABBREV) {
705       Stream.ReadAbbrevRecord();
706       continue;
707     }
708
709     // Read a record.
710     Record.clear();
711     switch (Stream.ReadRecord(Code, Record)) {
712     default:  // Default behavior: unknown type.
713       break;
714     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
715       if (ConvertToString(Record, 1, ValueName))
716         return Error("Invalid VST_ENTRY record");
717       unsigned ValueID = Record[0];
718       if (ValueID >= ValueList.size())
719         return Error("Invalid Value ID in VST_ENTRY record");
720       Value *V = ValueList[ValueID];
721
722       V->setName(StringRef(ValueName.data(), ValueName.size()));
723       ValueName.clear();
724       break;
725     }
726     case bitc::VST_CODE_BBENTRY: {
727       if (ConvertToString(Record, 1, ValueName))
728         return Error("Invalid VST_BBENTRY record");
729       BasicBlock *BB = getBasicBlock(Record[0]);
730       if (BB == 0)
731         return Error("Invalid BB ID in VST_BBENTRY record");
732
733       BB->setName(StringRef(ValueName.data(), ValueName.size()));
734       ValueName.clear();
735       break;
736     }
737     }
738   }
739 }
740
741 bool BitcodeReader::ParseMetadata() {
742   unsigned NextValueNo = MDValueList.size();
743
744   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745     return Error("Malformed block record");
746
747   SmallVector<uint64_t, 64> Record;
748
749   // Read all the records.
750   while (1) {
751     unsigned Code = Stream.ReadCode();
752     if (Code == bitc::END_BLOCK) {
753       if (Stream.ReadBlockEnd())
754         return Error("Error at end of PARAMATTR block");
755       return false;
756     }
757
758     if (Code == bitc::ENTER_SUBBLOCK) {
759       // No known subblocks, always skip them.
760       Stream.ReadSubBlockID();
761       if (Stream.SkipBlock())
762         return Error("Malformed block record");
763       continue;
764     }
765
766     if (Code == bitc::DEFINE_ABBREV) {
767       Stream.ReadAbbrevRecord();
768       continue;
769     }
770
771     // Read a record.
772     Record.clear();
773     switch (Stream.ReadRecord(Code, Record)) {
774     default:  // Default behavior: ignore.
775       break;
776     case bitc::METADATA_NAME: {
777       // Read named of the named metadata.
778       unsigned NameLength = Record.size();
779       SmallString<8> Name;
780       Name.resize(NameLength);
781       for (unsigned i = 0; i != NameLength; ++i)
782         Name[i] = Record[i];
783       Record.clear();
784       Code = Stream.ReadCode();
785
786       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788         assert ( 0 && "Inavlid Named Metadata record");
789
790       // Read named metadata elements.
791       unsigned Size = Record.size();
792       SmallVector<MetadataBase*, 8> Elts;
793       for (unsigned i = 0; i != Size; ++i) {
794         Value *MD = MDValueList.getValueFwdRef(Record[i]);
795         if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796         Elts.push_back(B);
797       }
798       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799                                      Elts.size(), TheModule);
800       MDValueList.AssignValue(V, NextValueNo++);
801       break;
802     }
803     case bitc::METADATA_NODE: {
804       if (Record.empty() || Record.size() % 2 == 1)
805         return Error("Invalid METADATA_NODE record");
806
807       unsigned Size = Record.size();
808       SmallVector<Value*, 8> Elts;
809       for (unsigned i = 0; i != Size; i += 2) {
810         const Type *Ty = getTypeByID(Record[i], false);
811         if (Ty == Type::getMetadataTy(Context))
812           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813         else if (Ty != Type::getVoidTy(Context))
814           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815         else
816           Elts.push_back(NULL);
817       }
818       Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819       MDValueList.AssignValue(V, NextValueNo++);
820       break;
821     }
822     case bitc::METADATA_STRING: {
823       unsigned MDStringLength = Record.size();
824       SmallString<8> String;
825       String.resize(MDStringLength);
826       for (unsigned i = 0; i != MDStringLength; ++i)
827         String[i] = Record[i];
828       Value *V = MDString::get(Context,
829                                StringRef(String.data(), String.size()));
830       MDValueList.AssignValue(V, NextValueNo++);
831       break;
832     }
833     case bitc::METADATA_KIND: {
834       unsigned RecordLength = Record.size();
835       if (Record.empty() || RecordLength < 2)
836         return Error("Invalid METADATA_KIND record");
837       SmallString<8> Name;
838       Name.resize(RecordLength-1);
839       unsigned Kind = Record[0];
840       for (unsigned i = 1; i != RecordLength; ++i)
841         Name[i-1] = Record[i];
842       Metadata &TheMetadata = Context.getMetadata();
843       assert(TheMetadata.MDHandlerNames.find(Name.str())
844              == TheMetadata.MDHandlerNames.end() &&
845              "Already registered MDKind!");
846       TheMetadata.MDHandlerNames[Name.str()] = Kind;
847       break;
848     }
849     }
850   }
851 }
852
853 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
854 /// the LSB for dense VBR encoding.
855 static uint64_t DecodeSignRotatedValue(uint64_t V) {
856   if ((V & 1) == 0)
857     return V >> 1;
858   if (V != 1)
859     return -(V >> 1);
860   // There is no such thing as -0 with integers.  "-0" really means MININT.
861   return 1ULL << 63;
862 }
863
864 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
865 /// values and aliases that we can.
866 bool BitcodeReader::ResolveGlobalAndAliasInits() {
867   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
868   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
869
870   GlobalInitWorklist.swap(GlobalInits);
871   AliasInitWorklist.swap(AliasInits);
872
873   while (!GlobalInitWorklist.empty()) {
874     unsigned ValID = GlobalInitWorklist.back().second;
875     if (ValID >= ValueList.size()) {
876       // Not ready to resolve this yet, it requires something later in the file.
877       GlobalInits.push_back(GlobalInitWorklist.back());
878     } else {
879       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
880         GlobalInitWorklist.back().first->setInitializer(C);
881       else
882         return Error("Global variable initializer is not a constant!");
883     }
884     GlobalInitWorklist.pop_back();
885   }
886
887   while (!AliasInitWorklist.empty()) {
888     unsigned ValID = AliasInitWorklist.back().second;
889     if (ValID >= ValueList.size()) {
890       AliasInits.push_back(AliasInitWorklist.back());
891     } else {
892       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
893         AliasInitWorklist.back().first->setAliasee(C);
894       else
895         return Error("Alias initializer is not a constant!");
896     }
897     AliasInitWorklist.pop_back();
898   }
899   return false;
900 }
901
902 bool BitcodeReader::ParseConstants() {
903   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
904     return Error("Malformed block record");
905
906   SmallVector<uint64_t, 64> Record;
907
908   // Read all the records for this value table.
909   const Type *CurTy = Type::getInt32Ty(Context);
910   unsigned NextCstNo = ValueList.size();
911   while (1) {
912     unsigned Code = Stream.ReadCode();
913     if (Code == bitc::END_BLOCK)
914       break;
915
916     if (Code == bitc::ENTER_SUBBLOCK) {
917       // No known subblocks, always skip them.
918       Stream.ReadSubBlockID();
919       if (Stream.SkipBlock())
920         return Error("Malformed block record");
921       continue;
922     }
923
924     if (Code == bitc::DEFINE_ABBREV) {
925       Stream.ReadAbbrevRecord();
926       continue;
927     }
928
929     // Read a record.
930     Record.clear();
931     Value *V = 0;
932     unsigned BitCode = Stream.ReadRecord(Code, Record);
933     switch (BitCode) {
934     default:  // Default behavior: unknown constant
935     case bitc::CST_CODE_UNDEF:     // UNDEF
936       V = UndefValue::get(CurTy);
937       break;
938     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
939       if (Record.empty())
940         return Error("Malformed CST_SETTYPE record");
941       if (Record[0] >= TypeList.size())
942         return Error("Invalid Type ID in CST_SETTYPE record");
943       CurTy = TypeList[Record[0]];
944       continue;  // Skip the ValueList manipulation.
945     case bitc::CST_CODE_NULL:      // NULL
946       V = Constant::getNullValue(CurTy);
947       break;
948     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
949       if (!isa<IntegerType>(CurTy) || Record.empty())
950         return Error("Invalid CST_INTEGER record");
951       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
952       break;
953     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
954       if (!isa<IntegerType>(CurTy) || Record.empty())
955         return Error("Invalid WIDE_INTEGER record");
956
957       unsigned NumWords = Record.size();
958       SmallVector<uint64_t, 8> Words;
959       Words.resize(NumWords);
960       for (unsigned i = 0; i != NumWords; ++i)
961         Words[i] = DecodeSignRotatedValue(Record[i]);
962       V = ConstantInt::get(Context,
963                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
964                            NumWords, &Words[0]));
965       break;
966     }
967     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
968       if (Record.empty())
969         return Error("Invalid FLOAT record");
970       if (CurTy == Type::getFloatTy(Context))
971         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
972       else if (CurTy == Type::getDoubleTy(Context))
973         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
974       else if (CurTy == Type::getX86_FP80Ty(Context)) {
975         // Bits are not stored the same way as a normal i80 APInt, compensate.
976         uint64_t Rearrange[2];
977         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
978         Rearrange[1] = Record[0] >> 48;
979         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
980       } else if (CurTy == Type::getFP128Ty(Context))
981         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
982       else if (CurTy == Type::getPPC_FP128Ty(Context))
983         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
984       else
985         V = UndefValue::get(CurTy);
986       break;
987     }
988
989     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
990       if (Record.empty())
991         return Error("Invalid CST_AGGREGATE record");
992
993       unsigned Size = Record.size();
994       std::vector<Constant*> Elts;
995
996       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
997         for (unsigned i = 0; i != Size; ++i)
998           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
999                                                      STy->getElementType(i)));
1000         V = ConstantStruct::get(STy, Elts);
1001       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1002         const Type *EltTy = ATy->getElementType();
1003         for (unsigned i = 0; i != Size; ++i)
1004           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1005         V = ConstantArray::get(ATy, Elts);
1006       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1007         const Type *EltTy = VTy->getElementType();
1008         for (unsigned i = 0; i != Size; ++i)
1009           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1010         V = ConstantVector::get(Elts);
1011       } else {
1012         V = UndefValue::get(CurTy);
1013       }
1014       break;
1015     }
1016     case bitc::CST_CODE_STRING: { // STRING: [values]
1017       if (Record.empty())
1018         return Error("Invalid CST_AGGREGATE record");
1019
1020       const ArrayType *ATy = cast<ArrayType>(CurTy);
1021       const Type *EltTy = ATy->getElementType();
1022
1023       unsigned Size = Record.size();
1024       std::vector<Constant*> Elts;
1025       for (unsigned i = 0; i != Size; ++i)
1026         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1027       V = ConstantArray::get(ATy, Elts);
1028       break;
1029     }
1030     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1031       if (Record.empty())
1032         return Error("Invalid CST_AGGREGATE record");
1033
1034       const ArrayType *ATy = cast<ArrayType>(CurTy);
1035       const Type *EltTy = ATy->getElementType();
1036
1037       unsigned Size = Record.size();
1038       std::vector<Constant*> Elts;
1039       for (unsigned i = 0; i != Size; ++i)
1040         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1041       Elts.push_back(Constant::getNullValue(EltTy));
1042       V = ConstantArray::get(ATy, Elts);
1043       break;
1044     }
1045     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1046       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1047       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1048       if (Opc < 0) {
1049         V = UndefValue::get(CurTy);  // Unknown binop.
1050       } else {
1051         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1052         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1053         unsigned Flags = 0;
1054         if (Record.size() >= 4) {
1055           if (Opc == Instruction::Add ||
1056               Opc == Instruction::Sub ||
1057               Opc == Instruction::Mul) {
1058             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1059               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1060             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1061               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1062           } else if (Opc == Instruction::SDiv) {
1063             if (Record[3] & (1 << bitc::SDIV_EXACT))
1064               Flags |= SDivOperator::IsExact;
1065           }
1066         }
1067         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1068       }
1069       break;
1070     }
1071     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1072       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1073       int Opc = GetDecodedCastOpcode(Record[0]);
1074       if (Opc < 0) {
1075         V = UndefValue::get(CurTy);  // Unknown cast.
1076       } else {
1077         const Type *OpTy = getTypeByID(Record[1]);
1078         if (!OpTy) return Error("Invalid CE_CAST record");
1079         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1080         V = ConstantExpr::getCast(Opc, Op, CurTy);
1081       }
1082       break;
1083     }
1084     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1085     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1086       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1087       SmallVector<Constant*, 16> Elts;
1088       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1089         const Type *ElTy = getTypeByID(Record[i]);
1090         if (!ElTy) return Error("Invalid CE_GEP record");
1091         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1092       }
1093       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1094         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1095                                                    Elts.size()-1);
1096       else
1097         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1098                                            Elts.size()-1);
1099       break;
1100     }
1101     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1102       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1103       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1104                                                               Type::getInt1Ty(Context)),
1105                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1106                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1107       break;
1108     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1109       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1110       const VectorType *OpTy =
1111         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1112       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1113       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1114       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1115       V = ConstantExpr::getExtractElement(Op0, Op1);
1116       break;
1117     }
1118     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1119       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1120       if (Record.size() < 3 || OpTy == 0)
1121         return Error("Invalid CE_INSERTELT record");
1122       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1123       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1124                                                   OpTy->getElementType());
1125       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1126       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1127       break;
1128     }
1129     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1130       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1131       if (Record.size() < 3 || OpTy == 0)
1132         return Error("Invalid CE_SHUFFLEVEC record");
1133       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1134       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1135       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1136                                                  OpTy->getNumElements());
1137       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1138       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1139       break;
1140     }
1141     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1142       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1143       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1144       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1145         return Error("Invalid CE_SHUFVEC_EX record");
1146       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1147       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1148       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1149                                                  RTy->getNumElements());
1150       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1151       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1152       break;
1153     }
1154     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1155       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1156       const Type *OpTy = getTypeByID(Record[0]);
1157       if (OpTy == 0) return Error("Invalid CE_CMP record");
1158       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1159       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1160
1161       if (OpTy->isFloatingPoint())
1162         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1163       else
1164         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1165       break;
1166     }
1167     case bitc::CST_CODE_INLINEASM: {
1168       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1169       std::string AsmStr, ConstrStr;
1170       bool HasSideEffects = Record[0];
1171       unsigned AsmStrSize = Record[1];
1172       if (2+AsmStrSize >= Record.size())
1173         return Error("Invalid INLINEASM record");
1174       unsigned ConstStrSize = Record[2+AsmStrSize];
1175       if (3+AsmStrSize+ConstStrSize > Record.size())
1176         return Error("Invalid INLINEASM record");
1177
1178       for (unsigned i = 0; i != AsmStrSize; ++i)
1179         AsmStr += (char)Record[2+i];
1180       for (unsigned i = 0; i != ConstStrSize; ++i)
1181         ConstrStr += (char)Record[3+AsmStrSize+i];
1182       const PointerType *PTy = cast<PointerType>(CurTy);
1183       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1184                          AsmStr, ConstrStr, HasSideEffects);
1185       break;
1186     }
1187     }
1188
1189     ValueList.AssignValue(V, NextCstNo);
1190     ++NextCstNo;
1191   }
1192
1193   if (NextCstNo != ValueList.size())
1194     return Error("Invalid constant reference!");
1195
1196   if (Stream.ReadBlockEnd())
1197     return Error("Error at end of constants block");
1198
1199   // Once all the constants have been read, go through and resolve forward
1200   // references.
1201   ValueList.ResolveConstantForwardRefs();
1202   return false;
1203 }
1204
1205 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1206 /// remember where it is and then skip it.  This lets us lazily deserialize the
1207 /// functions.
1208 bool BitcodeReader::RememberAndSkipFunctionBody() {
1209   // Get the function we are talking about.
1210   if (FunctionsWithBodies.empty())
1211     return Error("Insufficient function protos");
1212
1213   Function *Fn = FunctionsWithBodies.back();
1214   FunctionsWithBodies.pop_back();
1215
1216   // Save the current stream state.
1217   uint64_t CurBit = Stream.GetCurrentBitNo();
1218   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1219
1220   // Set the functions linkage to GhostLinkage so we know it is lazily
1221   // deserialized.
1222   Fn->setLinkage(GlobalValue::GhostLinkage);
1223
1224   // Skip over the function block for now.
1225   if (Stream.SkipBlock())
1226     return Error("Malformed block record");
1227   return false;
1228 }
1229
1230 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1231   // Reject multiple MODULE_BLOCK's in a single bitstream.
1232   if (TheModule)
1233     return Error("Multiple MODULE_BLOCKs in same stream");
1234
1235   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1236     return Error("Malformed block record");
1237
1238   // Otherwise, create the module.
1239   TheModule = new Module(ModuleID, Context);
1240
1241   SmallVector<uint64_t, 64> Record;
1242   std::vector<std::string> SectionTable;
1243   std::vector<std::string> GCTable;
1244
1245   // Read all the records for this module.
1246   while (!Stream.AtEndOfStream()) {
1247     unsigned Code = Stream.ReadCode();
1248     if (Code == bitc::END_BLOCK) {
1249       if (Stream.ReadBlockEnd())
1250         return Error("Error at end of module block");
1251
1252       // Patch the initializers for globals and aliases up.
1253       ResolveGlobalAndAliasInits();
1254       if (!GlobalInits.empty() || !AliasInits.empty())
1255         return Error("Malformed global initializer set");
1256       if (!FunctionsWithBodies.empty())
1257         return Error("Too few function bodies found");
1258
1259       // Look for intrinsic functions which need to be upgraded at some point
1260       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1261            FI != FE; ++FI) {
1262         Function* NewFn;
1263         if (UpgradeIntrinsicFunction(FI, NewFn))
1264           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1265       }
1266
1267       // Force deallocation of memory for these vectors to favor the client that
1268       // want lazy deserialization.
1269       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1270       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1271       std::vector<Function*>().swap(FunctionsWithBodies);
1272       return false;
1273     }
1274
1275     if (Code == bitc::ENTER_SUBBLOCK) {
1276       switch (Stream.ReadSubBlockID()) {
1277       default:  // Skip unknown content.
1278         if (Stream.SkipBlock())
1279           return Error("Malformed block record");
1280         break;
1281       case bitc::BLOCKINFO_BLOCK_ID:
1282         if (Stream.ReadBlockInfoBlock())
1283           return Error("Malformed BlockInfoBlock");
1284         break;
1285       case bitc::PARAMATTR_BLOCK_ID:
1286         if (ParseAttributeBlock())
1287           return true;
1288         break;
1289       case bitc::TYPE_BLOCK_ID:
1290         if (ParseTypeTable())
1291           return true;
1292         break;
1293       case bitc::TYPE_SYMTAB_BLOCK_ID:
1294         if (ParseTypeSymbolTable())
1295           return true;
1296         break;
1297       case bitc::VALUE_SYMTAB_BLOCK_ID:
1298         if (ParseValueSymbolTable())
1299           return true;
1300         break;
1301       case bitc::CONSTANTS_BLOCK_ID:
1302         if (ParseConstants() || ResolveGlobalAndAliasInits())
1303           return true;
1304         break;
1305       case bitc::METADATA_BLOCK_ID:
1306         if (ParseMetadata())
1307           return true;
1308         break;
1309       case bitc::FUNCTION_BLOCK_ID:
1310         // If this is the first function body we've seen, reverse the
1311         // FunctionsWithBodies list.
1312         if (!HasReversedFunctionsWithBodies) {
1313           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1314           HasReversedFunctionsWithBodies = true;
1315         }
1316
1317         if (RememberAndSkipFunctionBody())
1318           return true;
1319         break;
1320       }
1321       continue;
1322     }
1323
1324     if (Code == bitc::DEFINE_ABBREV) {
1325       Stream.ReadAbbrevRecord();
1326       continue;
1327     }
1328
1329     // Read a record.
1330     switch (Stream.ReadRecord(Code, Record)) {
1331     default: break;  // Default behavior, ignore unknown content.
1332     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1333       if (Record.size() < 1)
1334         return Error("Malformed MODULE_CODE_VERSION");
1335       // Only version #0 is supported so far.
1336       if (Record[0] != 0)
1337         return Error("Unknown bitstream version!");
1338       break;
1339     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1340       std::string S;
1341       if (ConvertToString(Record, 0, S))
1342         return Error("Invalid MODULE_CODE_TRIPLE record");
1343       TheModule->setTargetTriple(S);
1344       break;
1345     }
1346     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1347       std::string S;
1348       if (ConvertToString(Record, 0, S))
1349         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1350       TheModule->setDataLayout(S);
1351       break;
1352     }
1353     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1354       std::string S;
1355       if (ConvertToString(Record, 0, S))
1356         return Error("Invalid MODULE_CODE_ASM record");
1357       TheModule->setModuleInlineAsm(S);
1358       break;
1359     }
1360     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1361       std::string S;
1362       if (ConvertToString(Record, 0, S))
1363         return Error("Invalid MODULE_CODE_DEPLIB record");
1364       TheModule->addLibrary(S);
1365       break;
1366     }
1367     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1368       std::string S;
1369       if (ConvertToString(Record, 0, S))
1370         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1371       SectionTable.push_back(S);
1372       break;
1373     }
1374     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1375       std::string S;
1376       if (ConvertToString(Record, 0, S))
1377         return Error("Invalid MODULE_CODE_GCNAME record");
1378       GCTable.push_back(S);
1379       break;
1380     }
1381     // GLOBALVAR: [pointer type, isconst, initid,
1382     //             linkage, alignment, section, visibility, threadlocal]
1383     case bitc::MODULE_CODE_GLOBALVAR: {
1384       if (Record.size() < 6)
1385         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1386       const Type *Ty = getTypeByID(Record[0]);
1387       if (!isa<PointerType>(Ty))
1388         return Error("Global not a pointer type!");
1389       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1390       Ty = cast<PointerType>(Ty)->getElementType();
1391
1392       bool isConstant = Record[1];
1393       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1394       unsigned Alignment = (1 << Record[4]) >> 1;
1395       std::string Section;
1396       if (Record[5]) {
1397         if (Record[5]-1 >= SectionTable.size())
1398           return Error("Invalid section ID");
1399         Section = SectionTable[Record[5]-1];
1400       }
1401       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1402       if (Record.size() > 6)
1403         Visibility = GetDecodedVisibility(Record[6]);
1404       bool isThreadLocal = false;
1405       if (Record.size() > 7)
1406         isThreadLocal = Record[7];
1407
1408       GlobalVariable *NewGV =
1409         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1410                            isThreadLocal, AddressSpace);
1411       NewGV->setAlignment(Alignment);
1412       if (!Section.empty())
1413         NewGV->setSection(Section);
1414       NewGV->setVisibility(Visibility);
1415       NewGV->setThreadLocal(isThreadLocal);
1416
1417       ValueList.push_back(NewGV);
1418
1419       // Remember which value to use for the global initializer.
1420       if (unsigned InitID = Record[2])
1421         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1422       break;
1423     }
1424     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1425     //             alignment, section, visibility, gc]
1426     case bitc::MODULE_CODE_FUNCTION: {
1427       if (Record.size() < 8)
1428         return Error("Invalid MODULE_CODE_FUNCTION record");
1429       const Type *Ty = getTypeByID(Record[0]);
1430       if (!isa<PointerType>(Ty))
1431         return Error("Function not a pointer type!");
1432       const FunctionType *FTy =
1433         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1434       if (!FTy)
1435         return Error("Function not a pointer to function type!");
1436
1437       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1438                                         "", TheModule);
1439
1440       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1441       bool isProto = Record[2];
1442       Func->setLinkage(GetDecodedLinkage(Record[3]));
1443       Func->setAttributes(getAttributes(Record[4]));
1444
1445       Func->setAlignment((1 << Record[5]) >> 1);
1446       if (Record[6]) {
1447         if (Record[6]-1 >= SectionTable.size())
1448           return Error("Invalid section ID");
1449         Func->setSection(SectionTable[Record[6]-1]);
1450       }
1451       Func->setVisibility(GetDecodedVisibility(Record[7]));
1452       if (Record.size() > 8 && Record[8]) {
1453         if (Record[8]-1 > GCTable.size())
1454           return Error("Invalid GC ID");
1455         Func->setGC(GCTable[Record[8]-1].c_str());
1456       }
1457       ValueList.push_back(Func);
1458
1459       // If this is a function with a body, remember the prototype we are
1460       // creating now, so that we can match up the body with them later.
1461       if (!isProto)
1462         FunctionsWithBodies.push_back(Func);
1463       break;
1464     }
1465     // ALIAS: [alias type, aliasee val#, linkage]
1466     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1467     case bitc::MODULE_CODE_ALIAS: {
1468       if (Record.size() < 3)
1469         return Error("Invalid MODULE_ALIAS record");
1470       const Type *Ty = getTypeByID(Record[0]);
1471       if (!isa<PointerType>(Ty))
1472         return Error("Function not a pointer type!");
1473
1474       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1475                                            "", 0, TheModule);
1476       // Old bitcode files didn't have visibility field.
1477       if (Record.size() > 3)
1478         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1479       ValueList.push_back(NewGA);
1480       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1481       break;
1482     }
1483     /// MODULE_CODE_PURGEVALS: [numvals]
1484     case bitc::MODULE_CODE_PURGEVALS:
1485       // Trim down the value list to the specified size.
1486       if (Record.size() < 1 || Record[0] > ValueList.size())
1487         return Error("Invalid MODULE_PURGEVALS record");
1488       ValueList.shrinkTo(Record[0]);
1489       break;
1490     }
1491     Record.clear();
1492   }
1493
1494   return Error("Premature end of bitstream");
1495 }
1496
1497 bool BitcodeReader::ParseBitcode() {
1498   TheModule = 0;
1499
1500   if (Buffer->getBufferSize() & 3)
1501     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1502
1503   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1504   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1505
1506   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1507   // The magic number is 0x0B17C0DE stored in little endian.
1508   if (isBitcodeWrapper(BufPtr, BufEnd))
1509     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1510       return Error("Invalid bitcode wrapper header");
1511
1512   StreamFile.init(BufPtr, BufEnd);
1513   Stream.init(StreamFile);
1514
1515   // Sniff for the signature.
1516   if (Stream.Read(8) != 'B' ||
1517       Stream.Read(8) != 'C' ||
1518       Stream.Read(4) != 0x0 ||
1519       Stream.Read(4) != 0xC ||
1520       Stream.Read(4) != 0xE ||
1521       Stream.Read(4) != 0xD)
1522     return Error("Invalid bitcode signature");
1523
1524   // We expect a number of well-defined blocks, though we don't necessarily
1525   // need to understand them all.
1526   while (!Stream.AtEndOfStream()) {
1527     unsigned Code = Stream.ReadCode();
1528
1529     if (Code != bitc::ENTER_SUBBLOCK)
1530       return Error("Invalid record at top-level");
1531
1532     unsigned BlockID = Stream.ReadSubBlockID();
1533
1534     // We only know the MODULE subblock ID.
1535     switch (BlockID) {
1536     case bitc::BLOCKINFO_BLOCK_ID:
1537       if (Stream.ReadBlockInfoBlock())
1538         return Error("Malformed BlockInfoBlock");
1539       break;
1540     case bitc::MODULE_BLOCK_ID:
1541       if (ParseModule(Buffer->getBufferIdentifier()))
1542         return true;
1543       break;
1544     default:
1545       if (Stream.SkipBlock())
1546         return Error("Malformed block record");
1547       break;
1548     }
1549   }
1550
1551   return false;
1552 }
1553
1554 /// ParseMetadataAttachment - Parse metadata attachments.
1555 bool BitcodeReader::ParseMetadataAttachment() {
1556   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1557     return Error("Malformed block record");
1558
1559   Metadata &TheMetadata = Context.getMetadata();
1560   SmallVector<uint64_t, 64> Record;
1561   while(1) {
1562     unsigned Code = Stream.ReadCode();
1563     if (Code == bitc::END_BLOCK) {
1564       if (Stream.ReadBlockEnd())
1565         return Error("Error at end of PARAMATTR block");
1566       break;
1567     }
1568     if (Code == bitc::DEFINE_ABBREV) {
1569       Stream.ReadAbbrevRecord();
1570       continue;
1571     }
1572     // Read a metadata attachment record.
1573     Record.clear();
1574     switch (Stream.ReadRecord(Code, Record)) {
1575     default:  // Default behavior: ignore.
1576       break;
1577     case bitc::METADATA_ATTACHMENT: {
1578       unsigned RecordLength = Record.size();
1579       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1580         return Error ("Invalid METADATA_ATTACHMENT reader!");
1581       Instruction *Inst = InstructionList[Record[0]];
1582       for (unsigned i = 1; i != RecordLength; i = i+2) {
1583         unsigned Kind = Record[i];
1584         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1585         TheMetadata.setMD(Kind, cast<MDNode>(Node), Inst);
1586       }
1587       break;
1588     }
1589     }
1590   }
1591   return false;
1592 }
1593
1594 /// ParseFunctionBody - Lazily parse the specified function body block.
1595 bool BitcodeReader::ParseFunctionBody(Function *F) {
1596   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1597     return Error("Malformed block record");
1598
1599   unsigned ModuleValueListSize = ValueList.size();
1600
1601   // Add all the function arguments to the value table.
1602   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1603     ValueList.push_back(I);
1604
1605   unsigned NextValueNo = ValueList.size();
1606   BasicBlock *CurBB = 0;
1607   unsigned CurBBNo = 0;
1608
1609   // Read all the records.
1610   SmallVector<uint64_t, 64> Record;
1611   while (1) {
1612     unsigned Code = Stream.ReadCode();
1613     if (Code == bitc::END_BLOCK) {
1614       if (Stream.ReadBlockEnd())
1615         return Error("Error at end of function block");
1616       break;
1617     }
1618
1619     if (Code == bitc::ENTER_SUBBLOCK) {
1620       switch (Stream.ReadSubBlockID()) {
1621       default:  // Skip unknown content.
1622         if (Stream.SkipBlock())
1623           return Error("Malformed block record");
1624         break;
1625       case bitc::CONSTANTS_BLOCK_ID:
1626         if (ParseConstants()) return true;
1627         NextValueNo = ValueList.size();
1628         break;
1629       case bitc::VALUE_SYMTAB_BLOCK_ID:
1630         if (ParseValueSymbolTable()) return true;
1631         break;
1632       case bitc::METADATA_ATTACHMENT_ID:
1633         if (ParseMetadataAttachment()) return true;
1634         break;
1635       }
1636       continue;
1637     }
1638
1639     if (Code == bitc::DEFINE_ABBREV) {
1640       Stream.ReadAbbrevRecord();
1641       continue;
1642     }
1643
1644     // Read a record.
1645     Record.clear();
1646     Instruction *I = 0;
1647     unsigned BitCode = Stream.ReadRecord(Code, Record);
1648     switch (BitCode) {
1649     default: // Default behavior: reject
1650       return Error("Unknown instruction");
1651     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1652       if (Record.size() < 1 || Record[0] == 0)
1653         return Error("Invalid DECLAREBLOCKS record");
1654       // Create all the basic blocks for the function.
1655       FunctionBBs.resize(Record[0]);
1656       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1657         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1658       CurBB = FunctionBBs[0];
1659       continue;
1660
1661     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1662       unsigned OpNum = 0;
1663       Value *LHS, *RHS;
1664       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1665           getValue(Record, OpNum, LHS->getType(), RHS) ||
1666           OpNum+1 > Record.size())
1667         return Error("Invalid BINOP record");
1668
1669       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1670       if (Opc == -1) return Error("Invalid BINOP record");
1671       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1672       InstructionList.push_back(I);
1673       if (OpNum < Record.size()) {
1674         if (Opc == Instruction::Add ||
1675             Opc == Instruction::Sub ||
1676             Opc == Instruction::Mul) {
1677           if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1678             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1679           if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1680             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1681         } else if (Opc == Instruction::SDiv) {
1682           if (Record[3] & (1 << bitc::SDIV_EXACT))
1683             cast<BinaryOperator>(I)->setIsExact(true);
1684         }
1685       }
1686       break;
1687     }
1688     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1689       unsigned OpNum = 0;
1690       Value *Op;
1691       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1692           OpNum+2 != Record.size())
1693         return Error("Invalid CAST record");
1694
1695       const Type *ResTy = getTypeByID(Record[OpNum]);
1696       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1697       if (Opc == -1 || ResTy == 0)
1698         return Error("Invalid CAST record");
1699       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1700       InstructionList.push_back(I);
1701       break;
1702     }
1703     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1704     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1705       unsigned OpNum = 0;
1706       Value *BasePtr;
1707       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1708         return Error("Invalid GEP record");
1709
1710       SmallVector<Value*, 16> GEPIdx;
1711       while (OpNum != Record.size()) {
1712         Value *Op;
1713         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1714           return Error("Invalid GEP record");
1715         GEPIdx.push_back(Op);
1716       }
1717
1718       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1719       InstructionList.push_back(I);
1720       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1721         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1722       break;
1723     }
1724
1725     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1726                                        // EXTRACTVAL: [opty, opval, n x indices]
1727       unsigned OpNum = 0;
1728       Value *Agg;
1729       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1730         return Error("Invalid EXTRACTVAL record");
1731
1732       SmallVector<unsigned, 4> EXTRACTVALIdx;
1733       for (unsigned RecSize = Record.size();
1734            OpNum != RecSize; ++OpNum) {
1735         uint64_t Index = Record[OpNum];
1736         if ((unsigned)Index != Index)
1737           return Error("Invalid EXTRACTVAL index");
1738         EXTRACTVALIdx.push_back((unsigned)Index);
1739       }
1740
1741       I = ExtractValueInst::Create(Agg,
1742                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1743       InstructionList.push_back(I);
1744       break;
1745     }
1746
1747     case bitc::FUNC_CODE_INST_INSERTVAL: {
1748                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1749       unsigned OpNum = 0;
1750       Value *Agg;
1751       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1752         return Error("Invalid INSERTVAL record");
1753       Value *Val;
1754       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1755         return Error("Invalid INSERTVAL record");
1756
1757       SmallVector<unsigned, 4> INSERTVALIdx;
1758       for (unsigned RecSize = Record.size();
1759            OpNum != RecSize; ++OpNum) {
1760         uint64_t Index = Record[OpNum];
1761         if ((unsigned)Index != Index)
1762           return Error("Invalid INSERTVAL index");
1763         INSERTVALIdx.push_back((unsigned)Index);
1764       }
1765
1766       I = InsertValueInst::Create(Agg, Val,
1767                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1768       InstructionList.push_back(I);
1769       break;
1770     }
1771
1772     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1773       // obsolete form of select
1774       // handles select i1 ... in old bitcode
1775       unsigned OpNum = 0;
1776       Value *TrueVal, *FalseVal, *Cond;
1777       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1778           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1779           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1780         return Error("Invalid SELECT record");
1781
1782       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1783       InstructionList.push_back(I);
1784       break;
1785     }
1786
1787     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1788       // new form of select
1789       // handles select i1 or select [N x i1]
1790       unsigned OpNum = 0;
1791       Value *TrueVal, *FalseVal, *Cond;
1792       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1793           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1794           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1795         return Error("Invalid SELECT record");
1796
1797       // select condition can be either i1 or [N x i1]
1798       if (const VectorType* vector_type =
1799           dyn_cast<const VectorType>(Cond->getType())) {
1800         // expect <n x i1>
1801         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1802           return Error("Invalid SELECT condition type");
1803       } else {
1804         // expect i1
1805         if (Cond->getType() != Type::getInt1Ty(Context))
1806           return Error("Invalid SELECT condition type");
1807       }
1808
1809       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1810       InstructionList.push_back(I);
1811       break;
1812     }
1813
1814     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1815       unsigned OpNum = 0;
1816       Value *Vec, *Idx;
1817       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1818           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1819         return Error("Invalid EXTRACTELT record");
1820       I = ExtractElementInst::Create(Vec, Idx);
1821       InstructionList.push_back(I);
1822       break;
1823     }
1824
1825     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1826       unsigned OpNum = 0;
1827       Value *Vec, *Elt, *Idx;
1828       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1829           getValue(Record, OpNum,
1830                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1831           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1832         return Error("Invalid INSERTELT record");
1833       I = InsertElementInst::Create(Vec, Elt, Idx);
1834       InstructionList.push_back(I);
1835       break;
1836     }
1837
1838     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1839       unsigned OpNum = 0;
1840       Value *Vec1, *Vec2, *Mask;
1841       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1842           getValue(Record, OpNum, Vec1->getType(), Vec2))
1843         return Error("Invalid SHUFFLEVEC record");
1844
1845       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1846         return Error("Invalid SHUFFLEVEC record");
1847       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1848       InstructionList.push_back(I);
1849       break;
1850     }
1851
1852     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1853       // Old form of ICmp/FCmp returning bool
1854       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1855       // both legal on vectors but had different behaviour.
1856     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1857       // FCmp/ICmp returning bool or vector of bool
1858
1859       unsigned OpNum = 0;
1860       Value *LHS, *RHS;
1861       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1862           getValue(Record, OpNum, LHS->getType(), RHS) ||
1863           OpNum+1 != Record.size())
1864         return Error("Invalid CMP record");
1865
1866       if (LHS->getType()->isFPOrFPVector())
1867         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1868       else
1869         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1870       InstructionList.push_back(I);
1871       break;
1872     }
1873
1874     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1875       if (Record.size() != 2)
1876         return Error("Invalid GETRESULT record");
1877       unsigned OpNum = 0;
1878       Value *Op;
1879       getValueTypePair(Record, OpNum, NextValueNo, Op);
1880       unsigned Index = Record[1];
1881       I = ExtractValueInst::Create(Op, Index);
1882       InstructionList.push_back(I);
1883       break;
1884     }
1885
1886     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1887       {
1888         unsigned Size = Record.size();
1889         if (Size == 0) {
1890           I = ReturnInst::Create(Context);
1891           InstructionList.push_back(I);
1892           break;
1893         }
1894
1895         unsigned OpNum = 0;
1896         SmallVector<Value *,4> Vs;
1897         do {
1898           Value *Op = NULL;
1899           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1900             return Error("Invalid RET record");
1901           Vs.push_back(Op);
1902         } while(OpNum != Record.size());
1903
1904         const Type *ReturnType = F->getReturnType();
1905         if (Vs.size() > 1 ||
1906             (isa<StructType>(ReturnType) &&
1907              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1908           Value *RV = UndefValue::get(ReturnType);
1909           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1910             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1911             InstructionList.push_back(I);
1912             CurBB->getInstList().push_back(I);
1913             ValueList.AssignValue(I, NextValueNo++);
1914             RV = I;
1915           }
1916           I = ReturnInst::Create(Context, RV);
1917           InstructionList.push_back(I);
1918           break;
1919         }
1920
1921         I = ReturnInst::Create(Context, Vs[0]);
1922         InstructionList.push_back(I);
1923         break;
1924       }
1925     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1926       if (Record.size() != 1 && Record.size() != 3)
1927         return Error("Invalid BR record");
1928       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1929       if (TrueDest == 0)
1930         return Error("Invalid BR record");
1931
1932       if (Record.size() == 1) {
1933         I = BranchInst::Create(TrueDest);
1934         InstructionList.push_back(I);
1935       }
1936       else {
1937         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1938         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1939         if (FalseDest == 0 || Cond == 0)
1940           return Error("Invalid BR record");
1941         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1942         InstructionList.push_back(I);
1943       }
1944       break;
1945     }
1946     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1947       if (Record.size() < 3 || (Record.size() & 1) == 0)
1948         return Error("Invalid SWITCH record");
1949       const Type *OpTy = getTypeByID(Record[0]);
1950       Value *Cond = getFnValueByID(Record[1], OpTy);
1951       BasicBlock *Default = getBasicBlock(Record[2]);
1952       if (OpTy == 0 || Cond == 0 || Default == 0)
1953         return Error("Invalid SWITCH record");
1954       unsigned NumCases = (Record.size()-3)/2;
1955       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1956       InstructionList.push_back(SI);
1957       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1958         ConstantInt *CaseVal =
1959           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1960         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1961         if (CaseVal == 0 || DestBB == 0) {
1962           delete SI;
1963           return Error("Invalid SWITCH record!");
1964         }
1965         SI->addCase(CaseVal, DestBB);
1966       }
1967       I = SI;
1968       break;
1969     }
1970
1971     case bitc::FUNC_CODE_INST_INVOKE: {
1972       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1973       if (Record.size() < 4) return Error("Invalid INVOKE record");
1974       AttrListPtr PAL = getAttributes(Record[0]);
1975       unsigned CCInfo = Record[1];
1976       BasicBlock *NormalBB = getBasicBlock(Record[2]);
1977       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1978
1979       unsigned OpNum = 4;
1980       Value *Callee;
1981       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1982         return Error("Invalid INVOKE record");
1983
1984       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1985       const FunctionType *FTy = !CalleeTy ? 0 :
1986         dyn_cast<FunctionType>(CalleeTy->getElementType());
1987
1988       // Check that the right number of fixed parameters are here.
1989       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1990           Record.size() < OpNum+FTy->getNumParams())
1991         return Error("Invalid INVOKE record");
1992
1993       SmallVector<Value*, 16> Ops;
1994       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1995         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1996         if (Ops.back() == 0) return Error("Invalid INVOKE record");
1997       }
1998
1999       if (!FTy->isVarArg()) {
2000         if (Record.size() != OpNum)
2001           return Error("Invalid INVOKE record");
2002       } else {
2003         // Read type/value pairs for varargs params.
2004         while (OpNum != Record.size()) {
2005           Value *Op;
2006           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2007             return Error("Invalid INVOKE record");
2008           Ops.push_back(Op);
2009         }
2010       }
2011
2012       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2013                              Ops.begin(), Ops.end());
2014       InstructionList.push_back(I);
2015       cast<InvokeInst>(I)->setCallingConv(
2016         static_cast<CallingConv::ID>(CCInfo));
2017       cast<InvokeInst>(I)->setAttributes(PAL);
2018       break;
2019     }
2020     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2021       I = new UnwindInst(Context);
2022       InstructionList.push_back(I);
2023       break;
2024     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2025       I = new UnreachableInst(Context);
2026       InstructionList.push_back(I);
2027       break;
2028     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2029       if (Record.size() < 1 || ((Record.size()-1)&1))
2030         return Error("Invalid PHI record");
2031       const Type *Ty = getTypeByID(Record[0]);
2032       if (!Ty) return Error("Invalid PHI record");
2033
2034       PHINode *PN = PHINode::Create(Ty);
2035       InstructionList.push_back(PN);
2036       PN->reserveOperandSpace((Record.size()-1)/2);
2037
2038       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2039         Value *V = getFnValueByID(Record[1+i], Ty);
2040         BasicBlock *BB = getBasicBlock(Record[2+i]);
2041         if (!V || !BB) return Error("Invalid PHI record");
2042         PN->addIncoming(V, BB);
2043       }
2044       I = PN;
2045       break;
2046     }
2047
2048     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2049       if (Record.size() < 3)
2050         return Error("Invalid MALLOC record");
2051       const PointerType *Ty =
2052         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2053       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2054       unsigned Align = Record[2];
2055       if (!Ty || !Size) return Error("Invalid MALLOC record");
2056       I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2057       InstructionList.push_back(I);
2058       break;
2059     }
2060     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2061       unsigned OpNum = 0;
2062       Value *Op;
2063       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2064           OpNum != Record.size())
2065         return Error("Invalid FREE record");
2066       I = new FreeInst(Op);
2067       InstructionList.push_back(I);
2068       break;
2069     }
2070     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2071       if (Record.size() < 3)
2072         return Error("Invalid ALLOCA record");
2073       const PointerType *Ty =
2074         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2075       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2076       unsigned Align = Record[2];
2077       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2078       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2079       InstructionList.push_back(I);
2080       break;
2081     }
2082     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2083       unsigned OpNum = 0;
2084       Value *Op;
2085       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2086           OpNum+2 != Record.size())
2087         return Error("Invalid LOAD record");
2088
2089       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2090       InstructionList.push_back(I);
2091       break;
2092     }
2093     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2094       unsigned OpNum = 0;
2095       Value *Val, *Ptr;
2096       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2097           getValue(Record, OpNum,
2098                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2099           OpNum+2 != Record.size())
2100         return Error("Invalid STORE record");
2101
2102       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2103       InstructionList.push_back(I);
2104       break;
2105     }
2106     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2107       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2108       unsigned OpNum = 0;
2109       Value *Val, *Ptr;
2110       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2111           getValue(Record, OpNum,
2112                    PointerType::getUnqual(Val->getType()), Ptr)||
2113           OpNum+2 != Record.size())
2114         return Error("Invalid STORE record");
2115
2116       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2117       InstructionList.push_back(I);
2118       break;
2119     }
2120     case bitc::FUNC_CODE_INST_CALL: {
2121       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2122       if (Record.size() < 3)
2123         return Error("Invalid CALL record");
2124
2125       AttrListPtr PAL = getAttributes(Record[0]);
2126       unsigned CCInfo = Record[1];
2127
2128       unsigned OpNum = 2;
2129       Value *Callee;
2130       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2131         return Error("Invalid CALL record");
2132
2133       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2134       const FunctionType *FTy = 0;
2135       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2136       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2137         return Error("Invalid CALL record");
2138
2139       SmallVector<Value*, 16> Args;
2140       // Read the fixed params.
2141       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2142         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2143           Args.push_back(getBasicBlock(Record[OpNum]));
2144         else
2145           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2146         if (Args.back() == 0) return Error("Invalid CALL record");
2147       }
2148
2149       // Read type/value pairs for varargs params.
2150       if (!FTy->isVarArg()) {
2151         if (OpNum != Record.size())
2152           return Error("Invalid CALL record");
2153       } else {
2154         while (OpNum != Record.size()) {
2155           Value *Op;
2156           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2157             return Error("Invalid CALL record");
2158           Args.push_back(Op);
2159         }
2160       }
2161
2162       I = CallInst::Create(Callee, Args.begin(), Args.end());
2163       InstructionList.push_back(I);
2164       cast<CallInst>(I)->setCallingConv(
2165         static_cast<CallingConv::ID>(CCInfo>>1));
2166       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2167       cast<CallInst>(I)->setAttributes(PAL);
2168       break;
2169     }
2170     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2171       if (Record.size() < 3)
2172         return Error("Invalid VAARG record");
2173       const Type *OpTy = getTypeByID(Record[0]);
2174       Value *Op = getFnValueByID(Record[1], OpTy);
2175       const Type *ResTy = getTypeByID(Record[2]);
2176       if (!OpTy || !Op || !ResTy)
2177         return Error("Invalid VAARG record");
2178       I = new VAArgInst(Op, ResTy);
2179       InstructionList.push_back(I);
2180       break;
2181     }
2182     }
2183
2184     // Add instruction to end of current BB.  If there is no current BB, reject
2185     // this file.
2186     if (CurBB == 0) {
2187       delete I;
2188       return Error("Invalid instruction with no BB");
2189     }
2190     CurBB->getInstList().push_back(I);
2191
2192     // If this was a terminator instruction, move to the next block.
2193     if (isa<TerminatorInst>(I)) {
2194       ++CurBBNo;
2195       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2196     }
2197
2198     // Non-void values get registered in the value table for future use.
2199     if (I && I->getType() != Type::getVoidTy(Context))
2200       ValueList.AssignValue(I, NextValueNo++);
2201   }
2202
2203   // Check the function list for unresolved values.
2204   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2205     if (A->getParent() == 0) {
2206       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2207       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2208         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2209           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2210           delete A;
2211         }
2212       }
2213       return Error("Never resolved value found in function!");
2214     }
2215   }
2216
2217   // Trim the value list down to the size it was before we parsed this function.
2218   ValueList.shrinkTo(ModuleValueListSize);
2219   std::vector<BasicBlock*>().swap(FunctionBBs);
2220
2221   return false;
2222 }
2223
2224 //===----------------------------------------------------------------------===//
2225 // ModuleProvider implementation
2226 //===----------------------------------------------------------------------===//
2227
2228
2229 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2230   // If it already is material, ignore the request.
2231   if (!F->hasNotBeenReadFromBitcode()) return false;
2232
2233   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2234     DeferredFunctionInfo.find(F);
2235   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2236
2237   // Move the bit stream to the saved position of the deferred function body and
2238   // restore the real linkage type for the function.
2239   Stream.JumpToBit(DFII->second.first);
2240   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2241
2242   if (ParseFunctionBody(F)) {
2243     if (ErrInfo) *ErrInfo = ErrorString;
2244     return true;
2245   }
2246
2247   // Upgrade any old intrinsic calls in the function.
2248   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2249        E = UpgradedIntrinsics.end(); I != E; ++I) {
2250     if (I->first != I->second) {
2251       for (Value::use_iterator UI = I->first->use_begin(),
2252            UE = I->first->use_end(); UI != UE; ) {
2253         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2254           UpgradeIntrinsicCall(CI, I->second);
2255       }
2256     }
2257   }
2258
2259   return false;
2260 }
2261
2262 void BitcodeReader::dematerializeFunction(Function *F) {
2263   // If this function isn't materialized, or if it is a proto, this is a noop.
2264   if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2265     return;
2266
2267   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2268
2269   // Just forget the function body, we can remat it later.
2270   F->deleteBody();
2271   F->setLinkage(GlobalValue::GhostLinkage);
2272 }
2273
2274
2275 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2276   // Iterate over the module, deserializing any functions that are still on
2277   // disk.
2278   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2279        F != E; ++F)
2280     if (F->hasNotBeenReadFromBitcode() &&
2281         materializeFunction(F, ErrInfo))
2282       return 0;
2283
2284   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2285   // delete the old functions to clean up. We can't do this unless the entire
2286   // module is materialized because there could always be another function body
2287   // with calls to the old function.
2288   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2289        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2290     if (I->first != I->second) {
2291       for (Value::use_iterator UI = I->first->use_begin(),
2292            UE = I->first->use_end(); UI != UE; ) {
2293         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2294           UpgradeIntrinsicCall(CI, I->second);
2295       }
2296       if (!I->first->use_empty())
2297         I->first->replaceAllUsesWith(I->second);
2298       I->first->eraseFromParent();
2299     }
2300   }
2301   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2302
2303   // Check debug info intrinsics.
2304   CheckDebugInfoIntrinsics(TheModule);
2305
2306   return TheModule;
2307 }
2308
2309
2310 /// This method is provided by the parent ModuleProvde class and overriden
2311 /// here. It simply releases the module from its provided and frees up our
2312 /// state.
2313 /// @brief Release our hold on the generated module
2314 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2315   // Since we're losing control of this Module, we must hand it back complete
2316   Module *M = ModuleProvider::releaseModule(ErrInfo);
2317   FreeState();
2318   return M;
2319 }
2320
2321
2322 //===----------------------------------------------------------------------===//
2323 // External interface
2324 //===----------------------------------------------------------------------===//
2325
2326 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2327 ///
2328 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2329                                                LLVMContext& Context,
2330                                                std::string *ErrMsg) {
2331   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2332   if (R->ParseBitcode()) {
2333     if (ErrMsg)
2334       *ErrMsg = R->getErrorString();
2335
2336     // Don't let the BitcodeReader dtor delete 'Buffer'.
2337     R->releaseMemoryBuffer();
2338     delete R;
2339     return 0;
2340   }
2341   return R;
2342 }
2343
2344 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2345 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2346 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2347                                std::string *ErrMsg){
2348   BitcodeReader *R;
2349   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2350                                                            ErrMsg));
2351   if (!R) return 0;
2352
2353   // Read in the entire module.
2354   Module *M = R->materializeModule(ErrMsg);
2355
2356   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2357   // there was an error.
2358   R->releaseMemoryBuffer();
2359
2360   // If there was no error, tell ModuleProvider not to delete it when its dtor
2361   // is run.
2362   if (M)
2363     M = R->releaseModule(ErrMsg);
2364
2365   delete R;
2366   return M;
2367 }