Backing out patch. Will refactor to remove the AsmParser dependency on Target.
[oota-llvm.git] / lib / AsmParser / LLParser.cpp
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
29 static std::string getTypeString(Type *T) {
30   std::string Result;
31   raw_string_ostream Tmp(Result);
32   Tmp << *T;
33   return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
37 bool LLParser::Run() {
38   // Prime the lexer.
39   Lex.Lex();
40
41   return ParseTopLevelEntities() ||
42          ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
47 bool LLParser::ValidateEndOfModule() {
48   // Handle any instruction metadata forward references.
49   if (!ForwardRefInstMetadata.empty()) {
50     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52          I != E; ++I) {
53       Instruction *Inst = I->first;
54       const std::vector<MDRef> &MDList = I->second;
55       
56       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57         unsigned SlotNo = MDList[i].MDSlot;
58         
59         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60           return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                        Twine(SlotNo) + "'");
62         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63       }
64     }
65     ForwardRefInstMetadata.clear();
66   }
67   
68   
69   // If there are entries in ForwardRefBlockAddresses at this point, they are
70   // references after the function was defined.  Resolve those now.
71   while (!ForwardRefBlockAddresses.empty()) {
72     // Okay, we are referencing an already-parsed function, resolve them now.
73     Function *TheFn = 0;
74     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75     if (Fn.Kind == ValID::t_GlobalName)
76       TheFn = M->getFunction(Fn.StrVal);
77     else if (Fn.UIntVal < NumberedVals.size())
78       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79     
80     if (TheFn == 0)
81       return Error(Fn.Loc, "unknown function referenced by blockaddress");
82     
83     // Resolve all these references.
84     if (ResolveForwardRefBlockAddresses(TheFn, 
85                                       ForwardRefBlockAddresses.begin()->second,
86                                         0))
87       return true;
88     
89     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90   }
91   
92   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93     if (NumberedTypes[i].second.isValid())
94       return Error(NumberedTypes[i].second,
95                    "use of undefined type '%" + Twine(i) + "'");
96
97   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99     if (I->second.second.isValid())
100       return Error(I->second.second,
101                    "use of undefined type named '" + I->getKey() + "'");
102
103   if (!ForwardRefVals.empty())
104     return Error(ForwardRefVals.begin()->second.second,
105                  "use of undefined value '@" + ForwardRefVals.begin()->first +
106                  "'");
107
108   if (!ForwardRefValIDs.empty())
109     return Error(ForwardRefValIDs.begin()->second.second,
110                  "use of undefined value '@" +
111                  Twine(ForwardRefValIDs.begin()->first) + "'");
112
113   if (!ForwardRefMDNodes.empty())
114     return Error(ForwardRefMDNodes.begin()->second.second,
115                  "use of undefined metadata '!" +
116                  Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119   // Look for intrinsic functions and CallInst that need to be upgraded
120   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123   // Upgrade to new EH scheme. N.B. This will go away in 3.1.
124   UpgradeExceptionHandling(M);
125
126   // Check debug info intrinsics.
127   CheckDebugInfoIntrinsics(M);
128   return false;
129 }
130
131 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 
132                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
133                                                PerFunctionState *PFS) {
134   // Loop over all the references, resolving them.
135   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
136     BasicBlock *Res;
137     if (PFS) {
138       if (Refs[i].first.Kind == ValID::t_LocalName)
139         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
140       else
141         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
142     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
143       return Error(Refs[i].first.Loc,
144        "cannot take address of numeric label after the function is defined");
145     } else {
146       Res = dyn_cast_or_null<BasicBlock>(
147                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
148     }
149     
150     if (Res == 0)
151       return Error(Refs[i].first.Loc,
152                    "referenced value is not a basic block");
153     
154     // Get the BlockAddress for this and update references to use it.
155     BlockAddress *BA = BlockAddress::get(TheFn, Res);
156     Refs[i].second->replaceAllUsesWith(BA);
157     Refs[i].second->eraseFromParent();
158   }
159   return false;
160 }
161
162
163 //===----------------------------------------------------------------------===//
164 // Top-Level Entities
165 //===----------------------------------------------------------------------===//
166
167 bool LLParser::ParseTopLevelEntities() {
168   while (1) {
169     switch (Lex.getKind()) {
170     default:         return TokError("expected top-level entity");
171     case lltok::Eof: return false;
172     case lltok::kw_declare: if (ParseDeclare()) return true; break;
173     case lltok::kw_define:  if (ParseDefine()) return true; break;
174     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
175     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
176     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
177     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
178     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
179     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
180     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
181     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
182     case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
183
184     // The Global variable production with no name can have many different
185     // optional leading prefixes, the production is:
186     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
187     //               OptionalAddrSpace OptionalUnNammedAddr
188     //               ('constant'|'global') ...
189     case lltok::kw_private:             // OptionalLinkage
190     case lltok::kw_linker_private:      // OptionalLinkage
191     case lltok::kw_linker_private_weak: // OptionalLinkage
192     case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
193     case lltok::kw_internal:            // OptionalLinkage
194     case lltok::kw_weak:                // OptionalLinkage
195     case lltok::kw_weak_odr:            // OptionalLinkage
196     case lltok::kw_linkonce:            // OptionalLinkage
197     case lltok::kw_linkonce_odr:        // OptionalLinkage
198     case lltok::kw_appending:           // OptionalLinkage
199     case lltok::kw_dllexport:           // OptionalLinkage
200     case lltok::kw_common:              // OptionalLinkage
201     case lltok::kw_dllimport:           // OptionalLinkage
202     case lltok::kw_extern_weak:         // OptionalLinkage
203     case lltok::kw_external: {          // OptionalLinkage
204       unsigned Linkage, Visibility;
205       if (ParseOptionalLinkage(Linkage) ||
206           ParseOptionalVisibility(Visibility) ||
207           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
208         return true;
209       break;
210     }
211     case lltok::kw_default:       // OptionalVisibility
212     case lltok::kw_hidden:        // OptionalVisibility
213     case lltok::kw_protected: {   // OptionalVisibility
214       unsigned Visibility;
215       if (ParseOptionalVisibility(Visibility) ||
216           ParseGlobal("", SMLoc(), 0, false, Visibility))
217         return true;
218       break;
219     }
220
221     case lltok::kw_thread_local:  // OptionalThreadLocal
222     case lltok::kw_addrspace:     // OptionalAddrSpace
223     case lltok::kw_constant:      // GlobalType
224     case lltok::kw_global:        // GlobalType
225       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
226       break;
227     }
228   }
229 }
230
231
232 /// toplevelentity
233 ///   ::= 'module' 'asm' STRINGCONSTANT
234 bool LLParser::ParseModuleAsm() {
235   assert(Lex.getKind() == lltok::kw_module);
236   Lex.Lex();
237
238   std::string AsmStr;
239   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
240       ParseStringConstant(AsmStr)) return true;
241
242   M->appendModuleInlineAsm(AsmStr);
243   return false;
244 }
245
246 /// toplevelentity
247 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
248 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
249 bool LLParser::ParseTargetDefinition() {
250   assert(Lex.getKind() == lltok::kw_target);
251   std::string Str;
252   switch (Lex.Lex()) {
253   default: return TokError("unknown target property");
254   case lltok::kw_triple:
255     Lex.Lex();
256     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
257         ParseStringConstant(Str))
258       return true;
259     M->setTargetTriple(Str);
260     return false;
261   case lltok::kw_datalayout:
262     Lex.Lex();
263     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
264         ParseStringConstant(Str))
265       return true;
266     M->setDataLayout(Str);
267     return false;
268   }
269 }
270
271 /// toplevelentity
272 ///   ::= 'deplibs' '=' '[' ']'
273 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
274 bool LLParser::ParseDepLibs() {
275   assert(Lex.getKind() == lltok::kw_deplibs);
276   Lex.Lex();
277   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
278       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
279     return true;
280
281   if (EatIfPresent(lltok::rsquare))
282     return false;
283
284   std::string Str;
285   if (ParseStringConstant(Str)) return true;
286   M->addLibrary(Str);
287
288   while (EatIfPresent(lltok::comma)) {
289     if (ParseStringConstant(Str)) return true;
290     M->addLibrary(Str);
291   }
292
293   return ParseToken(lltok::rsquare, "expected ']' at end of list");
294 }
295
296 /// ParseUnnamedType:
297 ///   ::= LocalVarID '=' 'type' type
298 bool LLParser::ParseUnnamedType() {
299   LocTy TypeLoc = Lex.getLoc();
300   unsigned TypeID = Lex.getUIntVal();
301   Lex.Lex(); // eat LocalVarID;
302
303   if (ParseToken(lltok::equal, "expected '=' after name") ||
304       ParseToken(lltok::kw_type, "expected 'type' after '='"))
305     return true;
306
307   if (TypeID >= NumberedTypes.size())
308     NumberedTypes.resize(TypeID+1);
309   
310   Type *Result = 0;
311   if (ParseStructDefinition(TypeLoc, "",
312                             NumberedTypes[TypeID], Result)) return true;
313   
314   if (!isa<StructType>(Result)) {
315     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
316     if (Entry.first)
317       return Error(TypeLoc, "non-struct types may not be recursive");
318     Entry.first = Result;
319     Entry.second = SMLoc();
320   }
321
322   return false;
323 }
324
325
326 /// toplevelentity
327 ///   ::= LocalVar '=' 'type' type
328 bool LLParser::ParseNamedType() {
329   std::string Name = Lex.getStrVal();
330   LocTy NameLoc = Lex.getLoc();
331   Lex.Lex();  // eat LocalVar.
332
333   if (ParseToken(lltok::equal, "expected '=' after name") ||
334       ParseToken(lltok::kw_type, "expected 'type' after name"))
335     return true;
336   
337   Type *Result = 0;
338   if (ParseStructDefinition(NameLoc, Name,
339                             NamedTypes[Name], Result)) return true;
340   
341   if (!isa<StructType>(Result)) {
342     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
343     if (Entry.first)
344       return Error(NameLoc, "non-struct types may not be recursive");
345     Entry.first = Result;
346     Entry.second = SMLoc();
347   }
348   
349   return false;
350 }
351
352
353 /// toplevelentity
354 ///   ::= 'declare' FunctionHeader
355 bool LLParser::ParseDeclare() {
356   assert(Lex.getKind() == lltok::kw_declare);
357   Lex.Lex();
358
359   Function *F;
360   return ParseFunctionHeader(F, false);
361 }
362
363 /// toplevelentity
364 ///   ::= 'define' FunctionHeader '{' ...
365 bool LLParser::ParseDefine() {
366   assert(Lex.getKind() == lltok::kw_define);
367   Lex.Lex();
368
369   Function *F;
370   return ParseFunctionHeader(F, true) ||
371          ParseFunctionBody(*F);
372 }
373
374 /// ParseGlobalType
375 ///   ::= 'constant'
376 ///   ::= 'global'
377 bool LLParser::ParseGlobalType(bool &IsConstant) {
378   if (Lex.getKind() == lltok::kw_constant)
379     IsConstant = true;
380   else if (Lex.getKind() == lltok::kw_global)
381     IsConstant = false;
382   else {
383     IsConstant = false;
384     return TokError("expected 'global' or 'constant'");
385   }
386   Lex.Lex();
387   return false;
388 }
389
390 /// ParseUnnamedGlobal:
391 ///   OptionalVisibility ALIAS ...
392 ///   OptionalLinkage OptionalVisibility ...   -> global variable
393 ///   GlobalID '=' OptionalVisibility ALIAS ...
394 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
395 bool LLParser::ParseUnnamedGlobal() {
396   unsigned VarID = NumberedVals.size();
397   std::string Name;
398   LocTy NameLoc = Lex.getLoc();
399
400   // Handle the GlobalID form.
401   if (Lex.getKind() == lltok::GlobalID) {
402     if (Lex.getUIntVal() != VarID)
403       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
404                    Twine(VarID) + "'");
405     Lex.Lex(); // eat GlobalID;
406
407     if (ParseToken(lltok::equal, "expected '=' after name"))
408       return true;
409   }
410
411   bool HasLinkage;
412   unsigned Linkage, Visibility;
413   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
414       ParseOptionalVisibility(Visibility))
415     return true;
416
417   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
418     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
419   return ParseAlias(Name, NameLoc, Visibility);
420 }
421
422 /// ParseNamedGlobal:
423 ///   GlobalVar '=' OptionalVisibility ALIAS ...
424 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
425 bool LLParser::ParseNamedGlobal() {
426   assert(Lex.getKind() == lltok::GlobalVar);
427   LocTy NameLoc = Lex.getLoc();
428   std::string Name = Lex.getStrVal();
429   Lex.Lex();
430
431   bool HasLinkage;
432   unsigned Linkage, Visibility;
433   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
434       ParseOptionalLinkage(Linkage, HasLinkage) ||
435       ParseOptionalVisibility(Visibility))
436     return true;
437
438   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440   return ParseAlias(Name, NameLoc, Visibility);
441 }
442
443 // MDString:
444 //   ::= '!' STRINGCONSTANT
445 bool LLParser::ParseMDString(MDString *&Result) {
446   std::string Str;
447   if (ParseStringConstant(Str)) return true;
448   Result = MDString::get(Context, Str);
449   return false;
450 }
451
452 // MDNode:
453 //   ::= '!' MDNodeNumber
454 //
455 /// This version of ParseMDNodeID returns the slot number and null in the case
456 /// of a forward reference.
457 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
458   // !{ ..., !42, ... }
459   if (ParseUInt32(SlotNo)) return true;
460
461   // Check existing MDNode.
462   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
463     Result = NumberedMetadata[SlotNo];
464   else
465     Result = 0;
466   return false;
467 }
468
469 bool LLParser::ParseMDNodeID(MDNode *&Result) {
470   // !{ ..., !42, ... }
471   unsigned MID = 0;
472   if (ParseMDNodeID(Result, MID)) return true;
473
474   // If not a forward reference, just return it now.
475   if (Result) return false;
476
477   // Otherwise, create MDNode forward reference.
478   MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
479   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
480   
481   if (NumberedMetadata.size() <= MID)
482     NumberedMetadata.resize(MID+1);
483   NumberedMetadata[MID] = FwdNode;
484   Result = FwdNode;
485   return false;
486 }
487
488 /// ParseNamedMetadata:
489 ///   !foo = !{ !1, !2 }
490 bool LLParser::ParseNamedMetadata() {
491   assert(Lex.getKind() == lltok::MetadataVar);
492   std::string Name = Lex.getStrVal();
493   Lex.Lex();
494
495   if (ParseToken(lltok::equal, "expected '=' here") ||
496       ParseToken(lltok::exclaim, "Expected '!' here") ||
497       ParseToken(lltok::lbrace, "Expected '{' here"))
498     return true;
499
500   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
501   if (Lex.getKind() != lltok::rbrace)
502     do {
503       if (ParseToken(lltok::exclaim, "Expected '!' here"))
504         return true;
505     
506       MDNode *N = 0;
507       if (ParseMDNodeID(N)) return true;
508       NMD->addOperand(N);
509     } while (EatIfPresent(lltok::comma));
510
511   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
512     return true;
513
514   return false;
515 }
516
517 /// ParseStandaloneMetadata:
518 ///   !42 = !{...}
519 bool LLParser::ParseStandaloneMetadata() {
520   assert(Lex.getKind() == lltok::exclaim);
521   Lex.Lex();
522   unsigned MetadataID = 0;
523
524   LocTy TyLoc;
525   Type *Ty = 0;
526   SmallVector<Value *, 16> Elts;
527   if (ParseUInt32(MetadataID) ||
528       ParseToken(lltok::equal, "expected '=' here") ||
529       ParseType(Ty, TyLoc) ||
530       ParseToken(lltok::exclaim, "Expected '!' here") ||
531       ParseToken(lltok::lbrace, "Expected '{' here") ||
532       ParseMDNodeVector(Elts, NULL) ||
533       ParseToken(lltok::rbrace, "expected end of metadata node"))
534     return true;
535
536   MDNode *Init = MDNode::get(Context, Elts);
537   
538   // See if this was forward referenced, if so, handle it.
539   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
540     FI = ForwardRefMDNodes.find(MetadataID);
541   if (FI != ForwardRefMDNodes.end()) {
542     MDNode *Temp = FI->second.first;
543     Temp->replaceAllUsesWith(Init);
544     MDNode::deleteTemporary(Temp);
545     ForwardRefMDNodes.erase(FI);
546     
547     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
548   } else {
549     if (MetadataID >= NumberedMetadata.size())
550       NumberedMetadata.resize(MetadataID+1);
551
552     if (NumberedMetadata[MetadataID] != 0)
553       return TokError("Metadata id is already used");
554     NumberedMetadata[MetadataID] = Init;
555   }
556
557   return false;
558 }
559
560 /// ParseAlias:
561 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
562 /// Aliasee
563 ///   ::= TypeAndValue
564 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
565 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
566 ///
567 /// Everything through visibility has already been parsed.
568 ///
569 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
570                           unsigned Visibility) {
571   assert(Lex.getKind() == lltok::kw_alias);
572   Lex.Lex();
573   unsigned Linkage;
574   LocTy LinkageLoc = Lex.getLoc();
575   if (ParseOptionalLinkage(Linkage))
576     return true;
577
578   if (Linkage != GlobalValue::ExternalLinkage &&
579       Linkage != GlobalValue::WeakAnyLinkage &&
580       Linkage != GlobalValue::WeakODRLinkage &&
581       Linkage != GlobalValue::InternalLinkage &&
582       Linkage != GlobalValue::PrivateLinkage &&
583       Linkage != GlobalValue::LinkerPrivateLinkage &&
584       Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
585       Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
586     return Error(LinkageLoc, "invalid linkage type for alias");
587
588   Constant *Aliasee;
589   LocTy AliaseeLoc = Lex.getLoc();
590   if (Lex.getKind() != lltok::kw_bitcast &&
591       Lex.getKind() != lltok::kw_getelementptr) {
592     if (ParseGlobalTypeAndValue(Aliasee)) return true;
593   } else {
594     // The bitcast dest type is not present, it is implied by the dest type.
595     ValID ID;
596     if (ParseValID(ID)) return true;
597     if (ID.Kind != ValID::t_Constant)
598       return Error(AliaseeLoc, "invalid aliasee");
599     Aliasee = ID.ConstantVal;
600   }
601
602   if (!Aliasee->getType()->isPointerTy())
603     return Error(AliaseeLoc, "alias must have pointer type");
604
605   // Okay, create the alias but do not insert it into the module yet.
606   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
607                                     (GlobalValue::LinkageTypes)Linkage, Name,
608                                     Aliasee);
609   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
610
611   // See if this value already exists in the symbol table.  If so, it is either
612   // a redefinition or a definition of a forward reference.
613   if (GlobalValue *Val = M->getNamedValue(Name)) {
614     // See if this was a redefinition.  If so, there is no entry in
615     // ForwardRefVals.
616     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
617       I = ForwardRefVals.find(Name);
618     if (I == ForwardRefVals.end())
619       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
620
621     // Otherwise, this was a definition of forward ref.  Verify that types
622     // agree.
623     if (Val->getType() != GA->getType())
624       return Error(NameLoc,
625               "forward reference and definition of alias have different types");
626
627     // If they agree, just RAUW the old value with the alias and remove the
628     // forward ref info.
629     Val->replaceAllUsesWith(GA);
630     Val->eraseFromParent();
631     ForwardRefVals.erase(I);
632   }
633
634   // Insert into the module, we know its name won't collide now.
635   M->getAliasList().push_back(GA);
636   assert(GA->getName() == Name && "Should not be a name conflict!");
637
638   return false;
639 }
640
641 /// ParseGlobal
642 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
643 ///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
644 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
645 ///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
646 ///
647 /// Everything through visibility has been parsed already.
648 ///
649 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
650                            unsigned Linkage, bool HasLinkage,
651                            unsigned Visibility) {
652   unsigned AddrSpace;
653   bool ThreadLocal, IsConstant, UnnamedAddr;
654   LocTy UnnamedAddrLoc;
655   LocTy TyLoc;
656
657   Type *Ty = 0;
658   if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
659       ParseOptionalAddrSpace(AddrSpace) ||
660       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
661                          &UnnamedAddrLoc) ||
662       ParseGlobalType(IsConstant) ||
663       ParseType(Ty, TyLoc))
664     return true;
665
666   // If the linkage is specified and is external, then no initializer is
667   // present.
668   Constant *Init = 0;
669   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
670                       Linkage != GlobalValue::ExternalWeakLinkage &&
671                       Linkage != GlobalValue::ExternalLinkage)) {
672     if (ParseGlobalValue(Ty, Init))
673       return true;
674   }
675
676   if (Ty->isFunctionTy() || Ty->isLabelTy())
677     return Error(TyLoc, "invalid type for global variable");
678
679   GlobalVariable *GV = 0;
680
681   // See if the global was forward referenced, if so, use the global.
682   if (!Name.empty()) {
683     if (GlobalValue *GVal = M->getNamedValue(Name)) {
684       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
685         return Error(NameLoc, "redefinition of global '@" + Name + "'");
686       GV = cast<GlobalVariable>(GVal);
687     }
688   } else {
689     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
690       I = ForwardRefValIDs.find(NumberedVals.size());
691     if (I != ForwardRefValIDs.end()) {
692       GV = cast<GlobalVariable>(I->second.first);
693       ForwardRefValIDs.erase(I);
694     }
695   }
696
697   if (GV == 0) {
698     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
699                             Name, 0, false, AddrSpace);
700   } else {
701     if (GV->getType()->getElementType() != Ty)
702       return Error(TyLoc,
703             "forward reference and definition of global have different types");
704
705     // Move the forward-reference to the correct spot in the module.
706     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
707   }
708
709   if (Name.empty())
710     NumberedVals.push_back(GV);
711
712   // Set the parsed properties on the global.
713   if (Init)
714     GV->setInitializer(Init);
715   GV->setConstant(IsConstant);
716   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
717   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
718   GV->setThreadLocal(ThreadLocal);
719   GV->setUnnamedAddr(UnnamedAddr);
720
721   // Parse attributes on the global.
722   while (Lex.getKind() == lltok::comma) {
723     Lex.Lex();
724
725     if (Lex.getKind() == lltok::kw_section) {
726       Lex.Lex();
727       GV->setSection(Lex.getStrVal());
728       if (ParseToken(lltok::StringConstant, "expected global section string"))
729         return true;
730     } else if (Lex.getKind() == lltok::kw_align) {
731       unsigned Alignment;
732       if (ParseOptionalAlignment(Alignment)) return true;
733       GV->setAlignment(Alignment);
734     } else {
735       TokError("unknown global variable property!");
736     }
737   }
738
739   return false;
740 }
741
742
743 //===----------------------------------------------------------------------===//
744 // GlobalValue Reference/Resolution Routines.
745 //===----------------------------------------------------------------------===//
746
747 /// GetGlobalVal - Get a value with the specified name or ID, creating a
748 /// forward reference record if needed.  This can return null if the value
749 /// exists but does not have the right type.
750 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
751                                     LocTy Loc) {
752   PointerType *PTy = dyn_cast<PointerType>(Ty);
753   if (PTy == 0) {
754     Error(Loc, "global variable reference must have pointer type");
755     return 0;
756   }
757
758   // Look this name up in the normal function symbol table.
759   GlobalValue *Val =
760     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
761
762   // If this is a forward reference for the value, see if we already created a
763   // forward ref record.
764   if (Val == 0) {
765     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
766       I = ForwardRefVals.find(Name);
767     if (I != ForwardRefVals.end())
768       Val = I->second.first;
769   }
770
771   // If we have the value in the symbol table or fwd-ref table, return it.
772   if (Val) {
773     if (Val->getType() == Ty) return Val;
774     Error(Loc, "'@" + Name + "' defined with type '" +
775           getTypeString(Val->getType()) + "'");
776     return 0;
777   }
778
779   // Otherwise, create a new forward reference for this value and remember it.
780   GlobalValue *FwdVal;
781   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
782     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
783   else
784     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
785                                 GlobalValue::ExternalWeakLinkage, 0, Name);
786
787   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
788   return FwdVal;
789 }
790
791 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
792   PointerType *PTy = dyn_cast<PointerType>(Ty);
793   if (PTy == 0) {
794     Error(Loc, "global variable reference must have pointer type");
795     return 0;
796   }
797
798   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
799
800   // If this is a forward reference for the value, see if we already created a
801   // forward ref record.
802   if (Val == 0) {
803     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
804       I = ForwardRefValIDs.find(ID);
805     if (I != ForwardRefValIDs.end())
806       Val = I->second.first;
807   }
808
809   // If we have the value in the symbol table or fwd-ref table, return it.
810   if (Val) {
811     if (Val->getType() == Ty) return Val;
812     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
813           getTypeString(Val->getType()) + "'");
814     return 0;
815   }
816
817   // Otherwise, create a new forward reference for this value and remember it.
818   GlobalValue *FwdVal;
819   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
820     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
821   else
822     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
823                                 GlobalValue::ExternalWeakLinkage, 0, "");
824
825   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
826   return FwdVal;
827 }
828
829
830 //===----------------------------------------------------------------------===//
831 // Helper Routines.
832 //===----------------------------------------------------------------------===//
833
834 /// ParseToken - If the current token has the specified kind, eat it and return
835 /// success.  Otherwise, emit the specified error and return failure.
836 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
837   if (Lex.getKind() != T)
838     return TokError(ErrMsg);
839   Lex.Lex();
840   return false;
841 }
842
843 /// ParseStringConstant
844 ///   ::= StringConstant
845 bool LLParser::ParseStringConstant(std::string &Result) {
846   if (Lex.getKind() != lltok::StringConstant)
847     return TokError("expected string constant");
848   Result = Lex.getStrVal();
849   Lex.Lex();
850   return false;
851 }
852
853 /// ParseUInt32
854 ///   ::= uint32
855 bool LLParser::ParseUInt32(unsigned &Val) {
856   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
857     return TokError("expected integer");
858   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
859   if (Val64 != unsigned(Val64))
860     return TokError("expected 32-bit integer (too large)");
861   Val = Val64;
862   Lex.Lex();
863   return false;
864 }
865
866
867 /// ParseOptionalAddrSpace
868 ///   := /*empty*/
869 ///   := 'addrspace' '(' uint32 ')'
870 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
871   AddrSpace = 0;
872   if (!EatIfPresent(lltok::kw_addrspace))
873     return false;
874   return ParseToken(lltok::lparen, "expected '(' in address space") ||
875          ParseUInt32(AddrSpace) ||
876          ParseToken(lltok::rparen, "expected ')' in address space");
877 }
878
879 /// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
880 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
881 /// 2: function attr.
882 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
883   Attrs = Attribute::None;
884   LocTy AttrLoc = Lex.getLoc();
885
886   while (1) {
887     switch (Lex.getKind()) {
888     default:  // End of attributes.
889       if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
890         return Error(AttrLoc, "invalid use of function-only attribute");
891
892       // As a hack, we allow "align 2" on functions as a synonym for
893       // "alignstack 2".
894       if (AttrKind == 2 &&
895           (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
896         return Error(AttrLoc, "invalid use of attribute on a function");
897
898       if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
899         return Error(AttrLoc, "invalid use of parameter-only attribute");
900
901       return false;
902     case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
903     case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
904     case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
905     case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
906     case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
907     case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
908     case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
909     case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
910
911     case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
912     case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
913     case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
914     case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
915     case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
916     case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
917     case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
918     case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
919     case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
920     case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
921     case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
922     case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
923     case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
924     case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
925     case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
926     case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
927
928     case lltok::kw_alignstack: {
929       unsigned Alignment;
930       if (ParseOptionalStackAlignment(Alignment))
931         return true;
932       Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
933       continue;
934     }
935
936     case lltok::kw_align: {
937       unsigned Alignment;
938       if (ParseOptionalAlignment(Alignment))
939         return true;
940       Attrs |= Attribute::constructAlignmentFromInt(Alignment);
941       continue;
942     }
943
944     }
945     Lex.Lex();
946   }
947 }
948
949 /// ParseOptionalLinkage
950 ///   ::= /*empty*/
951 ///   ::= 'private'
952 ///   ::= 'linker_private'
953 ///   ::= 'linker_private_weak'
954 ///   ::= 'linker_private_weak_def_auto'
955 ///   ::= 'internal'
956 ///   ::= 'weak'
957 ///   ::= 'weak_odr'
958 ///   ::= 'linkonce'
959 ///   ::= 'linkonce_odr'
960 ///   ::= 'available_externally'
961 ///   ::= 'appending'
962 ///   ::= 'dllexport'
963 ///   ::= 'common'
964 ///   ::= 'dllimport'
965 ///   ::= 'extern_weak'
966 ///   ::= 'external'
967 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
968   HasLinkage = false;
969   switch (Lex.getKind()) {
970   default:                       Res=GlobalValue::ExternalLinkage; return false;
971   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
972   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
973   case lltok::kw_linker_private_weak:
974     Res = GlobalValue::LinkerPrivateWeakLinkage;
975     break;
976   case lltok::kw_linker_private_weak_def_auto:
977     Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
978     break;
979   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
980   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
981   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
982   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
983   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
984   case lltok::kw_available_externally:
985     Res = GlobalValue::AvailableExternallyLinkage;
986     break;
987   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
988   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
989   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
990   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
991   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
992   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
993   }
994   Lex.Lex();
995   HasLinkage = true;
996   return false;
997 }
998
999 /// ParseOptionalVisibility
1000 ///   ::= /*empty*/
1001 ///   ::= 'default'
1002 ///   ::= 'hidden'
1003 ///   ::= 'protected'
1004 ///
1005 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1006   switch (Lex.getKind()) {
1007   default:                  Res = GlobalValue::DefaultVisibility; return false;
1008   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1009   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1010   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1011   }
1012   Lex.Lex();
1013   return false;
1014 }
1015
1016 /// ParseOptionalCallingConv
1017 ///   ::= /*empty*/
1018 ///   ::= 'ccc'
1019 ///   ::= 'fastcc'
1020 ///   ::= 'coldcc'
1021 ///   ::= 'x86_stdcallcc'
1022 ///   ::= 'x86_fastcallcc'
1023 ///   ::= 'x86_thiscallcc'
1024 ///   ::= 'arm_apcscc'
1025 ///   ::= 'arm_aapcscc'
1026 ///   ::= 'arm_aapcs_vfpcc'
1027 ///   ::= 'msp430_intrcc'
1028 ///   ::= 'ptx_kernel'
1029 ///   ::= 'ptx_device'
1030 ///   ::= 'cc' UINT
1031 ///
1032 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1033   switch (Lex.getKind()) {
1034   default:                       CC = CallingConv::C; return false;
1035   case lltok::kw_ccc:            CC = CallingConv::C; break;
1036   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1037   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1038   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1039   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1040   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1041   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1042   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1043   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1044   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1045   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1046   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1047   case lltok::kw_cc: {
1048       unsigned ArbitraryCC;
1049       Lex.Lex();
1050       if (ParseUInt32(ArbitraryCC)) {
1051         return true;
1052       } else
1053         CC = static_cast<CallingConv::ID>(ArbitraryCC);
1054         return false;
1055     }
1056     break;
1057   }
1058
1059   Lex.Lex();
1060   return false;
1061 }
1062
1063 /// ParseInstructionMetadata
1064 ///   ::= !dbg !42 (',' !dbg !57)*
1065 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1066                                         PerFunctionState *PFS) {
1067   do {
1068     if (Lex.getKind() != lltok::MetadataVar)
1069       return TokError("expected metadata after comma");
1070
1071     std::string Name = Lex.getStrVal();
1072     unsigned MDK = M->getMDKindID(Name.c_str());
1073     Lex.Lex();
1074
1075     MDNode *Node;
1076     SMLoc Loc = Lex.getLoc();
1077
1078     if (ParseToken(lltok::exclaim, "expected '!' here"))
1079       return true;
1080
1081     // This code is similar to that of ParseMetadataValue, however it needs to
1082     // have special-case code for a forward reference; see the comments on
1083     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1084     // at the top level here.
1085     if (Lex.getKind() == lltok::lbrace) {
1086       ValID ID;
1087       if (ParseMetadataListValue(ID, PFS))
1088         return true;
1089       assert(ID.Kind == ValID::t_MDNode);
1090       Inst->setMetadata(MDK, ID.MDNodeVal);
1091     } else {
1092       unsigned NodeID = 0;
1093       if (ParseMDNodeID(Node, NodeID))
1094         return true;
1095       if (Node) {
1096         // If we got the node, add it to the instruction.
1097         Inst->setMetadata(MDK, Node);
1098       } else {
1099         MDRef R = { Loc, MDK, NodeID };
1100         // Otherwise, remember that this should be resolved later.
1101         ForwardRefInstMetadata[Inst].push_back(R);
1102       }
1103     }
1104
1105     // If this is the end of the list, we're done.
1106   } while (EatIfPresent(lltok::comma));
1107   return false;
1108 }
1109
1110 /// ParseOptionalAlignment
1111 ///   ::= /* empty */
1112 ///   ::= 'align' 4
1113 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1114   Alignment = 0;
1115   if (!EatIfPresent(lltok::kw_align))
1116     return false;
1117   LocTy AlignLoc = Lex.getLoc();
1118   if (ParseUInt32(Alignment)) return true;
1119   if (!isPowerOf2_32(Alignment))
1120     return Error(AlignLoc, "alignment is not a power of two");
1121   if (Alignment > Value::MaximumAlignment)
1122     return Error(AlignLoc, "huge alignments are not supported yet");
1123   return false;
1124 }
1125
1126 /// ParseOptionalCommaAlign
1127 ///   ::= 
1128 ///   ::= ',' align 4
1129 ///
1130 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1131 /// end.
1132 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1133                                        bool &AteExtraComma) {
1134   AteExtraComma = false;
1135   while (EatIfPresent(lltok::comma)) {
1136     // Metadata at the end is an early exit.
1137     if (Lex.getKind() == lltok::MetadataVar) {
1138       AteExtraComma = true;
1139       return false;
1140     }
1141     
1142     if (Lex.getKind() != lltok::kw_align)
1143       return Error(Lex.getLoc(), "expected metadata or 'align'");
1144
1145     if (ParseOptionalAlignment(Alignment)) return true;
1146   }
1147
1148   return false;
1149 }
1150
1151 /// ParseScopeAndOrdering
1152 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1153 ///   else: ::=
1154 ///
1155 /// This sets Scope and Ordering to the parsed values.
1156 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1157                                      AtomicOrdering &Ordering) {
1158   if (!isAtomic)
1159     return false;
1160
1161   Scope = CrossThread;
1162   if (EatIfPresent(lltok::kw_singlethread))
1163     Scope = SingleThread;
1164   switch (Lex.getKind()) {
1165   default: return TokError("Expected ordering on atomic instruction");
1166   case lltok::kw_unordered: Ordering = Unordered; break;
1167   case lltok::kw_monotonic: Ordering = Monotonic; break;
1168   case lltok::kw_acquire: Ordering = Acquire; break;
1169   case lltok::kw_release: Ordering = Release; break;
1170   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1171   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1172   }
1173   Lex.Lex();
1174   return false;
1175 }
1176
1177 /// ParseOptionalStackAlignment
1178 ///   ::= /* empty */
1179 ///   ::= 'alignstack' '(' 4 ')'
1180 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1181   Alignment = 0;
1182   if (!EatIfPresent(lltok::kw_alignstack))
1183     return false;
1184   LocTy ParenLoc = Lex.getLoc();
1185   if (!EatIfPresent(lltok::lparen))
1186     return Error(ParenLoc, "expected '('");
1187   LocTy AlignLoc = Lex.getLoc();
1188   if (ParseUInt32(Alignment)) return true;
1189   ParenLoc = Lex.getLoc();
1190   if (!EatIfPresent(lltok::rparen))
1191     return Error(ParenLoc, "expected ')'");
1192   if (!isPowerOf2_32(Alignment))
1193     return Error(AlignLoc, "stack alignment is not a power of two");
1194   return false;
1195 }
1196
1197 /// ParseIndexList - This parses the index list for an insert/extractvalue
1198 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1199 /// comma at the end of the line and find that it is followed by metadata.
1200 /// Clients that don't allow metadata can call the version of this function that
1201 /// only takes one argument.
1202 ///
1203 /// ParseIndexList
1204 ///    ::=  (',' uint32)+
1205 ///
1206 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1207                               bool &AteExtraComma) {
1208   AteExtraComma = false;
1209   
1210   if (Lex.getKind() != lltok::comma)
1211     return TokError("expected ',' as start of index list");
1212
1213   while (EatIfPresent(lltok::comma)) {
1214     if (Lex.getKind() == lltok::MetadataVar) {
1215       AteExtraComma = true;
1216       return false;
1217     }
1218     unsigned Idx = 0;
1219     if (ParseUInt32(Idx)) return true;
1220     Indices.push_back(Idx);
1221   }
1222
1223   return false;
1224 }
1225
1226 //===----------------------------------------------------------------------===//
1227 // Type Parsing.
1228 //===----------------------------------------------------------------------===//
1229
1230 /// ParseType - Parse a type.
1231 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1232   SMLoc TypeLoc = Lex.getLoc();
1233   switch (Lex.getKind()) {
1234   default:
1235     return TokError("expected type");
1236   case lltok::Type:
1237     // Type ::= 'float' | 'void' (etc)
1238     Result = Lex.getTyVal();
1239     Lex.Lex();
1240     break;
1241   case lltok::lbrace:
1242     // Type ::= StructType
1243     if (ParseAnonStructType(Result, false))
1244       return true;
1245     break;
1246   case lltok::lsquare:
1247     // Type ::= '[' ... ']'
1248     Lex.Lex(); // eat the lsquare.
1249     if (ParseArrayVectorType(Result, false))
1250       return true;
1251     break;
1252   case lltok::less: // Either vector or packed struct.
1253     // Type ::= '<' ... '>'
1254     Lex.Lex();
1255     if (Lex.getKind() == lltok::lbrace) {
1256       if (ParseAnonStructType(Result, true) ||
1257           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1258         return true;
1259     } else if (ParseArrayVectorType(Result, true))
1260       return true;
1261     break;
1262   case lltok::LocalVar: {
1263     // Type ::= %foo
1264     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1265     
1266     // If the type hasn't been defined yet, create a forward definition and
1267     // remember where that forward def'n was seen (in case it never is defined).
1268     if (Entry.first == 0) {
1269       Entry.first = StructType::create(Context, Lex.getStrVal());
1270       Entry.second = Lex.getLoc();
1271     }
1272     Result = Entry.first;
1273     Lex.Lex();
1274     break;
1275   }
1276
1277   case lltok::LocalVarID: {
1278     // Type ::= %4
1279     if (Lex.getUIntVal() >= NumberedTypes.size())
1280       NumberedTypes.resize(Lex.getUIntVal()+1);
1281     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1282     
1283     // If the type hasn't been defined yet, create a forward definition and
1284     // remember where that forward def'n was seen (in case it never is defined).
1285     if (Entry.first == 0) {
1286       Entry.first = StructType::create(Context);
1287       Entry.second = Lex.getLoc();
1288     }
1289     Result = Entry.first;
1290     Lex.Lex();
1291     break;
1292   }
1293   }
1294
1295   // Parse the type suffixes.
1296   while (1) {
1297     switch (Lex.getKind()) {
1298     // End of type.
1299     default:
1300       if (!AllowVoid && Result->isVoidTy())
1301         return Error(TypeLoc, "void type only allowed for function results");
1302       return false;
1303
1304     // Type ::= Type '*'
1305     case lltok::star:
1306       if (Result->isLabelTy())
1307         return TokError("basic block pointers are invalid");
1308       if (Result->isVoidTy())
1309         return TokError("pointers to void are invalid - use i8* instead");
1310       if (!PointerType::isValidElementType(Result))
1311         return TokError("pointer to this type is invalid");
1312       Result = PointerType::getUnqual(Result);
1313       Lex.Lex();
1314       break;
1315
1316     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1317     case lltok::kw_addrspace: {
1318       if (Result->isLabelTy())
1319         return TokError("basic block pointers are invalid");
1320       if (Result->isVoidTy())
1321         return TokError("pointers to void are invalid; use i8* instead");
1322       if (!PointerType::isValidElementType(Result))
1323         return TokError("pointer to this type is invalid");
1324       unsigned AddrSpace;
1325       if (ParseOptionalAddrSpace(AddrSpace) ||
1326           ParseToken(lltok::star, "expected '*' in address space"))
1327         return true;
1328
1329       Result = PointerType::get(Result, AddrSpace);
1330       break;
1331     }
1332
1333     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1334     case lltok::lparen:
1335       if (ParseFunctionType(Result))
1336         return true;
1337       break;
1338     }
1339   }
1340 }
1341
1342 /// ParseParameterList
1343 ///    ::= '(' ')'
1344 ///    ::= '(' Arg (',' Arg)* ')'
1345 ///  Arg
1346 ///    ::= Type OptionalAttributes Value OptionalAttributes
1347 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1348                                   PerFunctionState &PFS) {
1349   if (ParseToken(lltok::lparen, "expected '(' in call"))
1350     return true;
1351
1352   while (Lex.getKind() != lltok::rparen) {
1353     // If this isn't the first argument, we need a comma.
1354     if (!ArgList.empty() &&
1355         ParseToken(lltok::comma, "expected ',' in argument list"))
1356       return true;
1357
1358     // Parse the argument.
1359     LocTy ArgLoc;
1360     Type *ArgTy = 0;
1361     unsigned ArgAttrs1 = Attribute::None;
1362     unsigned ArgAttrs2 = Attribute::None;
1363     Value *V;
1364     if (ParseType(ArgTy, ArgLoc))
1365       return true;
1366
1367     // Otherwise, handle normal operands.
1368     if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1369       return true;
1370     ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1371   }
1372
1373   Lex.Lex();  // Lex the ')'.
1374   return false;
1375 }
1376
1377
1378
1379 /// ParseArgumentList - Parse the argument list for a function type or function
1380 /// prototype.
1381 ///   ::= '(' ArgTypeListI ')'
1382 /// ArgTypeListI
1383 ///   ::= /*empty*/
1384 ///   ::= '...'
1385 ///   ::= ArgTypeList ',' '...'
1386 ///   ::= ArgType (',' ArgType)*
1387 ///
1388 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1389                                  bool &isVarArg){
1390   isVarArg = false;
1391   assert(Lex.getKind() == lltok::lparen);
1392   Lex.Lex(); // eat the (.
1393
1394   if (Lex.getKind() == lltok::rparen) {
1395     // empty
1396   } else if (Lex.getKind() == lltok::dotdotdot) {
1397     isVarArg = true;
1398     Lex.Lex();
1399   } else {
1400     LocTy TypeLoc = Lex.getLoc();
1401     Type *ArgTy = 0;
1402     unsigned Attrs;
1403     std::string Name;
1404
1405     if (ParseType(ArgTy) ||
1406         ParseOptionalAttrs(Attrs, 0)) return true;
1407
1408     if (ArgTy->isVoidTy())
1409       return Error(TypeLoc, "argument can not have void type");
1410
1411     if (Lex.getKind() == lltok::LocalVar) {
1412       Name = Lex.getStrVal();
1413       Lex.Lex();
1414     }
1415
1416     if (!FunctionType::isValidArgumentType(ArgTy))
1417       return Error(TypeLoc, "invalid type for function argument");
1418
1419     ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1420
1421     while (EatIfPresent(lltok::comma)) {
1422       // Handle ... at end of arg list.
1423       if (EatIfPresent(lltok::dotdotdot)) {
1424         isVarArg = true;
1425         break;
1426       }
1427
1428       // Otherwise must be an argument type.
1429       TypeLoc = Lex.getLoc();
1430       if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1431
1432       if (ArgTy->isVoidTy())
1433         return Error(TypeLoc, "argument can not have void type");
1434
1435       if (Lex.getKind() == lltok::LocalVar) {
1436         Name = Lex.getStrVal();
1437         Lex.Lex();
1438       } else {
1439         Name = "";
1440       }
1441
1442       if (!ArgTy->isFirstClassType())
1443         return Error(TypeLoc, "invalid type for function argument");
1444
1445       ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1446     }
1447   }
1448
1449   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1450 }
1451
1452 /// ParseFunctionType
1453 ///  ::= Type ArgumentList OptionalAttrs
1454 bool LLParser::ParseFunctionType(Type *&Result) {
1455   assert(Lex.getKind() == lltok::lparen);
1456
1457   if (!FunctionType::isValidReturnType(Result))
1458     return TokError("invalid function return type");
1459
1460   SmallVector<ArgInfo, 8> ArgList;
1461   bool isVarArg;
1462   if (ParseArgumentList(ArgList, isVarArg))
1463     return true;
1464
1465   // Reject names on the arguments lists.
1466   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1467     if (!ArgList[i].Name.empty())
1468       return Error(ArgList[i].Loc, "argument name invalid in function type");
1469     if (ArgList[i].Attrs != 0)
1470       return Error(ArgList[i].Loc,
1471                    "argument attributes invalid in function type");
1472   }
1473
1474   SmallVector<Type*, 16> ArgListTy;
1475   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1476     ArgListTy.push_back(ArgList[i].Ty);
1477
1478   Result = FunctionType::get(Result, ArgListTy, isVarArg);
1479   return false;
1480 }
1481
1482 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1483 /// other structs.
1484 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1485   SmallVector<Type*, 8> Elts;
1486   if (ParseStructBody(Elts)) return true;
1487   
1488   Result = StructType::get(Context, Elts, Packed);
1489   return false;
1490 }
1491
1492 /// ParseStructDefinition - Parse a struct in a 'type' definition.
1493 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1494                                      std::pair<Type*, LocTy> &Entry,
1495                                      Type *&ResultTy) {
1496   // If the type was already defined, diagnose the redefinition.
1497   if (Entry.first && !Entry.second.isValid())
1498     return Error(TypeLoc, "redefinition of type");
1499   
1500   // If we have opaque, just return without filling in the definition for the
1501   // struct.  This counts as a definition as far as the .ll file goes.
1502   if (EatIfPresent(lltok::kw_opaque)) {
1503     // This type is being defined, so clear the location to indicate this.
1504     Entry.second = SMLoc();
1505     
1506     // If this type number has never been uttered, create it.
1507     if (Entry.first == 0)
1508       Entry.first = StructType::create(Context, Name);
1509     ResultTy = Entry.first;
1510     return false;
1511   }
1512   
1513   // If the type starts with '<', then it is either a packed struct or a vector.
1514   bool isPacked = EatIfPresent(lltok::less);
1515
1516   // If we don't have a struct, then we have a random type alias, which we
1517   // accept for compatibility with old files.  These types are not allowed to be
1518   // forward referenced and not allowed to be recursive.
1519   if (Lex.getKind() != lltok::lbrace) {
1520     if (Entry.first)
1521       return Error(TypeLoc, "forward references to non-struct type");
1522   
1523     ResultTy = 0;
1524     if (isPacked)
1525       return ParseArrayVectorType(ResultTy, true);
1526     return ParseType(ResultTy);
1527   }
1528                                
1529   // This type is being defined, so clear the location to indicate this.
1530   Entry.second = SMLoc();
1531   
1532   // If this type number has never been uttered, create it.
1533   if (Entry.first == 0)
1534     Entry.first = StructType::create(Context, Name);
1535   
1536   StructType *STy = cast<StructType>(Entry.first);
1537  
1538   SmallVector<Type*, 8> Body;
1539   if (ParseStructBody(Body) ||
1540       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1541     return true;
1542   
1543   STy->setBody(Body, isPacked);
1544   ResultTy = STy;
1545   return false;
1546 }
1547
1548
1549 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1550 ///   StructType
1551 ///     ::= '{' '}'
1552 ///     ::= '{' Type (',' Type)* '}'
1553 ///     ::= '<' '{' '}' '>'
1554 ///     ::= '<' '{' Type (',' Type)* '}' '>'
1555 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1556   assert(Lex.getKind() == lltok::lbrace);
1557   Lex.Lex(); // Consume the '{'
1558
1559   // Handle the empty struct.
1560   if (EatIfPresent(lltok::rbrace))
1561     return false;
1562
1563   LocTy EltTyLoc = Lex.getLoc();
1564   Type *Ty = 0;
1565   if (ParseType(Ty)) return true;
1566   Body.push_back(Ty);
1567
1568   if (!StructType::isValidElementType(Ty))
1569     return Error(EltTyLoc, "invalid element type for struct");
1570
1571   while (EatIfPresent(lltok::comma)) {
1572     EltTyLoc = Lex.getLoc();
1573     if (ParseType(Ty)) return true;
1574
1575     if (!StructType::isValidElementType(Ty))
1576       return Error(EltTyLoc, "invalid element type for struct");
1577
1578     Body.push_back(Ty);
1579   }
1580
1581   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1582 }
1583
1584 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1585 /// token has already been consumed.
1586 ///   Type
1587 ///     ::= '[' APSINTVAL 'x' Types ']'
1588 ///     ::= '<' APSINTVAL 'x' Types '>'
1589 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1590   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1591       Lex.getAPSIntVal().getBitWidth() > 64)
1592     return TokError("expected number in address space");
1593
1594   LocTy SizeLoc = Lex.getLoc();
1595   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1596   Lex.Lex();
1597
1598   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1599       return true;
1600
1601   LocTy TypeLoc = Lex.getLoc();
1602   Type *EltTy = 0;
1603   if (ParseType(EltTy)) return true;
1604
1605   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1606                  "expected end of sequential type"))
1607     return true;
1608
1609   if (isVector) {
1610     if (Size == 0)
1611       return Error(SizeLoc, "zero element vector is illegal");
1612     if ((unsigned)Size != Size)
1613       return Error(SizeLoc, "size too large for vector");
1614     if (!VectorType::isValidElementType(EltTy))
1615       return Error(TypeLoc, "vector element type must be fp or integer");
1616     Result = VectorType::get(EltTy, unsigned(Size));
1617   } else {
1618     if (!ArrayType::isValidElementType(EltTy))
1619       return Error(TypeLoc, "invalid array element type");
1620     Result = ArrayType::get(EltTy, Size);
1621   }
1622   return false;
1623 }
1624
1625 //===----------------------------------------------------------------------===//
1626 // Function Semantic Analysis.
1627 //===----------------------------------------------------------------------===//
1628
1629 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1630                                              int functionNumber)
1631   : P(p), F(f), FunctionNumber(functionNumber) {
1632
1633   // Insert unnamed arguments into the NumberedVals list.
1634   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1635        AI != E; ++AI)
1636     if (!AI->hasName())
1637       NumberedVals.push_back(AI);
1638 }
1639
1640 LLParser::PerFunctionState::~PerFunctionState() {
1641   // If there were any forward referenced non-basicblock values, delete them.
1642   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1643        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1644     if (!isa<BasicBlock>(I->second.first)) {
1645       I->second.first->replaceAllUsesWith(
1646                            UndefValue::get(I->second.first->getType()));
1647       delete I->second.first;
1648       I->second.first = 0;
1649     }
1650
1651   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1652        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1653     if (!isa<BasicBlock>(I->second.first)) {
1654       I->second.first->replaceAllUsesWith(
1655                            UndefValue::get(I->second.first->getType()));
1656       delete I->second.first;
1657       I->second.first = 0;
1658     }
1659 }
1660
1661 bool LLParser::PerFunctionState::FinishFunction() {
1662   // Check to see if someone took the address of labels in this block.
1663   if (!P.ForwardRefBlockAddresses.empty()) {
1664     ValID FunctionID;
1665     if (!F.getName().empty()) {
1666       FunctionID.Kind = ValID::t_GlobalName;
1667       FunctionID.StrVal = F.getName();
1668     } else {
1669       FunctionID.Kind = ValID::t_GlobalID;
1670       FunctionID.UIntVal = FunctionNumber;
1671     }
1672   
1673     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1674       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1675     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1676       // Resolve all these references.
1677       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1678         return true;
1679       
1680       P.ForwardRefBlockAddresses.erase(FRBAI);
1681     }
1682   }
1683   
1684   if (!ForwardRefVals.empty())
1685     return P.Error(ForwardRefVals.begin()->second.second,
1686                    "use of undefined value '%" + ForwardRefVals.begin()->first +
1687                    "'");
1688   if (!ForwardRefValIDs.empty())
1689     return P.Error(ForwardRefValIDs.begin()->second.second,
1690                    "use of undefined value '%" +
1691                    Twine(ForwardRefValIDs.begin()->first) + "'");
1692   return false;
1693 }
1694
1695
1696 /// GetVal - Get a value with the specified name or ID, creating a
1697 /// forward reference record if needed.  This can return null if the value
1698 /// exists but does not have the right type.
1699 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1700                                           Type *Ty, LocTy Loc) {
1701   // Look this name up in the normal function symbol table.
1702   Value *Val = F.getValueSymbolTable().lookup(Name);
1703
1704   // If this is a forward reference for the value, see if we already created a
1705   // forward ref record.
1706   if (Val == 0) {
1707     std::map<std::string, std::pair<Value*, LocTy> >::iterator
1708       I = ForwardRefVals.find(Name);
1709     if (I != ForwardRefVals.end())
1710       Val = I->second.first;
1711   }
1712
1713   // If we have the value in the symbol table or fwd-ref table, return it.
1714   if (Val) {
1715     if (Val->getType() == Ty) return Val;
1716     if (Ty->isLabelTy())
1717       P.Error(Loc, "'%" + Name + "' is not a basic block");
1718     else
1719       P.Error(Loc, "'%" + Name + "' defined with type '" +
1720               getTypeString(Val->getType()) + "'");
1721     return 0;
1722   }
1723
1724   // Don't make placeholders with invalid type.
1725   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1726     P.Error(Loc, "invalid use of a non-first-class type");
1727     return 0;
1728   }
1729
1730   // Otherwise, create a new forward reference for this value and remember it.
1731   Value *FwdVal;
1732   if (Ty->isLabelTy())
1733     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1734   else
1735     FwdVal = new Argument(Ty, Name);
1736
1737   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1738   return FwdVal;
1739 }
1740
1741 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1742                                           LocTy Loc) {
1743   // Look this name up in the normal function symbol table.
1744   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1745
1746   // If this is a forward reference for the value, see if we already created a
1747   // forward ref record.
1748   if (Val == 0) {
1749     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1750       I = ForwardRefValIDs.find(ID);
1751     if (I != ForwardRefValIDs.end())
1752       Val = I->second.first;
1753   }
1754
1755   // If we have the value in the symbol table or fwd-ref table, return it.
1756   if (Val) {
1757     if (Val->getType() == Ty) return Val;
1758     if (Ty->isLabelTy())
1759       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1760     else
1761       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1762               getTypeString(Val->getType()) + "'");
1763     return 0;
1764   }
1765
1766   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1767     P.Error(Loc, "invalid use of a non-first-class type");
1768     return 0;
1769   }
1770
1771   // Otherwise, create a new forward reference for this value and remember it.
1772   Value *FwdVal;
1773   if (Ty->isLabelTy())
1774     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1775   else
1776     FwdVal = new Argument(Ty);
1777
1778   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1779   return FwdVal;
1780 }
1781
1782 /// SetInstName - After an instruction is parsed and inserted into its
1783 /// basic block, this installs its name.
1784 bool LLParser::PerFunctionState::SetInstName(int NameID,
1785                                              const std::string &NameStr,
1786                                              LocTy NameLoc, Instruction *Inst) {
1787   // If this instruction has void type, it cannot have a name or ID specified.
1788   if (Inst->getType()->isVoidTy()) {
1789     if (NameID != -1 || !NameStr.empty())
1790       return P.Error(NameLoc, "instructions returning void cannot have a name");
1791     return false;
1792   }
1793
1794   // If this was a numbered instruction, verify that the instruction is the
1795   // expected value and resolve any forward references.
1796   if (NameStr.empty()) {
1797     // If neither a name nor an ID was specified, just use the next ID.
1798     if (NameID == -1)
1799       NameID = NumberedVals.size();
1800
1801     if (unsigned(NameID) != NumberedVals.size())
1802       return P.Error(NameLoc, "instruction expected to be numbered '%" +
1803                      Twine(NumberedVals.size()) + "'");
1804
1805     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1806       ForwardRefValIDs.find(NameID);
1807     if (FI != ForwardRefValIDs.end()) {
1808       if (FI->second.first->getType() != Inst->getType())
1809         return P.Error(NameLoc, "instruction forward referenced with type '" +
1810                        getTypeString(FI->second.first->getType()) + "'");
1811       FI->second.first->replaceAllUsesWith(Inst);
1812       delete FI->second.first;
1813       ForwardRefValIDs.erase(FI);
1814     }
1815
1816     NumberedVals.push_back(Inst);
1817     return false;
1818   }
1819
1820   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1821   std::map<std::string, std::pair<Value*, LocTy> >::iterator
1822     FI = ForwardRefVals.find(NameStr);
1823   if (FI != ForwardRefVals.end()) {
1824     if (FI->second.first->getType() != Inst->getType())
1825       return P.Error(NameLoc, "instruction forward referenced with type '" +
1826                      getTypeString(FI->second.first->getType()) + "'");
1827     FI->second.first->replaceAllUsesWith(Inst);
1828     delete FI->second.first;
1829     ForwardRefVals.erase(FI);
1830   }
1831
1832   // Set the name on the instruction.
1833   Inst->setName(NameStr);
1834
1835   if (Inst->getName() != NameStr)
1836     return P.Error(NameLoc, "multiple definition of local value named '" +
1837                    NameStr + "'");
1838   return false;
1839 }
1840
1841 /// GetBB - Get a basic block with the specified name or ID, creating a
1842 /// forward reference record if needed.
1843 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1844                                               LocTy Loc) {
1845   return cast_or_null<BasicBlock>(GetVal(Name,
1846                                         Type::getLabelTy(F.getContext()), Loc));
1847 }
1848
1849 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1850   return cast_or_null<BasicBlock>(GetVal(ID,
1851                                         Type::getLabelTy(F.getContext()), Loc));
1852 }
1853
1854 /// DefineBB - Define the specified basic block, which is either named or
1855 /// unnamed.  If there is an error, this returns null otherwise it returns
1856 /// the block being defined.
1857 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1858                                                  LocTy Loc) {
1859   BasicBlock *BB;
1860   if (Name.empty())
1861     BB = GetBB(NumberedVals.size(), Loc);
1862   else
1863     BB = GetBB(Name, Loc);
1864   if (BB == 0) return 0; // Already diagnosed error.
1865
1866   // Move the block to the end of the function.  Forward ref'd blocks are
1867   // inserted wherever they happen to be referenced.
1868   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1869
1870   // Remove the block from forward ref sets.
1871   if (Name.empty()) {
1872     ForwardRefValIDs.erase(NumberedVals.size());
1873     NumberedVals.push_back(BB);
1874   } else {
1875     // BB forward references are already in the function symbol table.
1876     ForwardRefVals.erase(Name);
1877   }
1878
1879   return BB;
1880 }
1881
1882 //===----------------------------------------------------------------------===//
1883 // Constants.
1884 //===----------------------------------------------------------------------===//
1885
1886 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1887 /// type implied.  For example, if we parse "4" we don't know what integer type
1888 /// it has.  The value will later be combined with its type and checked for
1889 /// sanity.  PFS is used to convert function-local operands of metadata (since
1890 /// metadata operands are not just parsed here but also converted to values).
1891 /// PFS can be null when we are not parsing metadata values inside a function.
1892 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1893   ID.Loc = Lex.getLoc();
1894   switch (Lex.getKind()) {
1895   default: return TokError("expected value token");
1896   case lltok::GlobalID:  // @42
1897     ID.UIntVal = Lex.getUIntVal();
1898     ID.Kind = ValID::t_GlobalID;
1899     break;
1900   case lltok::GlobalVar:  // @foo
1901     ID.StrVal = Lex.getStrVal();
1902     ID.Kind = ValID::t_GlobalName;
1903     break;
1904   case lltok::LocalVarID:  // %42
1905     ID.UIntVal = Lex.getUIntVal();
1906     ID.Kind = ValID::t_LocalID;
1907     break;
1908   case lltok::LocalVar:  // %foo
1909     ID.StrVal = Lex.getStrVal();
1910     ID.Kind = ValID::t_LocalName;
1911     break;
1912   case lltok::exclaim:   // !42, !{...}, or !"foo"
1913     return ParseMetadataValue(ID, PFS);
1914   case lltok::APSInt:
1915     ID.APSIntVal = Lex.getAPSIntVal();
1916     ID.Kind = ValID::t_APSInt;
1917     break;
1918   case lltok::APFloat:
1919     ID.APFloatVal = Lex.getAPFloatVal();
1920     ID.Kind = ValID::t_APFloat;
1921     break;
1922   case lltok::kw_true:
1923     ID.ConstantVal = ConstantInt::getTrue(Context);
1924     ID.Kind = ValID::t_Constant;
1925     break;
1926   case lltok::kw_false:
1927     ID.ConstantVal = ConstantInt::getFalse(Context);
1928     ID.Kind = ValID::t_Constant;
1929     break;
1930   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1931   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1932   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1933
1934   case lltok::lbrace: {
1935     // ValID ::= '{' ConstVector '}'
1936     Lex.Lex();
1937     SmallVector<Constant*, 16> Elts;
1938     if (ParseGlobalValueVector(Elts) ||
1939         ParseToken(lltok::rbrace, "expected end of struct constant"))
1940       return true;
1941
1942     ID.ConstantStructElts = new Constant*[Elts.size()];
1943     ID.UIntVal = Elts.size();
1944     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1945     ID.Kind = ValID::t_ConstantStruct;
1946     return false;
1947   }
1948   case lltok::less: {
1949     // ValID ::= '<' ConstVector '>'         --> Vector.
1950     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1951     Lex.Lex();
1952     bool isPackedStruct = EatIfPresent(lltok::lbrace);
1953
1954     SmallVector<Constant*, 16> Elts;
1955     LocTy FirstEltLoc = Lex.getLoc();
1956     if (ParseGlobalValueVector(Elts) ||
1957         (isPackedStruct &&
1958          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1959         ParseToken(lltok::greater, "expected end of constant"))
1960       return true;
1961
1962     if (isPackedStruct) {
1963       ID.ConstantStructElts = new Constant*[Elts.size()];
1964       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1965       ID.UIntVal = Elts.size();
1966       ID.Kind = ValID::t_PackedConstantStruct;
1967       return false;
1968     }
1969
1970     if (Elts.empty())
1971       return Error(ID.Loc, "constant vector must not be empty");
1972
1973     if (!Elts[0]->getType()->isIntegerTy() &&
1974         !Elts[0]->getType()->isFloatingPointTy())
1975       return Error(FirstEltLoc,
1976                    "vector elements must have integer or floating point type");
1977
1978     // Verify that all the vector elements have the same type.
1979     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1980       if (Elts[i]->getType() != Elts[0]->getType())
1981         return Error(FirstEltLoc,
1982                      "vector element #" + Twine(i) +
1983                     " is not of type '" + getTypeString(Elts[0]->getType()));
1984
1985     ID.ConstantVal = ConstantVector::get(Elts);
1986     ID.Kind = ValID::t_Constant;
1987     return false;
1988   }
1989   case lltok::lsquare: {   // Array Constant
1990     Lex.Lex();
1991     SmallVector<Constant*, 16> Elts;
1992     LocTy FirstEltLoc = Lex.getLoc();
1993     if (ParseGlobalValueVector(Elts) ||
1994         ParseToken(lltok::rsquare, "expected end of array constant"))
1995       return true;
1996
1997     // Handle empty element.
1998     if (Elts.empty()) {
1999       // Use undef instead of an array because it's inconvenient to determine
2000       // the element type at this point, there being no elements to examine.
2001       ID.Kind = ValID::t_EmptyArray;
2002       return false;
2003     }
2004
2005     if (!Elts[0]->getType()->isFirstClassType())
2006       return Error(FirstEltLoc, "invalid array element type: " +
2007                    getTypeString(Elts[0]->getType()));
2008
2009     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2010
2011     // Verify all elements are correct type!
2012     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2013       if (Elts[i]->getType() != Elts[0]->getType())
2014         return Error(FirstEltLoc,
2015                      "array element #" + Twine(i) +
2016                      " is not of type '" + getTypeString(Elts[0]->getType()));
2017     }
2018
2019     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2020     ID.Kind = ValID::t_Constant;
2021     return false;
2022   }
2023   case lltok::kw_c:  // c "foo"
2024     Lex.Lex();
2025     ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2026     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2027     ID.Kind = ValID::t_Constant;
2028     return false;
2029
2030   case lltok::kw_asm: {
2031     // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2032     bool HasSideEffect, AlignStack;
2033     Lex.Lex();
2034     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2035         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2036         ParseStringConstant(ID.StrVal) ||
2037         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2038         ParseToken(lltok::StringConstant, "expected constraint string"))
2039       return true;
2040     ID.StrVal2 = Lex.getStrVal();
2041     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2042     ID.Kind = ValID::t_InlineAsm;
2043     return false;
2044   }
2045
2046   case lltok::kw_blockaddress: {
2047     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2048     Lex.Lex();
2049
2050     ValID Fn, Label;
2051     LocTy FnLoc, LabelLoc;
2052     
2053     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2054         ParseValID(Fn) ||
2055         ParseToken(lltok::comma, "expected comma in block address expression")||
2056         ParseValID(Label) ||
2057         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2058       return true;
2059     
2060     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2061       return Error(Fn.Loc, "expected function name in blockaddress");
2062     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2063       return Error(Label.Loc, "expected basic block name in blockaddress");
2064     
2065     // Make a global variable as a placeholder for this reference.
2066     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2067                                            false, GlobalValue::InternalLinkage,
2068                                                 0, "");
2069     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2070     ID.ConstantVal = FwdRef;
2071     ID.Kind = ValID::t_Constant;
2072     return false;
2073   }
2074       
2075   case lltok::kw_trunc:
2076   case lltok::kw_zext:
2077   case lltok::kw_sext:
2078   case lltok::kw_fptrunc:
2079   case lltok::kw_fpext:
2080   case lltok::kw_bitcast:
2081   case lltok::kw_uitofp:
2082   case lltok::kw_sitofp:
2083   case lltok::kw_fptoui:
2084   case lltok::kw_fptosi:
2085   case lltok::kw_inttoptr:
2086   case lltok::kw_ptrtoint: {
2087     unsigned Opc = Lex.getUIntVal();
2088     Type *DestTy = 0;
2089     Constant *SrcVal;
2090     Lex.Lex();
2091     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2092         ParseGlobalTypeAndValue(SrcVal) ||
2093         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2094         ParseType(DestTy) ||
2095         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2096       return true;
2097     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2098       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2099                    getTypeString(SrcVal->getType()) + "' to '" +
2100                    getTypeString(DestTy) + "'");
2101     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2102                                                  SrcVal, DestTy);
2103     ID.Kind = ValID::t_Constant;
2104     return false;
2105   }
2106   case lltok::kw_extractvalue: {
2107     Lex.Lex();
2108     Constant *Val;
2109     SmallVector<unsigned, 4> Indices;
2110     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2111         ParseGlobalTypeAndValue(Val) ||
2112         ParseIndexList(Indices) ||
2113         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2114       return true;
2115
2116     if (!Val->getType()->isAggregateType())
2117       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2118     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2119       return Error(ID.Loc, "invalid indices for extractvalue");
2120     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2121     ID.Kind = ValID::t_Constant;
2122     return false;
2123   }
2124   case lltok::kw_insertvalue: {
2125     Lex.Lex();
2126     Constant *Val0, *Val1;
2127     SmallVector<unsigned, 4> Indices;
2128     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2129         ParseGlobalTypeAndValue(Val0) ||
2130         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2131         ParseGlobalTypeAndValue(Val1) ||
2132         ParseIndexList(Indices) ||
2133         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2134       return true;
2135     if (!Val0->getType()->isAggregateType())
2136       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2137     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2138       return Error(ID.Loc, "invalid indices for insertvalue");
2139     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2140     ID.Kind = ValID::t_Constant;
2141     return false;
2142   }
2143   case lltok::kw_icmp:
2144   case lltok::kw_fcmp: {
2145     unsigned PredVal, Opc = Lex.getUIntVal();
2146     Constant *Val0, *Val1;
2147     Lex.Lex();
2148     if (ParseCmpPredicate(PredVal, Opc) ||
2149         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2150         ParseGlobalTypeAndValue(Val0) ||
2151         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2152         ParseGlobalTypeAndValue(Val1) ||
2153         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2154       return true;
2155
2156     if (Val0->getType() != Val1->getType())
2157       return Error(ID.Loc, "compare operands must have the same type");
2158
2159     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2160
2161     if (Opc == Instruction::FCmp) {
2162       if (!Val0->getType()->isFPOrFPVectorTy())
2163         return Error(ID.Loc, "fcmp requires floating point operands");
2164       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2165     } else {
2166       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2167       if (!Val0->getType()->isIntOrIntVectorTy() &&
2168           !Val0->getType()->isPointerTy())
2169         return Error(ID.Loc, "icmp requires pointer or integer operands");
2170       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2171     }
2172     ID.Kind = ValID::t_Constant;
2173     return false;
2174   }
2175
2176   // Binary Operators.
2177   case lltok::kw_add:
2178   case lltok::kw_fadd:
2179   case lltok::kw_sub:
2180   case lltok::kw_fsub:
2181   case lltok::kw_mul:
2182   case lltok::kw_fmul:
2183   case lltok::kw_udiv:
2184   case lltok::kw_sdiv:
2185   case lltok::kw_fdiv:
2186   case lltok::kw_urem:
2187   case lltok::kw_srem:
2188   case lltok::kw_frem:
2189   case lltok::kw_shl:
2190   case lltok::kw_lshr:
2191   case lltok::kw_ashr: {
2192     bool NUW = false;
2193     bool NSW = false;
2194     bool Exact = false;
2195     unsigned Opc = Lex.getUIntVal();
2196     Constant *Val0, *Val1;
2197     Lex.Lex();
2198     LocTy ModifierLoc = Lex.getLoc();
2199     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2200         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2201       if (EatIfPresent(lltok::kw_nuw))
2202         NUW = true;
2203       if (EatIfPresent(lltok::kw_nsw)) {
2204         NSW = true;
2205         if (EatIfPresent(lltok::kw_nuw))
2206           NUW = true;
2207       }
2208     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2209                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2210       if (EatIfPresent(lltok::kw_exact))
2211         Exact = true;
2212     }
2213     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2214         ParseGlobalTypeAndValue(Val0) ||
2215         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2216         ParseGlobalTypeAndValue(Val1) ||
2217         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2218       return true;
2219     if (Val0->getType() != Val1->getType())
2220       return Error(ID.Loc, "operands of constexpr must have same type");
2221     if (!Val0->getType()->isIntOrIntVectorTy()) {
2222       if (NUW)
2223         return Error(ModifierLoc, "nuw only applies to integer operations");
2224       if (NSW)
2225         return Error(ModifierLoc, "nsw only applies to integer operations");
2226     }
2227     // Check that the type is valid for the operator.
2228     switch (Opc) {
2229     case Instruction::Add:
2230     case Instruction::Sub:
2231     case Instruction::Mul:
2232     case Instruction::UDiv:
2233     case Instruction::SDiv:
2234     case Instruction::URem:
2235     case Instruction::SRem:
2236     case Instruction::Shl:
2237     case Instruction::AShr:
2238     case Instruction::LShr:
2239       if (!Val0->getType()->isIntOrIntVectorTy())
2240         return Error(ID.Loc, "constexpr requires integer operands");
2241       break;
2242     case Instruction::FAdd:
2243     case Instruction::FSub:
2244     case Instruction::FMul:
2245     case Instruction::FDiv:
2246     case Instruction::FRem:
2247       if (!Val0->getType()->isFPOrFPVectorTy())
2248         return Error(ID.Loc, "constexpr requires fp operands");
2249       break;
2250     default: llvm_unreachable("Unknown binary operator!");
2251     }
2252     unsigned Flags = 0;
2253     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2254     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2255     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2256     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2257     ID.ConstantVal = C;
2258     ID.Kind = ValID::t_Constant;
2259     return false;
2260   }
2261
2262   // Logical Operations
2263   case lltok::kw_and:
2264   case lltok::kw_or:
2265   case lltok::kw_xor: {
2266     unsigned Opc = Lex.getUIntVal();
2267     Constant *Val0, *Val1;
2268     Lex.Lex();
2269     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2270         ParseGlobalTypeAndValue(Val0) ||
2271         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2272         ParseGlobalTypeAndValue(Val1) ||
2273         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2274       return true;
2275     if (Val0->getType() != Val1->getType())
2276       return Error(ID.Loc, "operands of constexpr must have same type");
2277     if (!Val0->getType()->isIntOrIntVectorTy())
2278       return Error(ID.Loc,
2279                    "constexpr requires integer or integer vector operands");
2280     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2281     ID.Kind = ValID::t_Constant;
2282     return false;
2283   }
2284
2285   case lltok::kw_getelementptr:
2286   case lltok::kw_shufflevector:
2287   case lltok::kw_insertelement:
2288   case lltok::kw_extractelement:
2289   case lltok::kw_select: {
2290     unsigned Opc = Lex.getUIntVal();
2291     SmallVector<Constant*, 16> Elts;
2292     bool InBounds = false;
2293     Lex.Lex();
2294     if (Opc == Instruction::GetElementPtr)
2295       InBounds = EatIfPresent(lltok::kw_inbounds);
2296     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2297         ParseGlobalValueVector(Elts) ||
2298         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2299       return true;
2300
2301     if (Opc == Instruction::GetElementPtr) {
2302       if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2303         return Error(ID.Loc, "getelementptr requires pointer operand");
2304
2305       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2306       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2307         return Error(ID.Loc, "invalid indices for getelementptr");
2308       ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2309                                                       InBounds);
2310     } else if (Opc == Instruction::Select) {
2311       if (Elts.size() != 3)
2312         return Error(ID.Loc, "expected three operands to select");
2313       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2314                                                               Elts[2]))
2315         return Error(ID.Loc, Reason);
2316       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2317     } else if (Opc == Instruction::ShuffleVector) {
2318       if (Elts.size() != 3)
2319         return Error(ID.Loc, "expected three operands to shufflevector");
2320       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2321         return Error(ID.Loc, "invalid operands to shufflevector");
2322       ID.ConstantVal =
2323                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2324     } else if (Opc == Instruction::ExtractElement) {
2325       if (Elts.size() != 2)
2326         return Error(ID.Loc, "expected two operands to extractelement");
2327       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2328         return Error(ID.Loc, "invalid extractelement operands");
2329       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2330     } else {
2331       assert(Opc == Instruction::InsertElement && "Unknown opcode");
2332       if (Elts.size() != 3)
2333       return Error(ID.Loc, "expected three operands to insertelement");
2334       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2335         return Error(ID.Loc, "invalid insertelement operands");
2336       ID.ConstantVal =
2337                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2338     }
2339
2340     ID.Kind = ValID::t_Constant;
2341     return false;
2342   }
2343   }
2344
2345   Lex.Lex();
2346   return false;
2347 }
2348
2349 /// ParseGlobalValue - Parse a global value with the specified type.
2350 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2351   C = 0;
2352   ValID ID;
2353   Value *V = NULL;
2354   bool Parsed = ParseValID(ID) ||
2355                 ConvertValIDToValue(Ty, ID, V, NULL);
2356   if (V && !(C = dyn_cast<Constant>(V)))
2357     return Error(ID.Loc, "global values must be constants");
2358   return Parsed;
2359 }
2360
2361 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2362   Type *Ty = 0;
2363   return ParseType(Ty) ||
2364          ParseGlobalValue(Ty, V);
2365 }
2366
2367 /// ParseGlobalValueVector
2368 ///   ::= /*empty*/
2369 ///   ::= TypeAndValue (',' TypeAndValue)*
2370 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2371   // Empty list.
2372   if (Lex.getKind() == lltok::rbrace ||
2373       Lex.getKind() == lltok::rsquare ||
2374       Lex.getKind() == lltok::greater ||
2375       Lex.getKind() == lltok::rparen)
2376     return false;
2377
2378   Constant *C;
2379   if (ParseGlobalTypeAndValue(C)) return true;
2380   Elts.push_back(C);
2381
2382   while (EatIfPresent(lltok::comma)) {
2383     if (ParseGlobalTypeAndValue(C)) return true;
2384     Elts.push_back(C);
2385   }
2386
2387   return false;
2388 }
2389
2390 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2391   assert(Lex.getKind() == lltok::lbrace);
2392   Lex.Lex();
2393
2394   SmallVector<Value*, 16> Elts;
2395   if (ParseMDNodeVector(Elts, PFS) ||
2396       ParseToken(lltok::rbrace, "expected end of metadata node"))
2397     return true;
2398
2399   ID.MDNodeVal = MDNode::get(Context, Elts);
2400   ID.Kind = ValID::t_MDNode;
2401   return false;
2402 }
2403
2404 /// ParseMetadataValue
2405 ///  ::= !42
2406 ///  ::= !{...}
2407 ///  ::= !"string"
2408 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2409   assert(Lex.getKind() == lltok::exclaim);
2410   Lex.Lex();
2411
2412   // MDNode:
2413   // !{ ... }
2414   if (Lex.getKind() == lltok::lbrace)
2415     return ParseMetadataListValue(ID, PFS);
2416
2417   // Standalone metadata reference
2418   // !42
2419   if (Lex.getKind() == lltok::APSInt) {
2420     if (ParseMDNodeID(ID.MDNodeVal)) return true;
2421     ID.Kind = ValID::t_MDNode;
2422     return false;
2423   }
2424
2425   // MDString:
2426   //   ::= '!' STRINGCONSTANT
2427   if (ParseMDString(ID.MDStringVal)) return true;
2428   ID.Kind = ValID::t_MDString;
2429   return false;
2430 }
2431
2432
2433 //===----------------------------------------------------------------------===//
2434 // Function Parsing.
2435 //===----------------------------------------------------------------------===//
2436
2437 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2438                                    PerFunctionState *PFS) {
2439   if (Ty->isFunctionTy())
2440     return Error(ID.Loc, "functions are not values, refer to them as pointers");
2441
2442   switch (ID.Kind) {
2443   default: llvm_unreachable("Unknown ValID!");
2444   case ValID::t_LocalID:
2445     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2446     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2447     return (V == 0);
2448   case ValID::t_LocalName:
2449     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2450     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2451     return (V == 0);
2452   case ValID::t_InlineAsm: {
2453     PointerType *PTy = dyn_cast<PointerType>(Ty);
2454     FunctionType *FTy = 
2455       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2456     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2457       return Error(ID.Loc, "invalid type for inline asm constraint string");
2458     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2459     return false;
2460   }
2461   case ValID::t_MDNode:
2462     if (!Ty->isMetadataTy())
2463       return Error(ID.Loc, "metadata value must have metadata type");
2464     V = ID.MDNodeVal;
2465     return false;
2466   case ValID::t_MDString:
2467     if (!Ty->isMetadataTy())
2468       return Error(ID.Loc, "metadata value must have metadata type");
2469     V = ID.MDStringVal;
2470     return false;
2471   case ValID::t_GlobalName:
2472     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2473     return V == 0;
2474   case ValID::t_GlobalID:
2475     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2476     return V == 0;
2477   case ValID::t_APSInt:
2478     if (!Ty->isIntegerTy())
2479       return Error(ID.Loc, "integer constant must have integer type");
2480     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2481     V = ConstantInt::get(Context, ID.APSIntVal);
2482     return false;
2483   case ValID::t_APFloat:
2484     if (!Ty->isFloatingPointTy() ||
2485         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2486       return Error(ID.Loc, "floating point constant invalid for type");
2487
2488     // The lexer has no type info, so builds all float and double FP constants
2489     // as double.  Fix this here.  Long double does not need this.
2490     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2491         Ty->isFloatTy()) {
2492       bool Ignored;
2493       ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2494                             &Ignored);
2495     }
2496     V = ConstantFP::get(Context, ID.APFloatVal);
2497
2498     if (V->getType() != Ty)
2499       return Error(ID.Loc, "floating point constant does not have type '" +
2500                    getTypeString(Ty) + "'");
2501
2502     return false;
2503   case ValID::t_Null:
2504     if (!Ty->isPointerTy())
2505       return Error(ID.Loc, "null must be a pointer type");
2506     V = ConstantPointerNull::get(cast<PointerType>(Ty));
2507     return false;
2508   case ValID::t_Undef:
2509     // FIXME: LabelTy should not be a first-class type.
2510     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2511       return Error(ID.Loc, "invalid type for undef constant");
2512     V = UndefValue::get(Ty);
2513     return false;
2514   case ValID::t_EmptyArray:
2515     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2516       return Error(ID.Loc, "invalid empty array initializer");
2517     V = UndefValue::get(Ty);
2518     return false;
2519   case ValID::t_Zero:
2520     // FIXME: LabelTy should not be a first-class type.
2521     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2522       return Error(ID.Loc, "invalid type for null constant");
2523     V = Constant::getNullValue(Ty);
2524     return false;
2525   case ValID::t_Constant:
2526     if (ID.ConstantVal->getType() != Ty)
2527       return Error(ID.Loc, "constant expression type mismatch");
2528
2529     V = ID.ConstantVal;
2530     return false;
2531   case ValID::t_ConstantStruct:
2532   case ValID::t_PackedConstantStruct:
2533     if (StructType *ST = dyn_cast<StructType>(Ty)) {
2534       if (ST->getNumElements() != ID.UIntVal)
2535         return Error(ID.Loc,
2536                      "initializer with struct type has wrong # elements");
2537       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2538         return Error(ID.Loc, "packed'ness of initializer and type don't match");
2539         
2540       // Verify that the elements are compatible with the structtype.
2541       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2542         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2543           return Error(ID.Loc, "element " + Twine(i) +
2544                     " of struct initializer doesn't match struct element type");
2545       
2546       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2547                                                ID.UIntVal));
2548     } else
2549       return Error(ID.Loc, "constant expression type mismatch");
2550     return false;
2551   }
2552 }
2553
2554 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2555   V = 0;
2556   ValID ID;
2557   return ParseValID(ID, PFS) ||
2558          ConvertValIDToValue(Ty, ID, V, PFS);
2559 }
2560
2561 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2562   Type *Ty = 0;
2563   return ParseType(Ty) ||
2564          ParseValue(Ty, V, PFS);
2565 }
2566
2567 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2568                                       PerFunctionState &PFS) {
2569   Value *V;
2570   Loc = Lex.getLoc();
2571   if (ParseTypeAndValue(V, PFS)) return true;
2572   if (!isa<BasicBlock>(V))
2573     return Error(Loc, "expected a basic block");
2574   BB = cast<BasicBlock>(V);
2575   return false;
2576 }
2577
2578
2579 /// FunctionHeader
2580 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2581 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2582 ///       OptionalAlign OptGC
2583 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2584   // Parse the linkage.
2585   LocTy LinkageLoc = Lex.getLoc();
2586   unsigned Linkage;
2587
2588   unsigned Visibility, RetAttrs;
2589   CallingConv::ID CC;
2590   Type *RetType = 0;
2591   LocTy RetTypeLoc = Lex.getLoc();
2592   if (ParseOptionalLinkage(Linkage) ||
2593       ParseOptionalVisibility(Visibility) ||
2594       ParseOptionalCallingConv(CC) ||
2595       ParseOptionalAttrs(RetAttrs, 1) ||
2596       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2597     return true;
2598
2599   // Verify that the linkage is ok.
2600   switch ((GlobalValue::LinkageTypes)Linkage) {
2601   case GlobalValue::ExternalLinkage:
2602     break; // always ok.
2603   case GlobalValue::DLLImportLinkage:
2604   case GlobalValue::ExternalWeakLinkage:
2605     if (isDefine)
2606       return Error(LinkageLoc, "invalid linkage for function definition");
2607     break;
2608   case GlobalValue::PrivateLinkage:
2609   case GlobalValue::LinkerPrivateLinkage:
2610   case GlobalValue::LinkerPrivateWeakLinkage:
2611   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2612   case GlobalValue::InternalLinkage:
2613   case GlobalValue::AvailableExternallyLinkage:
2614   case GlobalValue::LinkOnceAnyLinkage:
2615   case GlobalValue::LinkOnceODRLinkage:
2616   case GlobalValue::WeakAnyLinkage:
2617   case GlobalValue::WeakODRLinkage:
2618   case GlobalValue::DLLExportLinkage:
2619     if (!isDefine)
2620       return Error(LinkageLoc, "invalid linkage for function declaration");
2621     break;
2622   case GlobalValue::AppendingLinkage:
2623   case GlobalValue::CommonLinkage:
2624     return Error(LinkageLoc, "invalid function linkage type");
2625   }
2626
2627   if (!FunctionType::isValidReturnType(RetType))
2628     return Error(RetTypeLoc, "invalid function return type");
2629
2630   LocTy NameLoc = Lex.getLoc();
2631
2632   std::string FunctionName;
2633   if (Lex.getKind() == lltok::GlobalVar) {
2634     FunctionName = Lex.getStrVal();
2635   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2636     unsigned NameID = Lex.getUIntVal();
2637
2638     if (NameID != NumberedVals.size())
2639       return TokError("function expected to be numbered '%" +
2640                       Twine(NumberedVals.size()) + "'");
2641   } else {
2642     return TokError("expected function name");
2643   }
2644
2645   Lex.Lex();
2646
2647   if (Lex.getKind() != lltok::lparen)
2648     return TokError("expected '(' in function argument list");
2649
2650   SmallVector<ArgInfo, 8> ArgList;
2651   bool isVarArg;
2652   unsigned FuncAttrs;
2653   std::string Section;
2654   unsigned Alignment;
2655   std::string GC;
2656   bool UnnamedAddr;
2657   LocTy UnnamedAddrLoc;
2658
2659   if (ParseArgumentList(ArgList, isVarArg) ||
2660       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2661                          &UnnamedAddrLoc) ||
2662       ParseOptionalAttrs(FuncAttrs, 2) ||
2663       (EatIfPresent(lltok::kw_section) &&
2664        ParseStringConstant(Section)) ||
2665       ParseOptionalAlignment(Alignment) ||
2666       (EatIfPresent(lltok::kw_gc) &&
2667        ParseStringConstant(GC)))
2668     return true;
2669
2670   // If the alignment was parsed as an attribute, move to the alignment field.
2671   if (FuncAttrs & Attribute::Alignment) {
2672     Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2673     FuncAttrs &= ~Attribute::Alignment;
2674   }
2675
2676   // Okay, if we got here, the function is syntactically valid.  Convert types
2677   // and do semantic checks.
2678   std::vector<Type*> ParamTypeList;
2679   SmallVector<AttributeWithIndex, 8> Attrs;
2680
2681   if (RetAttrs != Attribute::None)
2682     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2683
2684   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2685     ParamTypeList.push_back(ArgList[i].Ty);
2686     if (ArgList[i].Attrs != Attribute::None)
2687       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2688   }
2689
2690   if (FuncAttrs != Attribute::None)
2691     Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2692
2693   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2694
2695   if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2696     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2697
2698   FunctionType *FT =
2699     FunctionType::get(RetType, ParamTypeList, isVarArg);
2700   PointerType *PFT = PointerType::getUnqual(FT);
2701
2702   Fn = 0;
2703   if (!FunctionName.empty()) {
2704     // If this was a definition of a forward reference, remove the definition
2705     // from the forward reference table and fill in the forward ref.
2706     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2707       ForwardRefVals.find(FunctionName);
2708     if (FRVI != ForwardRefVals.end()) {
2709       Fn = M->getFunction(FunctionName);
2710       if (Fn->getType() != PFT)
2711         return Error(FRVI->second.second, "invalid forward reference to "
2712                      "function '" + FunctionName + "' with wrong type!");
2713       
2714       ForwardRefVals.erase(FRVI);
2715     } else if ((Fn = M->getFunction(FunctionName))) {
2716       // Reject redefinitions.
2717       return Error(NameLoc, "invalid redefinition of function '" +
2718                    FunctionName + "'");
2719     } else if (M->getNamedValue(FunctionName)) {
2720       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2721     }
2722
2723   } else {
2724     // If this is a definition of a forward referenced function, make sure the
2725     // types agree.
2726     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2727       = ForwardRefValIDs.find(NumberedVals.size());
2728     if (I != ForwardRefValIDs.end()) {
2729       Fn = cast<Function>(I->second.first);
2730       if (Fn->getType() != PFT)
2731         return Error(NameLoc, "type of definition and forward reference of '@" +
2732                      Twine(NumberedVals.size()) + "' disagree");
2733       ForwardRefValIDs.erase(I);
2734     }
2735   }
2736
2737   if (Fn == 0)
2738     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2739   else // Move the forward-reference to the correct spot in the module.
2740     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2741
2742   if (FunctionName.empty())
2743     NumberedVals.push_back(Fn);
2744
2745   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2746   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2747   Fn->setCallingConv(CC);
2748   Fn->setAttributes(PAL);
2749   Fn->setUnnamedAddr(UnnamedAddr);
2750   Fn->setAlignment(Alignment);
2751   Fn->setSection(Section);
2752   if (!GC.empty()) Fn->setGC(GC.c_str());
2753
2754   // Add all of the arguments we parsed to the function.
2755   Function::arg_iterator ArgIt = Fn->arg_begin();
2756   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2757     // If the argument has a name, insert it into the argument symbol table.
2758     if (ArgList[i].Name.empty()) continue;
2759
2760     // Set the name, if it conflicted, it will be auto-renamed.
2761     ArgIt->setName(ArgList[i].Name);
2762
2763     if (ArgIt->getName() != ArgList[i].Name)
2764       return Error(ArgList[i].Loc, "redefinition of argument '%" +
2765                    ArgList[i].Name + "'");
2766   }
2767
2768   return false;
2769 }
2770
2771
2772 /// ParseFunctionBody
2773 ///   ::= '{' BasicBlock+ '}'
2774 ///
2775 bool LLParser::ParseFunctionBody(Function &Fn) {
2776   if (Lex.getKind() != lltok::lbrace)
2777     return TokError("expected '{' in function body");
2778   Lex.Lex();  // eat the {.
2779
2780   int FunctionNumber = -1;
2781   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2782   
2783   PerFunctionState PFS(*this, Fn, FunctionNumber);
2784
2785   // We need at least one basic block.
2786   if (Lex.getKind() == lltok::rbrace)
2787     return TokError("function body requires at least one basic block");
2788   
2789   while (Lex.getKind() != lltok::rbrace)
2790     if (ParseBasicBlock(PFS)) return true;
2791
2792   // Eat the }.
2793   Lex.Lex();
2794
2795   // Verify function is ok.
2796   return PFS.FinishFunction();
2797 }
2798
2799 /// ParseBasicBlock
2800 ///   ::= LabelStr? Instruction*
2801 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2802   // If this basic block starts out with a name, remember it.
2803   std::string Name;
2804   LocTy NameLoc = Lex.getLoc();
2805   if (Lex.getKind() == lltok::LabelStr) {
2806     Name = Lex.getStrVal();
2807     Lex.Lex();
2808   }
2809
2810   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2811   if (BB == 0) return true;
2812
2813   std::string NameStr;
2814
2815   // Parse the instructions in this block until we get a terminator.
2816   Instruction *Inst;
2817   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2818   do {
2819     // This instruction may have three possibilities for a name: a) none
2820     // specified, b) name specified "%foo =", c) number specified: "%4 =".
2821     LocTy NameLoc = Lex.getLoc();
2822     int NameID = -1;
2823     NameStr = "";
2824
2825     if (Lex.getKind() == lltok::LocalVarID) {
2826       NameID = Lex.getUIntVal();
2827       Lex.Lex();
2828       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2829         return true;
2830     } else if (Lex.getKind() == lltok::LocalVar) {
2831       NameStr = Lex.getStrVal();
2832       Lex.Lex();
2833       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2834         return true;
2835     }
2836
2837     switch (ParseInstruction(Inst, BB, PFS)) {
2838     default: assert(0 && "Unknown ParseInstruction result!");
2839     case InstError: return true;
2840     case InstNormal:
2841       BB->getInstList().push_back(Inst);
2842
2843       // With a normal result, we check to see if the instruction is followed by
2844       // a comma and metadata.
2845       if (EatIfPresent(lltok::comma))
2846         if (ParseInstructionMetadata(Inst, &PFS))
2847           return true;
2848       break;
2849     case InstExtraComma:
2850       BB->getInstList().push_back(Inst);
2851
2852       // If the instruction parser ate an extra comma at the end of it, it
2853       // *must* be followed by metadata.
2854       if (ParseInstructionMetadata(Inst, &PFS))
2855         return true;
2856       break;        
2857     }
2858
2859     // Set the name on the instruction.
2860     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2861   } while (!isa<TerminatorInst>(Inst));
2862
2863   return false;
2864 }
2865
2866 //===----------------------------------------------------------------------===//
2867 // Instruction Parsing.
2868 //===----------------------------------------------------------------------===//
2869
2870 /// ParseInstruction - Parse one of the many different instructions.
2871 ///
2872 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2873                                PerFunctionState &PFS) {
2874   lltok::Kind Token = Lex.getKind();
2875   if (Token == lltok::Eof)
2876     return TokError("found end of file when expecting more instructions");
2877   LocTy Loc = Lex.getLoc();
2878   unsigned KeywordVal = Lex.getUIntVal();
2879   Lex.Lex();  // Eat the keyword.
2880
2881   switch (Token) {
2882   default:                    return Error(Loc, "expected instruction opcode");
2883   // Terminator Instructions.
2884   case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2885   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2886   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2887   case lltok::kw_br:          return ParseBr(Inst, PFS);
2888   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2889   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2890   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2891   case lltok::kw_resume:      return ParseResume(Inst, PFS);
2892   // Binary Operators.
2893   case lltok::kw_add:
2894   case lltok::kw_sub:
2895   case lltok::kw_mul:
2896   case lltok::kw_shl: {
2897     bool NUW = EatIfPresent(lltok::kw_nuw);
2898     bool NSW = EatIfPresent(lltok::kw_nsw);
2899     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2900     
2901     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2902     
2903     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2904     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2905     return false;
2906   }
2907   case lltok::kw_fadd:
2908   case lltok::kw_fsub:
2909   case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2910
2911   case lltok::kw_sdiv:
2912   case lltok::kw_udiv:
2913   case lltok::kw_lshr:
2914   case lltok::kw_ashr: {
2915     bool Exact = EatIfPresent(lltok::kw_exact);
2916
2917     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2918     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2919     return false;
2920   }
2921
2922   case lltok::kw_urem:
2923   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2924   case lltok::kw_fdiv:
2925   case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2926   case lltok::kw_and:
2927   case lltok::kw_or:
2928   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2929   case lltok::kw_icmp:
2930   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2931   // Casts.
2932   case lltok::kw_trunc:
2933   case lltok::kw_zext:
2934   case lltok::kw_sext:
2935   case lltok::kw_fptrunc:
2936   case lltok::kw_fpext:
2937   case lltok::kw_bitcast:
2938   case lltok::kw_uitofp:
2939   case lltok::kw_sitofp:
2940   case lltok::kw_fptoui:
2941   case lltok::kw_fptosi:
2942   case lltok::kw_inttoptr:
2943   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2944   // Other.
2945   case lltok::kw_select:         return ParseSelect(Inst, PFS);
2946   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2947   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2948   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2949   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2950   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2951   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2952   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2953   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2954   // Memory.
2955   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2956   case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2957   case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2958   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
2959   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
2960   case lltok::kw_fence:          return ParseFence(Inst, PFS);
2961   case lltok::kw_volatile:
2962     // For compatibility; canonical location is after load
2963     if (EatIfPresent(lltok::kw_load))
2964       return ParseLoad(Inst, PFS, true);
2965     else if (EatIfPresent(lltok::kw_store))
2966       return ParseStore(Inst, PFS, true);
2967     else
2968       return TokError("expected 'load' or 'store'");
2969   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2970   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2971   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2972   }
2973 }
2974
2975 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2976 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2977   if (Opc == Instruction::FCmp) {
2978     switch (Lex.getKind()) {
2979     default: TokError("expected fcmp predicate (e.g. 'oeq')");
2980     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2981     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2982     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2983     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2984     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2985     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2986     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2987     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2988     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2989     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2990     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2991     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2992     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2993     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2994     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2995     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2996     }
2997   } else {
2998     switch (Lex.getKind()) {
2999     default: TokError("expected icmp predicate (e.g. 'eq')");
3000     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3001     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3002     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3003     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3004     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3005     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3006     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3007     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3008     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3009     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3010     }
3011   }
3012   Lex.Lex();
3013   return false;
3014 }
3015
3016 //===----------------------------------------------------------------------===//
3017 // Terminator Instructions.
3018 //===----------------------------------------------------------------------===//
3019
3020 /// ParseRet - Parse a return instruction.
3021 ///   ::= 'ret' void (',' !dbg, !1)*
3022 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3023 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3024                         PerFunctionState &PFS) {
3025   SMLoc TypeLoc = Lex.getLoc();
3026   Type *Ty = 0;
3027   if (ParseType(Ty, true /*void allowed*/)) return true;
3028
3029   Type *ResType = PFS.getFunction().getReturnType();
3030   
3031   if (Ty->isVoidTy()) {
3032     if (!ResType->isVoidTy())
3033       return Error(TypeLoc, "value doesn't match function result type '" +
3034                    getTypeString(ResType) + "'");
3035     
3036     Inst = ReturnInst::Create(Context);
3037     return false;
3038   }
3039
3040   Value *RV;
3041   if (ParseValue(Ty, RV, PFS)) return true;
3042
3043   if (ResType != RV->getType())
3044     return Error(TypeLoc, "value doesn't match function result type '" +
3045                  getTypeString(ResType) + "'");
3046   
3047   Inst = ReturnInst::Create(Context, RV);
3048   return false;
3049 }
3050
3051
3052 /// ParseBr
3053 ///   ::= 'br' TypeAndValue
3054 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3055 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3056   LocTy Loc, Loc2;
3057   Value *Op0;
3058   BasicBlock *Op1, *Op2;
3059   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3060
3061   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3062     Inst = BranchInst::Create(BB);
3063     return false;
3064   }
3065
3066   if (Op0->getType() != Type::getInt1Ty(Context))
3067     return Error(Loc, "branch condition must have 'i1' type");
3068
3069   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3070       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3071       ParseToken(lltok::comma, "expected ',' after true destination") ||
3072       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3073     return true;
3074
3075   Inst = BranchInst::Create(Op1, Op2, Op0);
3076   return false;
3077 }
3078
3079 /// ParseSwitch
3080 ///  Instruction
3081 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3082 ///  JumpTable
3083 ///    ::= (TypeAndValue ',' TypeAndValue)*
3084 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3085   LocTy CondLoc, BBLoc;
3086   Value *Cond;
3087   BasicBlock *DefaultBB;
3088   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3089       ParseToken(lltok::comma, "expected ',' after switch condition") ||
3090       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3091       ParseToken(lltok::lsquare, "expected '[' with switch table"))
3092     return true;
3093
3094   if (!Cond->getType()->isIntegerTy())
3095     return Error(CondLoc, "switch condition must have integer type");
3096
3097   // Parse the jump table pairs.
3098   SmallPtrSet<Value*, 32> SeenCases;
3099   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3100   while (Lex.getKind() != lltok::rsquare) {
3101     Value *Constant;
3102     BasicBlock *DestBB;
3103
3104     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3105         ParseToken(lltok::comma, "expected ',' after case value") ||
3106         ParseTypeAndBasicBlock(DestBB, PFS))
3107       return true;
3108     
3109     if (!SeenCases.insert(Constant))
3110       return Error(CondLoc, "duplicate case value in switch");
3111     if (!isa<ConstantInt>(Constant))
3112       return Error(CondLoc, "case value is not a constant integer");
3113
3114     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3115   }
3116
3117   Lex.Lex();  // Eat the ']'.
3118
3119   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3120   for (unsigned i = 0, e = Table.size(); i != e; ++i)
3121     SI->addCase(Table[i].first, Table[i].second);
3122   Inst = SI;
3123   return false;
3124 }
3125
3126 /// ParseIndirectBr
3127 ///  Instruction
3128 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3129 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3130   LocTy AddrLoc;
3131   Value *Address;
3132   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3133       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3134       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3135     return true;
3136   
3137   if (!Address->getType()->isPointerTy())
3138     return Error(AddrLoc, "indirectbr address must have pointer type");
3139   
3140   // Parse the destination list.
3141   SmallVector<BasicBlock*, 16> DestList;
3142   
3143   if (Lex.getKind() != lltok::rsquare) {
3144     BasicBlock *DestBB;
3145     if (ParseTypeAndBasicBlock(DestBB, PFS))
3146       return true;
3147     DestList.push_back(DestBB);
3148     
3149     while (EatIfPresent(lltok::comma)) {
3150       if (ParseTypeAndBasicBlock(DestBB, PFS))
3151         return true;
3152       DestList.push_back(DestBB);
3153     }
3154   }
3155   
3156   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3157     return true;
3158
3159   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3160   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3161     IBI->addDestination(DestList[i]);
3162   Inst = IBI;
3163   return false;
3164 }
3165
3166
3167 /// ParseInvoke
3168 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3169 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3170 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3171   LocTy CallLoc = Lex.getLoc();
3172   unsigned RetAttrs, FnAttrs;
3173   CallingConv::ID CC;
3174   Type *RetType = 0;
3175   LocTy RetTypeLoc;
3176   ValID CalleeID;
3177   SmallVector<ParamInfo, 16> ArgList;
3178
3179   BasicBlock *NormalBB, *UnwindBB;
3180   if (ParseOptionalCallingConv(CC) ||
3181       ParseOptionalAttrs(RetAttrs, 1) ||
3182       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3183       ParseValID(CalleeID) ||
3184       ParseParameterList(ArgList, PFS) ||
3185       ParseOptionalAttrs(FnAttrs, 2) ||
3186       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3187       ParseTypeAndBasicBlock(NormalBB, PFS) ||
3188       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3189       ParseTypeAndBasicBlock(UnwindBB, PFS))
3190     return true;
3191
3192   // If RetType is a non-function pointer type, then this is the short syntax
3193   // for the call, which means that RetType is just the return type.  Infer the
3194   // rest of the function argument types from the arguments that are present.
3195   PointerType *PFTy = 0;
3196   FunctionType *Ty = 0;
3197   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3198       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3199     // Pull out the types of all of the arguments...
3200     std::vector<Type*> ParamTypes;
3201     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3202       ParamTypes.push_back(ArgList[i].V->getType());
3203
3204     if (!FunctionType::isValidReturnType(RetType))
3205       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3206
3207     Ty = FunctionType::get(RetType, ParamTypes, false);
3208     PFTy = PointerType::getUnqual(Ty);
3209   }
3210
3211   // Look up the callee.
3212   Value *Callee;
3213   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3214
3215   // Set up the Attributes for the function.
3216   SmallVector<AttributeWithIndex, 8> Attrs;
3217   if (RetAttrs != Attribute::None)
3218     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3219
3220   SmallVector<Value*, 8> Args;
3221
3222   // Loop through FunctionType's arguments and ensure they are specified
3223   // correctly.  Also, gather any parameter attributes.
3224   FunctionType::param_iterator I = Ty->param_begin();
3225   FunctionType::param_iterator E = Ty->param_end();
3226   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3227     Type *ExpectedTy = 0;
3228     if (I != E) {
3229       ExpectedTy = *I++;
3230     } else if (!Ty->isVarArg()) {
3231       return Error(ArgList[i].Loc, "too many arguments specified");
3232     }
3233
3234     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3235       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3236                    getTypeString(ExpectedTy) + "'");
3237     Args.push_back(ArgList[i].V);
3238     if (ArgList[i].Attrs != Attribute::None)
3239       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3240   }
3241
3242   if (I != E)
3243     return Error(CallLoc, "not enough parameters specified for call");
3244
3245   if (FnAttrs != Attribute::None)
3246     Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3247
3248   // Finish off the Attributes and check them
3249   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3250
3251   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3252   II->setCallingConv(CC);
3253   II->setAttributes(PAL);
3254   Inst = II;
3255   return false;
3256 }
3257
3258 /// ParseResume
3259 ///   ::= 'resume' TypeAndValue
3260 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3261   Value *Exn; LocTy ExnLoc;
3262   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3263     return true;
3264
3265   ResumeInst *RI = ResumeInst::Create(Exn);
3266   Inst = RI;
3267   return false;
3268 }
3269
3270 //===----------------------------------------------------------------------===//
3271 // Binary Operators.
3272 //===----------------------------------------------------------------------===//
3273
3274 /// ParseArithmetic
3275 ///  ::= ArithmeticOps TypeAndValue ',' Value
3276 ///
3277 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3278 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3279 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3280                                unsigned Opc, unsigned OperandType) {
3281   LocTy Loc; Value *LHS, *RHS;
3282   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3283       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3284       ParseValue(LHS->getType(), RHS, PFS))
3285     return true;
3286
3287   bool Valid;
3288   switch (OperandType) {
3289   default: llvm_unreachable("Unknown operand type!");
3290   case 0: // int or FP.
3291     Valid = LHS->getType()->isIntOrIntVectorTy() ||
3292             LHS->getType()->isFPOrFPVectorTy();
3293     break;
3294   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3295   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3296   }
3297
3298   if (!Valid)
3299     return Error(Loc, "invalid operand type for instruction");
3300
3301   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3302   return false;
3303 }
3304
3305 /// ParseLogical
3306 ///  ::= ArithmeticOps TypeAndValue ',' Value {
3307 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3308                             unsigned Opc) {
3309   LocTy Loc; Value *LHS, *RHS;
3310   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3311       ParseToken(lltok::comma, "expected ',' in logical operation") ||
3312       ParseValue(LHS->getType(), RHS, PFS))
3313     return true;
3314
3315   if (!LHS->getType()->isIntOrIntVectorTy())
3316     return Error(Loc,"instruction requires integer or integer vector operands");
3317
3318   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3319   return false;
3320 }
3321
3322
3323 /// ParseCompare
3324 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3325 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3326 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3327                             unsigned Opc) {
3328   // Parse the integer/fp comparison predicate.
3329   LocTy Loc;
3330   unsigned Pred;
3331   Value *LHS, *RHS;
3332   if (ParseCmpPredicate(Pred, Opc) ||
3333       ParseTypeAndValue(LHS, Loc, PFS) ||
3334       ParseToken(lltok::comma, "expected ',' after compare value") ||
3335       ParseValue(LHS->getType(), RHS, PFS))
3336     return true;
3337
3338   if (Opc == Instruction::FCmp) {
3339     if (!LHS->getType()->isFPOrFPVectorTy())
3340       return Error(Loc, "fcmp requires floating point operands");
3341     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3342   } else {
3343     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3344     if (!LHS->getType()->isIntOrIntVectorTy() &&
3345         !LHS->getType()->isPointerTy())
3346       return Error(Loc, "icmp requires integer operands");
3347     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3348   }
3349   return false;
3350 }
3351
3352 //===----------------------------------------------------------------------===//
3353 // Other Instructions.
3354 //===----------------------------------------------------------------------===//
3355
3356
3357 /// ParseCast
3358 ///   ::= CastOpc TypeAndValue 'to' Type
3359 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3360                          unsigned Opc) {
3361   LocTy Loc;
3362   Value *Op;
3363   Type *DestTy = 0;
3364   if (ParseTypeAndValue(Op, Loc, PFS) ||
3365       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3366       ParseType(DestTy))
3367     return true;
3368
3369   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3370     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3371     return Error(Loc, "invalid cast opcode for cast from '" +
3372                  getTypeString(Op->getType()) + "' to '" +
3373                  getTypeString(DestTy) + "'");
3374   }
3375   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3376   return false;
3377 }
3378
3379 /// ParseSelect
3380 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3381 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3382   LocTy Loc;
3383   Value *Op0, *Op1, *Op2;
3384   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3385       ParseToken(lltok::comma, "expected ',' after select condition") ||
3386       ParseTypeAndValue(Op1, PFS) ||
3387       ParseToken(lltok::comma, "expected ',' after select value") ||
3388       ParseTypeAndValue(Op2, PFS))
3389     return true;
3390
3391   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3392     return Error(Loc, Reason);
3393
3394   Inst = SelectInst::Create(Op0, Op1, Op2);
3395   return false;
3396 }
3397
3398 /// ParseVA_Arg
3399 ///   ::= 'va_arg' TypeAndValue ',' Type
3400 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3401   Value *Op;
3402   Type *EltTy = 0;
3403   LocTy TypeLoc;
3404   if (ParseTypeAndValue(Op, PFS) ||
3405       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3406       ParseType(EltTy, TypeLoc))
3407     return true;
3408
3409   if (!EltTy->isFirstClassType())
3410     return Error(TypeLoc, "va_arg requires operand with first class type");
3411
3412   Inst = new VAArgInst(Op, EltTy);
3413   return false;
3414 }
3415
3416 /// ParseExtractElement
3417 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3418 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3419   LocTy Loc;
3420   Value *Op0, *Op1;
3421   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3422       ParseToken(lltok::comma, "expected ',' after extract value") ||
3423       ParseTypeAndValue(Op1, PFS))
3424     return true;
3425
3426   if (!ExtractElementInst::isValidOperands(Op0, Op1))
3427     return Error(Loc, "invalid extractelement operands");
3428
3429   Inst = ExtractElementInst::Create(Op0, Op1);
3430   return false;
3431 }
3432
3433 /// ParseInsertElement
3434 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3435 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3436   LocTy Loc;
3437   Value *Op0, *Op1, *Op2;
3438   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3439       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3440       ParseTypeAndValue(Op1, PFS) ||
3441       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3442       ParseTypeAndValue(Op2, PFS))
3443     return true;
3444
3445   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3446     return Error(Loc, "invalid insertelement operands");
3447
3448   Inst = InsertElementInst::Create(Op0, Op1, Op2);
3449   return false;
3450 }
3451
3452 /// ParseShuffleVector
3453 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3454 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3455   LocTy Loc;
3456   Value *Op0, *Op1, *Op2;
3457   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3458       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3459       ParseTypeAndValue(Op1, PFS) ||
3460       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3461       ParseTypeAndValue(Op2, PFS))
3462     return true;
3463
3464   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3465     return Error(Loc, "invalid extractelement operands");
3466
3467   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3468   return false;
3469 }
3470
3471 /// ParsePHI
3472 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3473 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3474   Type *Ty = 0;  LocTy TypeLoc;
3475   Value *Op0, *Op1;
3476
3477   if (ParseType(Ty, TypeLoc) ||
3478       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3479       ParseValue(Ty, Op0, PFS) ||
3480       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3481       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3482       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3483     return true;
3484
3485   bool AteExtraComma = false;
3486   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3487   while (1) {
3488     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3489
3490     if (!EatIfPresent(lltok::comma))
3491       break;
3492
3493     if (Lex.getKind() == lltok::MetadataVar) {
3494       AteExtraComma = true;
3495       break;
3496     }
3497
3498     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3499         ParseValue(Ty, Op0, PFS) ||
3500         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3501         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3502         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3503       return true;
3504   }
3505
3506   if (!Ty->isFirstClassType())
3507     return Error(TypeLoc, "phi node must have first class type");
3508
3509   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3510   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3511     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3512   Inst = PN;
3513   return AteExtraComma ? InstExtraComma : InstNormal;
3514 }
3515
3516 /// ParseLandingPad
3517 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3518 /// Clause
3519 ///   ::= 'catch' TypeAndValue
3520 ///   ::= 'filter'
3521 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3522 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3523   Type *Ty = 0; LocTy TyLoc;
3524   Value *PersFn; LocTy PersFnLoc;
3525
3526   if (ParseType(Ty, TyLoc) ||
3527       ParseToken(lltok::kw_personality, "expected 'personality'") ||
3528       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3529     return true;
3530
3531   LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3532   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3533
3534   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3535     LandingPadInst::ClauseType CT;
3536     if (EatIfPresent(lltok::kw_catch))
3537       CT = LandingPadInst::Catch;
3538     else if (EatIfPresent(lltok::kw_filter))
3539       CT = LandingPadInst::Filter;
3540     else
3541       return TokError("expected 'catch' or 'filter' clause type");
3542
3543     Value *V; LocTy VLoc;
3544     if (ParseTypeAndValue(V, VLoc, PFS)) {
3545       delete LP;
3546       return true;
3547     }
3548
3549     // A 'catch' type expects a non-array constant. A filter clause expects an
3550     // array constant.
3551     if (CT == LandingPadInst::Catch) {
3552       if (isa<ArrayType>(V->getType()))
3553         Error(VLoc, "'catch' clause has an invalid type");
3554     } else {
3555       if (!isa<ArrayType>(V->getType()))
3556         Error(VLoc, "'filter' clause has an invalid type");
3557     }
3558
3559     LP->addClause(V);
3560   }
3561
3562   Inst = LP;
3563   return false;
3564 }
3565
3566 /// ParseCall
3567 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3568 ///       ParameterList OptionalAttrs
3569 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3570                          bool isTail) {
3571   unsigned RetAttrs, FnAttrs;
3572   CallingConv::ID CC;
3573   Type *RetType = 0;
3574   LocTy RetTypeLoc;
3575   ValID CalleeID;
3576   SmallVector<ParamInfo, 16> ArgList;
3577   LocTy CallLoc = Lex.getLoc();
3578
3579   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3580       ParseOptionalCallingConv(CC) ||
3581       ParseOptionalAttrs(RetAttrs, 1) ||
3582       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3583       ParseValID(CalleeID) ||
3584       ParseParameterList(ArgList, PFS) ||
3585       ParseOptionalAttrs(FnAttrs, 2))
3586     return true;
3587
3588   // If RetType is a non-function pointer type, then this is the short syntax
3589   // for the call, which means that RetType is just the return type.  Infer the
3590   // rest of the function argument types from the arguments that are present.
3591   PointerType *PFTy = 0;
3592   FunctionType *Ty = 0;
3593   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3594       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3595     // Pull out the types of all of the arguments...
3596     std::vector<Type*> ParamTypes;
3597     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3598       ParamTypes.push_back(ArgList[i].V->getType());
3599
3600     if (!FunctionType::isValidReturnType(RetType))
3601       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3602
3603     Ty = FunctionType::get(RetType, ParamTypes, false);
3604     PFTy = PointerType::getUnqual(Ty);
3605   }
3606
3607   // Look up the callee.
3608   Value *Callee;
3609   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3610
3611   // Set up the Attributes for the function.
3612   SmallVector<AttributeWithIndex, 8> Attrs;
3613   if (RetAttrs != Attribute::None)
3614     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3615
3616   SmallVector<Value*, 8> Args;
3617
3618   // Loop through FunctionType's arguments and ensure they are specified
3619   // correctly.  Also, gather any parameter attributes.
3620   FunctionType::param_iterator I = Ty->param_begin();
3621   FunctionType::param_iterator E = Ty->param_end();
3622   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3623     Type *ExpectedTy = 0;
3624     if (I != E) {
3625       ExpectedTy = *I++;
3626     } else if (!Ty->isVarArg()) {
3627       return Error(ArgList[i].Loc, "too many arguments specified");
3628     }
3629
3630     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3631       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3632                    getTypeString(ExpectedTy) + "'");
3633     Args.push_back(ArgList[i].V);
3634     if (ArgList[i].Attrs != Attribute::None)
3635       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3636   }
3637
3638   if (I != E)
3639     return Error(CallLoc, "not enough parameters specified for call");
3640
3641   if (FnAttrs != Attribute::None)
3642     Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3643
3644   // Finish off the Attributes and check them
3645   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3646
3647   CallInst *CI = CallInst::Create(Callee, Args);
3648   CI->setTailCall(isTail);
3649   CI->setCallingConv(CC);
3650   CI->setAttributes(PAL);
3651   Inst = CI;
3652   return false;
3653 }
3654
3655 //===----------------------------------------------------------------------===//
3656 // Memory Instructions.
3657 //===----------------------------------------------------------------------===//
3658
3659 /// ParseAlloc
3660 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3661 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3662   Value *Size = 0;
3663   LocTy SizeLoc;
3664   unsigned Alignment = 0;
3665   Type *Ty = 0;
3666   if (ParseType(Ty)) return true;
3667
3668   bool AteExtraComma = false;
3669   if (EatIfPresent(lltok::comma)) {
3670     if (Lex.getKind() == lltok::kw_align) {
3671       if (ParseOptionalAlignment(Alignment)) return true;
3672     } else if (Lex.getKind() == lltok::MetadataVar) {
3673       AteExtraComma = true;
3674     } else {
3675       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3676           ParseOptionalCommaAlign(Alignment, AteExtraComma))
3677         return true;
3678     }
3679   }
3680
3681   if (Size && !Size->getType()->isIntegerTy())
3682     return Error(SizeLoc, "element count must have integer type");
3683
3684   Inst = new AllocaInst(Ty, Size, Alignment);
3685   return AteExtraComma ? InstExtraComma : InstNormal;
3686 }
3687
3688 /// ParseLoad
3689 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3690 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue 
3691 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3692 ///   Compatibility:
3693 ///   ::= 'volatile' 'load' TypeAndValue (',' 'align' i32)?
3694 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3695                         bool isVolatile) {
3696   Value *Val; LocTy Loc;
3697   unsigned Alignment = 0;
3698   bool AteExtraComma = false;
3699   bool isAtomic = false;
3700   AtomicOrdering Ordering = NotAtomic;
3701   SynchronizationScope Scope = CrossThread;
3702
3703   if (Lex.getKind() == lltok::kw_atomic) {
3704     if (isVolatile)
3705       return TokError("mixing atomic with old volatile placement");
3706     isAtomic = true;
3707     Lex.Lex();
3708   }
3709
3710   if (Lex.getKind() == lltok::kw_volatile) {
3711     if (isVolatile)
3712       return TokError("duplicate volatile before and after store");
3713     isVolatile = true;
3714     Lex.Lex();
3715   }
3716
3717   if (ParseTypeAndValue(Val, Loc, PFS) ||
3718       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3719       ParseOptionalCommaAlign(Alignment, AteExtraComma))
3720     return true;
3721
3722   if (!Val->getType()->isPointerTy() ||
3723       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3724     return Error(Loc, "load operand must be a pointer to a first class type");
3725   if (isAtomic && !Alignment)
3726     return Error(Loc, "atomic load must have explicit non-zero alignment");
3727   if (Ordering == Release || Ordering == AcquireRelease)
3728     return Error(Loc, "atomic load cannot use Release ordering");
3729
3730   Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3731   return AteExtraComma ? InstExtraComma : InstNormal;
3732 }
3733
3734 /// ParseStore
3735
3736 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3737 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3738 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3739 ///   Compatibility:
3740 ///   ::= 'volatile' 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3741 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3742                          bool isVolatile) {
3743   Value *Val, *Ptr; LocTy Loc, PtrLoc;
3744   unsigned Alignment = 0;
3745   bool AteExtraComma = false;
3746   bool isAtomic = false;
3747   AtomicOrdering Ordering = NotAtomic;
3748   SynchronizationScope Scope = CrossThread;
3749
3750   if (Lex.getKind() == lltok::kw_atomic) {
3751     if (isVolatile)
3752       return TokError("mixing atomic with old volatile placement");
3753     isAtomic = true;
3754     Lex.Lex();
3755   }
3756
3757   if (Lex.getKind() == lltok::kw_volatile) {
3758     if (isVolatile)
3759       return TokError("duplicate volatile before and after store");
3760     isVolatile = true;
3761     Lex.Lex();
3762   }
3763
3764   if (ParseTypeAndValue(Val, Loc, PFS) ||
3765       ParseToken(lltok::comma, "expected ',' after store operand") ||
3766       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3767       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3768       ParseOptionalCommaAlign(Alignment, AteExtraComma))
3769     return true;
3770
3771   if (!Ptr->getType()->isPointerTy())
3772     return Error(PtrLoc, "store operand must be a pointer");
3773   if (!Val->getType()->isFirstClassType())
3774     return Error(Loc, "store operand must be a first class value");
3775   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3776     return Error(Loc, "stored value and pointer type do not match");
3777   if (isAtomic && !Alignment)
3778     return Error(Loc, "atomic store must have explicit non-zero alignment");
3779   if (Ordering == Acquire || Ordering == AcquireRelease)
3780     return Error(Loc, "atomic store cannot use Acquire ordering");
3781
3782   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3783   return AteExtraComma ? InstExtraComma : InstNormal;
3784 }
3785
3786 /// ParseCmpXchg
3787 ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3788 ///       'singlethread'? AtomicOrdering
3789 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3790   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3791   bool AteExtraComma = false;
3792   AtomicOrdering Ordering = NotAtomic;
3793   SynchronizationScope Scope = CrossThread;
3794   bool isVolatile = false;
3795
3796   if (EatIfPresent(lltok::kw_volatile))
3797     isVolatile = true;
3798
3799   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3800       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3801       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3802       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3803       ParseTypeAndValue(New, NewLoc, PFS) ||
3804       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3805     return true;
3806
3807   if (Ordering == Unordered)
3808     return TokError("cmpxchg cannot be unordered");
3809   if (!Ptr->getType()->isPointerTy())
3810     return Error(PtrLoc, "cmpxchg operand must be a pointer");
3811   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3812     return Error(CmpLoc, "compare value and pointer type do not match");
3813   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3814     return Error(NewLoc, "new value and pointer type do not match");
3815   if (!New->getType()->isIntegerTy())
3816     return Error(NewLoc, "cmpxchg operand must be an integer");
3817   unsigned Size = New->getType()->getPrimitiveSizeInBits();
3818   if (Size < 8 || (Size & (Size - 1)))
3819     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3820                          " integer");
3821
3822   AtomicCmpXchgInst *CXI =
3823     new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3824   CXI->setVolatile(isVolatile);
3825   Inst = CXI;
3826   return AteExtraComma ? InstExtraComma : InstNormal;
3827 }
3828
3829 /// ParseAtomicRMW
3830 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3831 ///       'singlethread'? AtomicOrdering
3832 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3833   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3834   bool AteExtraComma = false;
3835   AtomicOrdering Ordering = NotAtomic;
3836   SynchronizationScope Scope = CrossThread;
3837   bool isVolatile = false;
3838   AtomicRMWInst::BinOp Operation;
3839
3840   if (EatIfPresent(lltok::kw_volatile))
3841     isVolatile = true;
3842
3843   switch (Lex.getKind()) {
3844   default: return TokError("expected binary operation in atomicrmw");
3845   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3846   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3847   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3848   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3849   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3850   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3851   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3852   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3853   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3854   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3855   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3856   }
3857   Lex.Lex();  // Eat the operation.
3858
3859   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3860       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3861       ParseTypeAndValue(Val, ValLoc, PFS) ||
3862       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3863     return true;
3864
3865   if (Ordering == Unordered)
3866     return TokError("atomicrmw cannot be unordered");
3867   if (!Ptr->getType()->isPointerTy())
3868     return Error(PtrLoc, "atomicrmw operand must be a pointer");
3869   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3870     return Error(ValLoc, "atomicrmw value and pointer type do not match");
3871   if (!Val->getType()->isIntegerTy())
3872     return Error(ValLoc, "atomicrmw operand must be an integer");
3873   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3874   if (Size < 8 || (Size & (Size - 1)))
3875     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3876                          " integer");
3877
3878   AtomicRMWInst *RMWI =
3879     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3880   RMWI->setVolatile(isVolatile);
3881   Inst = RMWI;
3882   return AteExtraComma ? InstExtraComma : InstNormal;
3883 }
3884
3885 /// ParseFence
3886 ///   ::= 'fence' 'singlethread'? AtomicOrdering
3887 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3888   AtomicOrdering Ordering = NotAtomic;
3889   SynchronizationScope Scope = CrossThread;
3890   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3891     return true;
3892
3893   if (Ordering == Unordered)
3894     return TokError("fence cannot be unordered");
3895   if (Ordering == Monotonic)
3896     return TokError("fence cannot be monotonic");
3897
3898   Inst = new FenceInst(Context, Ordering, Scope);
3899   return InstNormal;
3900 }
3901
3902 /// ParseGetElementPtr
3903 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3904 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3905   Value *Ptr, *Val; LocTy Loc, EltLoc;
3906
3907   bool InBounds = EatIfPresent(lltok::kw_inbounds);
3908
3909   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3910
3911   if (!Ptr->getType()->isPointerTy())
3912     return Error(Loc, "base of getelementptr must be a pointer");
3913
3914   SmallVector<Value*, 16> Indices;
3915   bool AteExtraComma = false;
3916   while (EatIfPresent(lltok::comma)) {
3917     if (Lex.getKind() == lltok::MetadataVar) {
3918       AteExtraComma = true;
3919       break;
3920     }
3921     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3922     if (!Val->getType()->isIntegerTy())
3923       return Error(EltLoc, "getelementptr index must be an integer");
3924     Indices.push_back(Val);
3925   }
3926
3927   if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3928     return Error(Loc, "invalid getelementptr indices");
3929   Inst = GetElementPtrInst::Create(Ptr, Indices);
3930   if (InBounds)
3931     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3932   return AteExtraComma ? InstExtraComma : InstNormal;
3933 }
3934
3935 /// ParseExtractValue
3936 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3937 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3938   Value *Val; LocTy Loc;
3939   SmallVector<unsigned, 4> Indices;
3940   bool AteExtraComma;
3941   if (ParseTypeAndValue(Val, Loc, PFS) ||
3942       ParseIndexList(Indices, AteExtraComma))
3943     return true;
3944
3945   if (!Val->getType()->isAggregateType())
3946     return Error(Loc, "extractvalue operand must be aggregate type");
3947
3948   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3949     return Error(Loc, "invalid indices for extractvalue");
3950   Inst = ExtractValueInst::Create(Val, Indices);
3951   return AteExtraComma ? InstExtraComma : InstNormal;
3952 }
3953
3954 /// ParseInsertValue
3955 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3956 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3957   Value *Val0, *Val1; LocTy Loc0, Loc1;
3958   SmallVector<unsigned, 4> Indices;
3959   bool AteExtraComma;
3960   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3961       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3962       ParseTypeAndValue(Val1, Loc1, PFS) ||
3963       ParseIndexList(Indices, AteExtraComma))
3964     return true;
3965   
3966   if (!Val0->getType()->isAggregateType())
3967     return Error(Loc0, "insertvalue operand must be aggregate type");
3968
3969   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3970     return Error(Loc0, "invalid indices for insertvalue");
3971   Inst = InsertValueInst::Create(Val0, Val1, Indices);
3972   return AteExtraComma ? InstExtraComma : InstNormal;
3973 }
3974
3975 //===----------------------------------------------------------------------===//
3976 // Embedded metadata.
3977 //===----------------------------------------------------------------------===//
3978
3979 /// ParseMDNodeVector
3980 ///   ::= Element (',' Element)*
3981 /// Element
3982 ///   ::= 'null' | TypeAndValue
3983 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3984                                  PerFunctionState *PFS) {
3985   // Check for an empty list.
3986   if (Lex.getKind() == lltok::rbrace)
3987     return false;
3988
3989   do {
3990     // Null is a special case since it is typeless.
3991     if (EatIfPresent(lltok::kw_null)) {
3992       Elts.push_back(0);
3993       continue;
3994     }
3995     
3996     Value *V = 0;
3997     if (ParseTypeAndValue(V, PFS)) return true;
3998     Elts.push_back(V);
3999   } while (EatIfPresent(lltok::comma));
4000
4001   return false;
4002 }