Taints relaxed loads to enforce load/store ordering
[oota-llvm.git] / lib / AsmParser / LLParser.cpp
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/AsmParser/SlotMapping.h"
18 #include "llvm/IR/AutoUpgrade.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Dwarf.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/SaveAndRestore.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
35
36 static std::string getTypeString(Type *T) {
37   std::string Result;
38   raw_string_ostream Tmp(Result);
39   Tmp << *T;
40   return Tmp.str();
41 }
42
43 /// Run: module ::= toplevelentity*
44 bool LLParser::Run() {
45   // Prime the lexer.
46   Lex.Lex();
47
48   return ParseTopLevelEntities() ||
49          ValidateEndOfModule();
50 }
51
52 bool LLParser::parseStandaloneConstantValue(Constant *&C,
53                                             const SlotMapping *Slots) {
54   restoreParsingState(Slots);
55   Lex.Lex();
56
57   Type *Ty = nullptr;
58   if (ParseType(Ty) || parseConstantValue(Ty, C))
59     return true;
60   if (Lex.getKind() != lltok::Eof)
61     return Error(Lex.getLoc(), "expected end of string");
62   return false;
63 }
64
65 void LLParser::restoreParsingState(const SlotMapping *Slots) {
66   if (!Slots)
67     return;
68   NumberedVals = Slots->GlobalValues;
69   NumberedMetadata = Slots->MetadataNodes;
70   for (const auto &I : Slots->NamedTypes)
71     NamedTypes.insert(
72         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
73   for (const auto &I : Slots->Types)
74     NumberedTypes.insert(
75         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
76 }
77
78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
79 /// module.
80 bool LLParser::ValidateEndOfModule() {
81   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
82     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
83
84   // Handle any function attribute group forward references.
85   for (std::map<Value*, std::vector<unsigned> >::iterator
86          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
87          I != E; ++I) {
88     Value *V = I->first;
89     std::vector<unsigned> &Vec = I->second;
90     AttrBuilder B;
91
92     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
93          VI != VE; ++VI)
94       B.merge(NumberedAttrBuilders[*VI]);
95
96     if (Function *Fn = dyn_cast<Function>(V)) {
97       AttributeSet AS = Fn->getAttributes();
98       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
99       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
100                                AS.getFnAttributes());
101
102       FnAttrs.merge(B);
103
104       // If the alignment was parsed as an attribute, move to the alignment
105       // field.
106       if (FnAttrs.hasAlignmentAttr()) {
107         Fn->setAlignment(FnAttrs.getAlignment());
108         FnAttrs.removeAttribute(Attribute::Alignment);
109       }
110
111       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
112                             AttributeSet::get(Context,
113                                               AttributeSet::FunctionIndex,
114                                               FnAttrs));
115       Fn->setAttributes(AS);
116     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
117       AttributeSet AS = CI->getAttributes();
118       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
119       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
120                                AS.getFnAttributes());
121       FnAttrs.merge(B);
122       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
123                             AttributeSet::get(Context,
124                                               AttributeSet::FunctionIndex,
125                                               FnAttrs));
126       CI->setAttributes(AS);
127     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
128       AttributeSet AS = II->getAttributes();
129       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
130       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
131                                AS.getFnAttributes());
132       FnAttrs.merge(B);
133       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
134                             AttributeSet::get(Context,
135                                               AttributeSet::FunctionIndex,
136                                               FnAttrs));
137       II->setAttributes(AS);
138     } else {
139       llvm_unreachable("invalid object with forward attribute group reference");
140     }
141   }
142
143   // If there are entries in ForwardRefBlockAddresses at this point, the
144   // function was never defined.
145   if (!ForwardRefBlockAddresses.empty())
146     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
147                  "expected function name in blockaddress");
148
149   for (const auto &NT : NumberedTypes)
150     if (NT.second.second.isValid())
151       return Error(NT.second.second,
152                    "use of undefined type '%" + Twine(NT.first) + "'");
153
154   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
155        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
156     if (I->second.second.isValid())
157       return Error(I->second.second,
158                    "use of undefined type named '" + I->getKey() + "'");
159
160   if (!ForwardRefComdats.empty())
161     return Error(ForwardRefComdats.begin()->second,
162                  "use of undefined comdat '$" +
163                      ForwardRefComdats.begin()->first + "'");
164
165   if (!ForwardRefVals.empty())
166     return Error(ForwardRefVals.begin()->second.second,
167                  "use of undefined value '@" + ForwardRefVals.begin()->first +
168                  "'");
169
170   if (!ForwardRefValIDs.empty())
171     return Error(ForwardRefValIDs.begin()->second.second,
172                  "use of undefined value '@" +
173                  Twine(ForwardRefValIDs.begin()->first) + "'");
174
175   if (!ForwardRefMDNodes.empty())
176     return Error(ForwardRefMDNodes.begin()->second.second,
177                  "use of undefined metadata '!" +
178                  Twine(ForwardRefMDNodes.begin()->first) + "'");
179
180   // Resolve metadata cycles.
181   for (auto &N : NumberedMetadata) {
182     if (N.second && !N.second->isResolved())
183       N.second->resolveCycles();
184   }
185
186   // Look for intrinsic functions and CallInst that need to be upgraded
187   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
188     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
189
190   UpgradeDebugInfo(*M);
191
192   if (!Slots)
193     return false;
194   // Initialize the slot mapping.
195   // Because by this point we've parsed and validated everything, we can "steal"
196   // the mapping from LLParser as it doesn't need it anymore.
197   Slots->GlobalValues = std::move(NumberedVals);
198   Slots->MetadataNodes = std::move(NumberedMetadata);
199   for (const auto &I : NamedTypes)
200     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
201   for (const auto &I : NumberedTypes)
202     Slots->Types.insert(std::make_pair(I.first, I.second.first));
203
204   return false;
205 }
206
207 //===----------------------------------------------------------------------===//
208 // Top-Level Entities
209 //===----------------------------------------------------------------------===//
210
211 bool LLParser::ParseTopLevelEntities() {
212   while (1) {
213     switch (Lex.getKind()) {
214     default:         return TokError("expected top-level entity");
215     case lltok::Eof: return false;
216     case lltok::kw_declare: if (ParseDeclare()) return true; break;
217     case lltok::kw_define:  if (ParseDefine()) return true; break;
218     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
219     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
220     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
221     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
222     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
223     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
224     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
225     case lltok::ComdatVar:  if (parseComdat()) return true; break;
226     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
227     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
228
229     // The Global variable production with no name can have many different
230     // optional leading prefixes, the production is:
231     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
232     //               OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
233     //               ('constant'|'global') ...
234     case lltok::kw_private:             // OptionalLinkage
235     case lltok::kw_internal:            // OptionalLinkage
236     case lltok::kw_weak:                // OptionalLinkage
237     case lltok::kw_weak_odr:            // OptionalLinkage
238     case lltok::kw_linkonce:            // OptionalLinkage
239     case lltok::kw_linkonce_odr:        // OptionalLinkage
240     case lltok::kw_appending:           // OptionalLinkage
241     case lltok::kw_common:              // OptionalLinkage
242     case lltok::kw_extern_weak:         // OptionalLinkage
243     case lltok::kw_external:            // OptionalLinkage
244     case lltok::kw_default:             // OptionalVisibility
245     case lltok::kw_hidden:              // OptionalVisibility
246     case lltok::kw_protected:           // OptionalVisibility
247     case lltok::kw_dllimport:           // OptionalDLLStorageClass
248     case lltok::kw_dllexport:           // OptionalDLLStorageClass
249     case lltok::kw_thread_local:        // OptionalThreadLocal
250     case lltok::kw_addrspace:           // OptionalAddrSpace
251     case lltok::kw_constant:            // GlobalType
252     case lltok::kw_global: {            // GlobalType
253       unsigned Linkage, Visibility, DLLStorageClass;
254       bool UnnamedAddr;
255       GlobalVariable::ThreadLocalMode TLM;
256       bool HasLinkage;
257       if (ParseOptionalLinkage(Linkage, HasLinkage) ||
258           ParseOptionalVisibility(Visibility) ||
259           ParseOptionalDLLStorageClass(DLLStorageClass) ||
260           ParseOptionalThreadLocal(TLM) ||
261           parseOptionalUnnamedAddr(UnnamedAddr) ||
262           ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
263                       DLLStorageClass, TLM, UnnamedAddr))
264         return true;
265       break;
266     }
267
268     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
269     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
270     case lltok::kw_uselistorder_bb:
271                                  if (ParseUseListOrderBB()) return true; break;
272     }
273   }
274 }
275
276
277 /// toplevelentity
278 ///   ::= 'module' 'asm' STRINGCONSTANT
279 bool LLParser::ParseModuleAsm() {
280   assert(Lex.getKind() == lltok::kw_module);
281   Lex.Lex();
282
283   std::string AsmStr;
284   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
285       ParseStringConstant(AsmStr)) return true;
286
287   M->appendModuleInlineAsm(AsmStr);
288   return false;
289 }
290
291 /// toplevelentity
292 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
293 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
294 bool LLParser::ParseTargetDefinition() {
295   assert(Lex.getKind() == lltok::kw_target);
296   std::string Str;
297   switch (Lex.Lex()) {
298   default: return TokError("unknown target property");
299   case lltok::kw_triple:
300     Lex.Lex();
301     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
302         ParseStringConstant(Str))
303       return true;
304     M->setTargetTriple(Str);
305     return false;
306   case lltok::kw_datalayout:
307     Lex.Lex();
308     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
309         ParseStringConstant(Str))
310       return true;
311     M->setDataLayout(Str);
312     return false;
313   }
314 }
315
316 /// toplevelentity
317 ///   ::= 'deplibs' '=' '[' ']'
318 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
319 /// FIXME: Remove in 4.0. Currently parse, but ignore.
320 bool LLParser::ParseDepLibs() {
321   assert(Lex.getKind() == lltok::kw_deplibs);
322   Lex.Lex();
323   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
324       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
325     return true;
326
327   if (EatIfPresent(lltok::rsquare))
328     return false;
329
330   do {
331     std::string Str;
332     if (ParseStringConstant(Str)) return true;
333   } while (EatIfPresent(lltok::comma));
334
335   return ParseToken(lltok::rsquare, "expected ']' at end of list");
336 }
337
338 /// ParseUnnamedType:
339 ///   ::= LocalVarID '=' 'type' type
340 bool LLParser::ParseUnnamedType() {
341   LocTy TypeLoc = Lex.getLoc();
342   unsigned TypeID = Lex.getUIntVal();
343   Lex.Lex(); // eat LocalVarID;
344
345   if (ParseToken(lltok::equal, "expected '=' after name") ||
346       ParseToken(lltok::kw_type, "expected 'type' after '='"))
347     return true;
348
349   Type *Result = nullptr;
350   if (ParseStructDefinition(TypeLoc, "",
351                             NumberedTypes[TypeID], Result)) return true;
352
353   if (!isa<StructType>(Result)) {
354     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
355     if (Entry.first)
356       return Error(TypeLoc, "non-struct types may not be recursive");
357     Entry.first = Result;
358     Entry.second = SMLoc();
359   }
360
361   return false;
362 }
363
364
365 /// toplevelentity
366 ///   ::= LocalVar '=' 'type' type
367 bool LLParser::ParseNamedType() {
368   std::string Name = Lex.getStrVal();
369   LocTy NameLoc = Lex.getLoc();
370   Lex.Lex();  // eat LocalVar.
371
372   if (ParseToken(lltok::equal, "expected '=' after name") ||
373       ParseToken(lltok::kw_type, "expected 'type' after name"))
374     return true;
375
376   Type *Result = nullptr;
377   if (ParseStructDefinition(NameLoc, Name,
378                             NamedTypes[Name], Result)) return true;
379
380   if (!isa<StructType>(Result)) {
381     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
382     if (Entry.first)
383       return Error(NameLoc, "non-struct types may not be recursive");
384     Entry.first = Result;
385     Entry.second = SMLoc();
386   }
387
388   return false;
389 }
390
391
392 /// toplevelentity
393 ///   ::= 'declare' FunctionHeader
394 bool LLParser::ParseDeclare() {
395   assert(Lex.getKind() == lltok::kw_declare);
396   Lex.Lex();
397
398   Function *F;
399   return ParseFunctionHeader(F, false);
400 }
401
402 /// toplevelentity
403 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
404 bool LLParser::ParseDefine() {
405   assert(Lex.getKind() == lltok::kw_define);
406   Lex.Lex();
407
408   Function *F;
409   return ParseFunctionHeader(F, true) ||
410          ParseOptionalFunctionMetadata(*F) ||
411          ParseFunctionBody(*F);
412 }
413
414 /// ParseGlobalType
415 ///   ::= 'constant'
416 ///   ::= 'global'
417 bool LLParser::ParseGlobalType(bool &IsConstant) {
418   if (Lex.getKind() == lltok::kw_constant)
419     IsConstant = true;
420   else if (Lex.getKind() == lltok::kw_global)
421     IsConstant = false;
422   else {
423     IsConstant = false;
424     return TokError("expected 'global' or 'constant'");
425   }
426   Lex.Lex();
427   return false;
428 }
429
430 /// ParseUnnamedGlobal:
431 ///   OptionalVisibility ALIAS ...
432 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
433 ///                                                     ...   -> global variable
434 ///   GlobalID '=' OptionalVisibility ALIAS ...
435 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
436 ///                                                     ...   -> global variable
437 bool LLParser::ParseUnnamedGlobal() {
438   unsigned VarID = NumberedVals.size();
439   std::string Name;
440   LocTy NameLoc = Lex.getLoc();
441
442   // Handle the GlobalID form.
443   if (Lex.getKind() == lltok::GlobalID) {
444     if (Lex.getUIntVal() != VarID)
445       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
446                    Twine(VarID) + "'");
447     Lex.Lex(); // eat GlobalID;
448
449     if (ParseToken(lltok::equal, "expected '=' after name"))
450       return true;
451   }
452
453   bool HasLinkage;
454   unsigned Linkage, Visibility, DLLStorageClass;
455   GlobalVariable::ThreadLocalMode TLM;
456   bool UnnamedAddr;
457   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
458       ParseOptionalVisibility(Visibility) ||
459       ParseOptionalDLLStorageClass(DLLStorageClass) ||
460       ParseOptionalThreadLocal(TLM) ||
461       parseOptionalUnnamedAddr(UnnamedAddr))
462     return true;
463
464   if (Lex.getKind() != lltok::kw_alias)
465     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
466                        DLLStorageClass, TLM, UnnamedAddr);
467   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
468                     UnnamedAddr);
469 }
470
471 /// ParseNamedGlobal:
472 ///   GlobalVar '=' OptionalVisibility ALIAS ...
473 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
474 ///                                                     ...   -> global variable
475 bool LLParser::ParseNamedGlobal() {
476   assert(Lex.getKind() == lltok::GlobalVar);
477   LocTy NameLoc = Lex.getLoc();
478   std::string Name = Lex.getStrVal();
479   Lex.Lex();
480
481   bool HasLinkage;
482   unsigned Linkage, Visibility, DLLStorageClass;
483   GlobalVariable::ThreadLocalMode TLM;
484   bool UnnamedAddr;
485   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
486       ParseOptionalLinkage(Linkage, HasLinkage) ||
487       ParseOptionalVisibility(Visibility) ||
488       ParseOptionalDLLStorageClass(DLLStorageClass) ||
489       ParseOptionalThreadLocal(TLM) ||
490       parseOptionalUnnamedAddr(UnnamedAddr))
491     return true;
492
493   if (Lex.getKind() != lltok::kw_alias)
494     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
495                        DLLStorageClass, TLM, UnnamedAddr);
496
497   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
498                     UnnamedAddr);
499 }
500
501 bool LLParser::parseComdat() {
502   assert(Lex.getKind() == lltok::ComdatVar);
503   std::string Name = Lex.getStrVal();
504   LocTy NameLoc = Lex.getLoc();
505   Lex.Lex();
506
507   if (ParseToken(lltok::equal, "expected '=' here"))
508     return true;
509
510   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
511     return TokError("expected comdat type");
512
513   Comdat::SelectionKind SK;
514   switch (Lex.getKind()) {
515   default:
516     return TokError("unknown selection kind");
517   case lltok::kw_any:
518     SK = Comdat::Any;
519     break;
520   case lltok::kw_exactmatch:
521     SK = Comdat::ExactMatch;
522     break;
523   case lltok::kw_largest:
524     SK = Comdat::Largest;
525     break;
526   case lltok::kw_noduplicates:
527     SK = Comdat::NoDuplicates;
528     break;
529   case lltok::kw_samesize:
530     SK = Comdat::SameSize;
531     break;
532   }
533   Lex.Lex();
534
535   // See if the comdat was forward referenced, if so, use the comdat.
536   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
537   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
538   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
539     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
540
541   Comdat *C;
542   if (I != ComdatSymTab.end())
543     C = &I->second;
544   else
545     C = M->getOrInsertComdat(Name);
546   C->setSelectionKind(SK);
547
548   return false;
549 }
550
551 // MDString:
552 //   ::= '!' STRINGCONSTANT
553 bool LLParser::ParseMDString(MDString *&Result) {
554   std::string Str;
555   if (ParseStringConstant(Str)) return true;
556   llvm::UpgradeMDStringConstant(Str);
557   Result = MDString::get(Context, Str);
558   return false;
559 }
560
561 // MDNode:
562 //   ::= '!' MDNodeNumber
563 bool LLParser::ParseMDNodeID(MDNode *&Result) {
564   // !{ ..., !42, ... }
565   unsigned MID = 0;
566   if (ParseUInt32(MID))
567     return true;
568
569   // If not a forward reference, just return it now.
570   if (NumberedMetadata.count(MID)) {
571     Result = NumberedMetadata[MID];
572     return false;
573   }
574
575   // Otherwise, create MDNode forward reference.
576   auto &FwdRef = ForwardRefMDNodes[MID];
577   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
578
579   Result = FwdRef.first.get();
580   NumberedMetadata[MID].reset(Result);
581   return false;
582 }
583
584 /// ParseNamedMetadata:
585 ///   !foo = !{ !1, !2 }
586 bool LLParser::ParseNamedMetadata() {
587   assert(Lex.getKind() == lltok::MetadataVar);
588   std::string Name = Lex.getStrVal();
589   Lex.Lex();
590
591   if (ParseToken(lltok::equal, "expected '=' here") ||
592       ParseToken(lltok::exclaim, "Expected '!' here") ||
593       ParseToken(lltok::lbrace, "Expected '{' here"))
594     return true;
595
596   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
597   if (Lex.getKind() != lltok::rbrace)
598     do {
599       if (ParseToken(lltok::exclaim, "Expected '!' here"))
600         return true;
601
602       MDNode *N = nullptr;
603       if (ParseMDNodeID(N)) return true;
604       NMD->addOperand(N);
605     } while (EatIfPresent(lltok::comma));
606
607   return ParseToken(lltok::rbrace, "expected end of metadata node");
608 }
609
610 /// ParseStandaloneMetadata:
611 ///   !42 = !{...}
612 bool LLParser::ParseStandaloneMetadata() {
613   assert(Lex.getKind() == lltok::exclaim);
614   Lex.Lex();
615   unsigned MetadataID = 0;
616
617   MDNode *Init;
618   if (ParseUInt32(MetadataID) ||
619       ParseToken(lltok::equal, "expected '=' here"))
620     return true;
621
622   // Detect common error, from old metadata syntax.
623   if (Lex.getKind() == lltok::Type)
624     return TokError("unexpected type in metadata definition");
625
626   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
627   if (Lex.getKind() == lltok::MetadataVar) {
628     if (ParseSpecializedMDNode(Init, IsDistinct))
629       return true;
630   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
631              ParseMDTuple(Init, IsDistinct))
632     return true;
633
634   // See if this was forward referenced, if so, handle it.
635   auto FI = ForwardRefMDNodes.find(MetadataID);
636   if (FI != ForwardRefMDNodes.end()) {
637     FI->second.first->replaceAllUsesWith(Init);
638     ForwardRefMDNodes.erase(FI);
639
640     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
641   } else {
642     if (NumberedMetadata.count(MetadataID))
643       return TokError("Metadata id is already used");
644     NumberedMetadata[MetadataID].reset(Init);
645   }
646
647   return false;
648 }
649
650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
651   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
652          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
653 }
654
655 /// ParseAlias:
656 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
657 ///                     OptionalDLLStorageClass OptionalThreadLocal
658 ///                     OptionalUnnamedAddr 'alias' Aliasee
659 ///
660 /// Aliasee
661 ///   ::= TypeAndValue
662 ///
663 /// Everything through OptionalUnnamedAddr has already been parsed.
664 ///
665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
666                           unsigned Visibility, unsigned DLLStorageClass,
667                           GlobalVariable::ThreadLocalMode TLM,
668                           bool UnnamedAddr) {
669   assert(Lex.getKind() == lltok::kw_alias);
670   Lex.Lex();
671
672   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
673
674   if(!GlobalAlias::isValidLinkage(Linkage))
675     return Error(NameLoc, "invalid linkage type for alias");
676
677   if (!isValidVisibilityForLinkage(Visibility, L))
678     return Error(NameLoc,
679                  "symbol with local linkage must have default visibility");
680
681   Type *Ty;
682   LocTy ExplicitTypeLoc = Lex.getLoc();
683   if (ParseType(Ty) ||
684       ParseToken(lltok::comma, "expected comma after alias's type"))
685     return true;
686
687   Constant *Aliasee;
688   LocTy AliaseeLoc = Lex.getLoc();
689   if (Lex.getKind() != lltok::kw_bitcast &&
690       Lex.getKind() != lltok::kw_getelementptr &&
691       Lex.getKind() != lltok::kw_addrspacecast &&
692       Lex.getKind() != lltok::kw_inttoptr) {
693     if (ParseGlobalTypeAndValue(Aliasee))
694       return true;
695   } else {
696     // The bitcast dest type is not present, it is implied by the dest type.
697     ValID ID;
698     if (ParseValID(ID))
699       return true;
700     if (ID.Kind != ValID::t_Constant)
701       return Error(AliaseeLoc, "invalid aliasee");
702     Aliasee = ID.ConstantVal;
703   }
704
705   Type *AliaseeType = Aliasee->getType();
706   auto *PTy = dyn_cast<PointerType>(AliaseeType);
707   if (!PTy)
708     return Error(AliaseeLoc, "An alias must have pointer type");
709   unsigned AddrSpace = PTy->getAddressSpace();
710
711   if (Ty != PTy->getElementType())
712     return Error(
713         ExplicitTypeLoc,
714         "explicit pointee type doesn't match operand's pointee type");
715
716   GlobalValue *GVal = nullptr;
717
718   // See if the alias was forward referenced, if so, prepare to replace the
719   // forward reference.
720   if (!Name.empty()) {
721     GVal = M->getNamedValue(Name);
722     if (GVal) {
723       if (!ForwardRefVals.erase(Name))
724         return Error(NameLoc, "redefinition of global '@" + Name + "'");
725     }
726   } else {
727     auto I = ForwardRefValIDs.find(NumberedVals.size());
728     if (I != ForwardRefValIDs.end()) {
729       GVal = I->second.first;
730       ForwardRefValIDs.erase(I);
731     }
732   }
733
734   // Okay, create the alias but do not insert it into the module yet.
735   std::unique_ptr<GlobalAlias> GA(
736       GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
737                           Name, Aliasee, /*Parent*/ nullptr));
738   GA->setThreadLocalMode(TLM);
739   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
740   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
741   GA->setUnnamedAddr(UnnamedAddr);
742
743   if (Name.empty())
744     NumberedVals.push_back(GA.get());
745
746   if (GVal) {
747     // Verify that types agree.
748     if (GVal->getType() != GA->getType())
749       return Error(
750           ExplicitTypeLoc,
751           "forward reference and definition of alias have different types");
752
753     // If they agree, just RAUW the old value with the alias and remove the
754     // forward ref info.
755     GVal->replaceAllUsesWith(GA.get());
756     GVal->eraseFromParent();
757   }
758
759   // Insert into the module, we know its name won't collide now.
760   M->getAliasList().push_back(GA.get());
761   assert(GA->getName() == Name && "Should not be a name conflict!");
762
763   // The module owns this now
764   GA.release();
765
766   return false;
767 }
768
769 /// ParseGlobal
770 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
771 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
772 ///       OptionalExternallyInitialized GlobalType Type Const
773 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
774 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
775 ///       OptionalExternallyInitialized GlobalType Type Const
776 ///
777 /// Everything up to and including OptionalUnnamedAddr has been parsed
778 /// already.
779 ///
780 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
781                            unsigned Linkage, bool HasLinkage,
782                            unsigned Visibility, unsigned DLLStorageClass,
783                            GlobalVariable::ThreadLocalMode TLM,
784                            bool UnnamedAddr) {
785   if (!isValidVisibilityForLinkage(Visibility, Linkage))
786     return Error(NameLoc,
787                  "symbol with local linkage must have default visibility");
788
789   unsigned AddrSpace;
790   bool IsConstant, IsExternallyInitialized;
791   LocTy IsExternallyInitializedLoc;
792   LocTy TyLoc;
793
794   Type *Ty = nullptr;
795   if (ParseOptionalAddrSpace(AddrSpace) ||
796       ParseOptionalToken(lltok::kw_externally_initialized,
797                          IsExternallyInitialized,
798                          &IsExternallyInitializedLoc) ||
799       ParseGlobalType(IsConstant) ||
800       ParseType(Ty, TyLoc))
801     return true;
802
803   // If the linkage is specified and is external, then no initializer is
804   // present.
805   Constant *Init = nullptr;
806   if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
807                       Linkage != GlobalValue::ExternalLinkage)) {
808     if (ParseGlobalValue(Ty, Init))
809       return true;
810   }
811
812   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
813     return Error(TyLoc, "invalid type for global variable");
814
815   GlobalValue *GVal = nullptr;
816
817   // See if the global was forward referenced, if so, use the global.
818   if (!Name.empty()) {
819     GVal = M->getNamedValue(Name);
820     if (GVal) {
821       if (!ForwardRefVals.erase(Name))
822         return Error(NameLoc, "redefinition of global '@" + Name + "'");
823     }
824   } else {
825     auto I = ForwardRefValIDs.find(NumberedVals.size());
826     if (I != ForwardRefValIDs.end()) {
827       GVal = I->second.first;
828       ForwardRefValIDs.erase(I);
829     }
830   }
831
832   GlobalVariable *GV;
833   if (!GVal) {
834     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
835                             Name, nullptr, GlobalVariable::NotThreadLocal,
836                             AddrSpace);
837   } else {
838     if (GVal->getValueType() != Ty)
839       return Error(TyLoc,
840             "forward reference and definition of global have different types");
841
842     GV = cast<GlobalVariable>(GVal);
843
844     // Move the forward-reference to the correct spot in the module.
845     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
846   }
847
848   if (Name.empty())
849     NumberedVals.push_back(GV);
850
851   // Set the parsed properties on the global.
852   if (Init)
853     GV->setInitializer(Init);
854   GV->setConstant(IsConstant);
855   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
856   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
857   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
858   GV->setExternallyInitialized(IsExternallyInitialized);
859   GV->setThreadLocalMode(TLM);
860   GV->setUnnamedAddr(UnnamedAddr);
861
862   // Parse attributes on the global.
863   while (Lex.getKind() == lltok::comma) {
864     Lex.Lex();
865
866     if (Lex.getKind() == lltok::kw_section) {
867       Lex.Lex();
868       GV->setSection(Lex.getStrVal());
869       if (ParseToken(lltok::StringConstant, "expected global section string"))
870         return true;
871     } else if (Lex.getKind() == lltok::kw_align) {
872       unsigned Alignment;
873       if (ParseOptionalAlignment(Alignment)) return true;
874       GV->setAlignment(Alignment);
875     } else {
876       Comdat *C;
877       if (parseOptionalComdat(Name, C))
878         return true;
879       if (C)
880         GV->setComdat(C);
881       else
882         return TokError("unknown global variable property!");
883     }
884   }
885
886   return false;
887 }
888
889 /// ParseUnnamedAttrGrp
890 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
891 bool LLParser::ParseUnnamedAttrGrp() {
892   assert(Lex.getKind() == lltok::kw_attributes);
893   LocTy AttrGrpLoc = Lex.getLoc();
894   Lex.Lex();
895
896   if (Lex.getKind() != lltok::AttrGrpID)
897     return TokError("expected attribute group id");
898
899   unsigned VarID = Lex.getUIntVal();
900   std::vector<unsigned> unused;
901   LocTy BuiltinLoc;
902   Lex.Lex();
903
904   if (ParseToken(lltok::equal, "expected '=' here") ||
905       ParseToken(lltok::lbrace, "expected '{' here") ||
906       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
907                                  BuiltinLoc) ||
908       ParseToken(lltok::rbrace, "expected end of attribute group"))
909     return true;
910
911   if (!NumberedAttrBuilders[VarID].hasAttributes())
912     return Error(AttrGrpLoc, "attribute group has no attributes");
913
914   return false;
915 }
916
917 /// ParseFnAttributeValuePairs
918 ///   ::= <attr> | <attr> '=' <value>
919 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
920                                           std::vector<unsigned> &FwdRefAttrGrps,
921                                           bool inAttrGrp, LocTy &BuiltinLoc) {
922   bool HaveError = false;
923
924   B.clear();
925
926   while (true) {
927     lltok::Kind Token = Lex.getKind();
928     if (Token == lltok::kw_builtin)
929       BuiltinLoc = Lex.getLoc();
930     switch (Token) {
931     default:
932       if (!inAttrGrp) return HaveError;
933       return Error(Lex.getLoc(), "unterminated attribute group");
934     case lltok::rbrace:
935       // Finished.
936       return false;
937
938     case lltok::AttrGrpID: {
939       // Allow a function to reference an attribute group:
940       //
941       //   define void @foo() #1 { ... }
942       if (inAttrGrp)
943         HaveError |=
944           Error(Lex.getLoc(),
945               "cannot have an attribute group reference in an attribute group");
946
947       unsigned AttrGrpNum = Lex.getUIntVal();
948       if (inAttrGrp) break;
949
950       // Save the reference to the attribute group. We'll fill it in later.
951       FwdRefAttrGrps.push_back(AttrGrpNum);
952       break;
953     }
954     // Target-dependent attributes:
955     case lltok::StringConstant: {
956       if (ParseStringAttribute(B))
957         return true;
958       continue;
959     }
960
961     // Target-independent attributes:
962     case lltok::kw_align: {
963       // As a hack, we allow function alignment to be initially parsed as an
964       // attribute on a function declaration/definition or added to an attribute
965       // group and later moved to the alignment field.
966       unsigned Alignment;
967       if (inAttrGrp) {
968         Lex.Lex();
969         if (ParseToken(lltok::equal, "expected '=' here") ||
970             ParseUInt32(Alignment))
971           return true;
972       } else {
973         if (ParseOptionalAlignment(Alignment))
974           return true;
975       }
976       B.addAlignmentAttr(Alignment);
977       continue;
978     }
979     case lltok::kw_alignstack: {
980       unsigned Alignment;
981       if (inAttrGrp) {
982         Lex.Lex();
983         if (ParseToken(lltok::equal, "expected '=' here") ||
984             ParseUInt32(Alignment))
985           return true;
986       } else {
987         if (ParseOptionalStackAlignment(Alignment))
988           return true;
989       }
990       B.addStackAlignmentAttr(Alignment);
991       continue;
992     }
993     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
994     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
995     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
996     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
997     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
998     case lltok::kw_inaccessiblememonly:
999       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1000     case lltok::kw_inaccessiblemem_or_argmemonly:
1001       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1002     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1003     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1004     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1005     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1006     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1007     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1008     case lltok::kw_noimplicitfloat:
1009       B.addAttribute(Attribute::NoImplicitFloat); break;
1010     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1011     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1012     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1013     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1014     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1015     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1016     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1017     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1018     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1019     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1020     case lltok::kw_returns_twice:
1021       B.addAttribute(Attribute::ReturnsTwice); break;
1022     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1023     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1024     case lltok::kw_sspstrong:
1025       B.addAttribute(Attribute::StackProtectStrong); break;
1026     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1027     case lltok::kw_sanitize_address:
1028       B.addAttribute(Attribute::SanitizeAddress); break;
1029     case lltok::kw_sanitize_thread:
1030       B.addAttribute(Attribute::SanitizeThread); break;
1031     case lltok::kw_sanitize_memory:
1032       B.addAttribute(Attribute::SanitizeMemory); break;
1033     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1034
1035     // Error handling.
1036     case lltok::kw_inreg:
1037     case lltok::kw_signext:
1038     case lltok::kw_zeroext:
1039       HaveError |=
1040         Error(Lex.getLoc(),
1041               "invalid use of attribute on a function");
1042       break;
1043     case lltok::kw_byval:
1044     case lltok::kw_dereferenceable:
1045     case lltok::kw_dereferenceable_or_null:
1046     case lltok::kw_inalloca:
1047     case lltok::kw_nest:
1048     case lltok::kw_noalias:
1049     case lltok::kw_nocapture:
1050     case lltok::kw_nonnull:
1051     case lltok::kw_returned:
1052     case lltok::kw_sret:
1053       HaveError |=
1054         Error(Lex.getLoc(),
1055               "invalid use of parameter-only attribute on a function");
1056       break;
1057     }
1058
1059     Lex.Lex();
1060   }
1061 }
1062
1063 //===----------------------------------------------------------------------===//
1064 // GlobalValue Reference/Resolution Routines.
1065 //===----------------------------------------------------------------------===//
1066
1067 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1068                                               const std::string &Name) {
1069   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1070     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1071   else
1072     return new GlobalVariable(*M, PTy->getElementType(), false,
1073                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1074                               nullptr, GlobalVariable::NotThreadLocal,
1075                               PTy->getAddressSpace());
1076 }
1077
1078 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1079 /// forward reference record if needed.  This can return null if the value
1080 /// exists but does not have the right type.
1081 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1082                                     LocTy Loc) {
1083   PointerType *PTy = dyn_cast<PointerType>(Ty);
1084   if (!PTy) {
1085     Error(Loc, "global variable reference must have pointer type");
1086     return nullptr;
1087   }
1088
1089   // Look this name up in the normal function symbol table.
1090   GlobalValue *Val =
1091     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1092
1093   // If this is a forward reference for the value, see if we already created a
1094   // forward ref record.
1095   if (!Val) {
1096     auto I = ForwardRefVals.find(Name);
1097     if (I != ForwardRefVals.end())
1098       Val = I->second.first;
1099   }
1100
1101   // If we have the value in the symbol table or fwd-ref table, return it.
1102   if (Val) {
1103     if (Val->getType() == Ty) return Val;
1104     Error(Loc, "'@" + Name + "' defined with type '" +
1105           getTypeString(Val->getType()) + "'");
1106     return nullptr;
1107   }
1108
1109   // Otherwise, create a new forward reference for this value and remember it.
1110   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1111   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1112   return FwdVal;
1113 }
1114
1115 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1116   PointerType *PTy = dyn_cast<PointerType>(Ty);
1117   if (!PTy) {
1118     Error(Loc, "global variable reference must have pointer type");
1119     return nullptr;
1120   }
1121
1122   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1123
1124   // If this is a forward reference for the value, see if we already created a
1125   // forward ref record.
1126   if (!Val) {
1127     auto I = ForwardRefValIDs.find(ID);
1128     if (I != ForwardRefValIDs.end())
1129       Val = I->second.first;
1130   }
1131
1132   // If we have the value in the symbol table or fwd-ref table, return it.
1133   if (Val) {
1134     if (Val->getType() == Ty) return Val;
1135     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1136           getTypeString(Val->getType()) + "'");
1137     return nullptr;
1138   }
1139
1140   // Otherwise, create a new forward reference for this value and remember it.
1141   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1142   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1143   return FwdVal;
1144 }
1145
1146
1147 //===----------------------------------------------------------------------===//
1148 // Comdat Reference/Resolution Routines.
1149 //===----------------------------------------------------------------------===//
1150
1151 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1152   // Look this name up in the comdat symbol table.
1153   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1154   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1155   if (I != ComdatSymTab.end())
1156     return &I->second;
1157
1158   // Otherwise, create a new forward reference for this value and remember it.
1159   Comdat *C = M->getOrInsertComdat(Name);
1160   ForwardRefComdats[Name] = Loc;
1161   return C;
1162 }
1163
1164
1165 //===----------------------------------------------------------------------===//
1166 // Helper Routines.
1167 //===----------------------------------------------------------------------===//
1168
1169 /// ParseToken - If the current token has the specified kind, eat it and return
1170 /// success.  Otherwise, emit the specified error and return failure.
1171 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1172   if (Lex.getKind() != T)
1173     return TokError(ErrMsg);
1174   Lex.Lex();
1175   return false;
1176 }
1177
1178 /// ParseStringConstant
1179 ///   ::= StringConstant
1180 bool LLParser::ParseStringConstant(std::string &Result) {
1181   if (Lex.getKind() != lltok::StringConstant)
1182     return TokError("expected string constant");
1183   Result = Lex.getStrVal();
1184   Lex.Lex();
1185   return false;
1186 }
1187
1188 /// ParseUInt32
1189 ///   ::= uint32
1190 bool LLParser::ParseUInt32(unsigned &Val) {
1191   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1192     return TokError("expected integer");
1193   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1194   if (Val64 != unsigned(Val64))
1195     return TokError("expected 32-bit integer (too large)");
1196   Val = Val64;
1197   Lex.Lex();
1198   return false;
1199 }
1200
1201 /// ParseUInt64
1202 ///   ::= uint64
1203 bool LLParser::ParseUInt64(uint64_t &Val) {
1204   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1205     return TokError("expected integer");
1206   Val = Lex.getAPSIntVal().getLimitedValue();
1207   Lex.Lex();
1208   return false;
1209 }
1210
1211 /// ParseTLSModel
1212 ///   := 'localdynamic'
1213 ///   := 'initialexec'
1214 ///   := 'localexec'
1215 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1216   switch (Lex.getKind()) {
1217     default:
1218       return TokError("expected localdynamic, initialexec or localexec");
1219     case lltok::kw_localdynamic:
1220       TLM = GlobalVariable::LocalDynamicTLSModel;
1221       break;
1222     case lltok::kw_initialexec:
1223       TLM = GlobalVariable::InitialExecTLSModel;
1224       break;
1225     case lltok::kw_localexec:
1226       TLM = GlobalVariable::LocalExecTLSModel;
1227       break;
1228   }
1229
1230   Lex.Lex();
1231   return false;
1232 }
1233
1234 /// ParseOptionalThreadLocal
1235 ///   := /*empty*/
1236 ///   := 'thread_local'
1237 ///   := 'thread_local' '(' tlsmodel ')'
1238 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1239   TLM = GlobalVariable::NotThreadLocal;
1240   if (!EatIfPresent(lltok::kw_thread_local))
1241     return false;
1242
1243   TLM = GlobalVariable::GeneralDynamicTLSModel;
1244   if (Lex.getKind() == lltok::lparen) {
1245     Lex.Lex();
1246     return ParseTLSModel(TLM) ||
1247       ParseToken(lltok::rparen, "expected ')' after thread local model");
1248   }
1249   return false;
1250 }
1251
1252 /// ParseOptionalAddrSpace
1253 ///   := /*empty*/
1254 ///   := 'addrspace' '(' uint32 ')'
1255 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1256   AddrSpace = 0;
1257   if (!EatIfPresent(lltok::kw_addrspace))
1258     return false;
1259   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1260          ParseUInt32(AddrSpace) ||
1261          ParseToken(lltok::rparen, "expected ')' in address space");
1262 }
1263
1264 /// ParseStringAttribute
1265 ///   := StringConstant
1266 ///   := StringConstant '=' StringConstant
1267 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1268   std::string Attr = Lex.getStrVal();
1269   Lex.Lex();
1270   std::string Val;
1271   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1272     return true;
1273   B.addAttribute(Attr, Val);
1274   return false;
1275 }
1276
1277 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1278 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1279   bool HaveError = false;
1280
1281   B.clear();
1282
1283   while (1) {
1284     lltok::Kind Token = Lex.getKind();
1285     switch (Token) {
1286     default:  // End of attributes.
1287       return HaveError;
1288     case lltok::StringConstant: {
1289       if (ParseStringAttribute(B))
1290         return true;
1291       continue;
1292     }
1293     case lltok::kw_align: {
1294       unsigned Alignment;
1295       if (ParseOptionalAlignment(Alignment))
1296         return true;
1297       B.addAlignmentAttr(Alignment);
1298       continue;
1299     }
1300     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1301     case lltok::kw_dereferenceable: {
1302       uint64_t Bytes;
1303       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1304         return true;
1305       B.addDereferenceableAttr(Bytes);
1306       continue;
1307     }
1308     case lltok::kw_dereferenceable_or_null: {
1309       uint64_t Bytes;
1310       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1311         return true;
1312       B.addDereferenceableOrNullAttr(Bytes);
1313       continue;
1314     }
1315     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1316     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1317     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1318     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1319     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1320     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1321     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1322     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1323     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1324     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1325     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1326     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1327
1328     case lltok::kw_alignstack:
1329     case lltok::kw_alwaysinline:
1330     case lltok::kw_argmemonly:
1331     case lltok::kw_builtin:
1332     case lltok::kw_inlinehint:
1333     case lltok::kw_jumptable:
1334     case lltok::kw_minsize:
1335     case lltok::kw_naked:
1336     case lltok::kw_nobuiltin:
1337     case lltok::kw_noduplicate:
1338     case lltok::kw_noimplicitfloat:
1339     case lltok::kw_noinline:
1340     case lltok::kw_nonlazybind:
1341     case lltok::kw_noredzone:
1342     case lltok::kw_noreturn:
1343     case lltok::kw_nounwind:
1344     case lltok::kw_optnone:
1345     case lltok::kw_optsize:
1346     case lltok::kw_returns_twice:
1347     case lltok::kw_sanitize_address:
1348     case lltok::kw_sanitize_memory:
1349     case lltok::kw_sanitize_thread:
1350     case lltok::kw_ssp:
1351     case lltok::kw_sspreq:
1352     case lltok::kw_sspstrong:
1353     case lltok::kw_safestack:
1354     case lltok::kw_uwtable:
1355       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1356       break;
1357     }
1358
1359     Lex.Lex();
1360   }
1361 }
1362
1363 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1364 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1365   bool HaveError = false;
1366
1367   B.clear();
1368
1369   while (1) {
1370     lltok::Kind Token = Lex.getKind();
1371     switch (Token) {
1372     default:  // End of attributes.
1373       return HaveError;
1374     case lltok::StringConstant: {
1375       if (ParseStringAttribute(B))
1376         return true;
1377       continue;
1378     }
1379     case lltok::kw_dereferenceable: {
1380       uint64_t Bytes;
1381       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1382         return true;
1383       B.addDereferenceableAttr(Bytes);
1384       continue;
1385     }
1386     case lltok::kw_dereferenceable_or_null: {
1387       uint64_t Bytes;
1388       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1389         return true;
1390       B.addDereferenceableOrNullAttr(Bytes);
1391       continue;
1392     }
1393     case lltok::kw_align: {
1394       unsigned Alignment;
1395       if (ParseOptionalAlignment(Alignment))
1396         return true;
1397       B.addAlignmentAttr(Alignment);
1398       continue;
1399     }
1400     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1401     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1402     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1403     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1404     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1405
1406     // Error handling.
1407     case lltok::kw_byval:
1408     case lltok::kw_inalloca:
1409     case lltok::kw_nest:
1410     case lltok::kw_nocapture:
1411     case lltok::kw_returned:
1412     case lltok::kw_sret:
1413       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1414       break;
1415
1416     case lltok::kw_alignstack:
1417     case lltok::kw_alwaysinline:
1418     case lltok::kw_argmemonly:
1419     case lltok::kw_builtin:
1420     case lltok::kw_cold:
1421     case lltok::kw_inlinehint:
1422     case lltok::kw_jumptable:
1423     case lltok::kw_minsize:
1424     case lltok::kw_naked:
1425     case lltok::kw_nobuiltin:
1426     case lltok::kw_noduplicate:
1427     case lltok::kw_noimplicitfloat:
1428     case lltok::kw_noinline:
1429     case lltok::kw_nonlazybind:
1430     case lltok::kw_noredzone:
1431     case lltok::kw_noreturn:
1432     case lltok::kw_nounwind:
1433     case lltok::kw_optnone:
1434     case lltok::kw_optsize:
1435     case lltok::kw_returns_twice:
1436     case lltok::kw_sanitize_address:
1437     case lltok::kw_sanitize_memory:
1438     case lltok::kw_sanitize_thread:
1439     case lltok::kw_ssp:
1440     case lltok::kw_sspreq:
1441     case lltok::kw_sspstrong:
1442     case lltok::kw_safestack:
1443     case lltok::kw_uwtable:
1444       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1445       break;
1446
1447     case lltok::kw_readnone:
1448     case lltok::kw_readonly:
1449       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1450     }
1451
1452     Lex.Lex();
1453   }
1454 }
1455
1456 /// ParseOptionalLinkage
1457 ///   ::= /*empty*/
1458 ///   ::= 'private'
1459 ///   ::= 'internal'
1460 ///   ::= 'weak'
1461 ///   ::= 'weak_odr'
1462 ///   ::= 'linkonce'
1463 ///   ::= 'linkonce_odr'
1464 ///   ::= 'available_externally'
1465 ///   ::= 'appending'
1466 ///   ::= 'common'
1467 ///   ::= 'extern_weak'
1468 ///   ::= 'external'
1469 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1470   HasLinkage = false;
1471   switch (Lex.getKind()) {
1472   default:                       Res=GlobalValue::ExternalLinkage; return false;
1473   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1474   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1475   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1476   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1477   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1478   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1479   case lltok::kw_available_externally:
1480     Res = GlobalValue::AvailableExternallyLinkage;
1481     break;
1482   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1483   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1484   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1485   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1486   }
1487   Lex.Lex();
1488   HasLinkage = true;
1489   return false;
1490 }
1491
1492 /// ParseOptionalVisibility
1493 ///   ::= /*empty*/
1494 ///   ::= 'default'
1495 ///   ::= 'hidden'
1496 ///   ::= 'protected'
1497 ///
1498 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1499   switch (Lex.getKind()) {
1500   default:                  Res = GlobalValue::DefaultVisibility; return false;
1501   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1502   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1503   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1504   }
1505   Lex.Lex();
1506   return false;
1507 }
1508
1509 /// ParseOptionalDLLStorageClass
1510 ///   ::= /*empty*/
1511 ///   ::= 'dllimport'
1512 ///   ::= 'dllexport'
1513 ///
1514 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1515   switch (Lex.getKind()) {
1516   default:                  Res = GlobalValue::DefaultStorageClass; return false;
1517   case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1518   case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1519   }
1520   Lex.Lex();
1521   return false;
1522 }
1523
1524 /// ParseOptionalCallingConv
1525 ///   ::= /*empty*/
1526 ///   ::= 'ccc'
1527 ///   ::= 'fastcc'
1528 ///   ::= 'intel_ocl_bicc'
1529 ///   ::= 'coldcc'
1530 ///   ::= 'x86_stdcallcc'
1531 ///   ::= 'x86_fastcallcc'
1532 ///   ::= 'x86_thiscallcc'
1533 ///   ::= 'x86_vectorcallcc'
1534 ///   ::= 'arm_apcscc'
1535 ///   ::= 'arm_aapcscc'
1536 ///   ::= 'arm_aapcs_vfpcc'
1537 ///   ::= 'msp430_intrcc'
1538 ///   ::= 'ptx_kernel'
1539 ///   ::= 'ptx_device'
1540 ///   ::= 'spir_func'
1541 ///   ::= 'spir_kernel'
1542 ///   ::= 'x86_64_sysvcc'
1543 ///   ::= 'x86_64_win64cc'
1544 ///   ::= 'webkit_jscc'
1545 ///   ::= 'anyregcc'
1546 ///   ::= 'preserve_mostcc'
1547 ///   ::= 'preserve_allcc'
1548 ///   ::= 'ghccc'
1549 ///   ::= 'x86_intrcc'
1550 ///   ::= 'hhvmcc'
1551 ///   ::= 'hhvm_ccc'
1552 ///   ::= 'cxx_fast_tlscc'
1553 ///   ::= 'cc' UINT
1554 ///
1555 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1556   switch (Lex.getKind()) {
1557   default:                       CC = CallingConv::C; return false;
1558   case lltok::kw_ccc:            CC = CallingConv::C; break;
1559   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1560   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1561   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1562   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1563   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1564   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1565   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1566   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1567   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1568   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1569   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1570   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1571   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1572   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1573   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1574   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1575   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1576   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1577   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1578   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1579   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1580   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1581   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1582   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1583   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1584   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1585   case lltok::kw_cc: {
1586       Lex.Lex();
1587       return ParseUInt32(CC);
1588     }
1589   }
1590
1591   Lex.Lex();
1592   return false;
1593 }
1594
1595 /// ParseMetadataAttachment
1596 ///   ::= !dbg !42
1597 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1598   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1599
1600   std::string Name = Lex.getStrVal();
1601   Kind = M->getMDKindID(Name);
1602   Lex.Lex();
1603
1604   return ParseMDNode(MD);
1605 }
1606
1607 /// ParseInstructionMetadata
1608 ///   ::= !dbg !42 (',' !dbg !57)*
1609 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1610   do {
1611     if (Lex.getKind() != lltok::MetadataVar)
1612       return TokError("expected metadata after comma");
1613
1614     unsigned MDK;
1615     MDNode *N;
1616     if (ParseMetadataAttachment(MDK, N))
1617       return true;
1618
1619     Inst.setMetadata(MDK, N);
1620     if (MDK == LLVMContext::MD_tbaa)
1621       InstsWithTBAATag.push_back(&Inst);
1622
1623     // If this is the end of the list, we're done.
1624   } while (EatIfPresent(lltok::comma));
1625   return false;
1626 }
1627
1628 /// ParseOptionalFunctionMetadata
1629 ///   ::= (!dbg !57)*
1630 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1631   while (Lex.getKind() == lltok::MetadataVar) {
1632     unsigned MDK;
1633     MDNode *N;
1634     if (ParseMetadataAttachment(MDK, N))
1635       return true;
1636
1637     F.setMetadata(MDK, N);
1638   }
1639   return false;
1640 }
1641
1642 /// ParseOptionalAlignment
1643 ///   ::= /* empty */
1644 ///   ::= 'align' 4
1645 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1646   Alignment = 0;
1647   if (!EatIfPresent(lltok::kw_align))
1648     return false;
1649   LocTy AlignLoc = Lex.getLoc();
1650   if (ParseUInt32(Alignment)) return true;
1651   if (!isPowerOf2_32(Alignment))
1652     return Error(AlignLoc, "alignment is not a power of two");
1653   if (Alignment > Value::MaximumAlignment)
1654     return Error(AlignLoc, "huge alignments are not supported yet");
1655   return false;
1656 }
1657
1658 /// ParseOptionalDerefAttrBytes
1659 ///   ::= /* empty */
1660 ///   ::= AttrKind '(' 4 ')'
1661 ///
1662 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1663 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1664                                            uint64_t &Bytes) {
1665   assert((AttrKind == lltok::kw_dereferenceable ||
1666           AttrKind == lltok::kw_dereferenceable_or_null) &&
1667          "contract!");
1668
1669   Bytes = 0;
1670   if (!EatIfPresent(AttrKind))
1671     return false;
1672   LocTy ParenLoc = Lex.getLoc();
1673   if (!EatIfPresent(lltok::lparen))
1674     return Error(ParenLoc, "expected '('");
1675   LocTy DerefLoc = Lex.getLoc();
1676   if (ParseUInt64(Bytes)) return true;
1677   ParenLoc = Lex.getLoc();
1678   if (!EatIfPresent(lltok::rparen))
1679     return Error(ParenLoc, "expected ')'");
1680   if (!Bytes)
1681     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1682   return false;
1683 }
1684
1685 /// ParseOptionalCommaAlign
1686 ///   ::=
1687 ///   ::= ',' align 4
1688 ///
1689 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1690 /// end.
1691 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1692                                        bool &AteExtraComma) {
1693   AteExtraComma = false;
1694   while (EatIfPresent(lltok::comma)) {
1695     // Metadata at the end is an early exit.
1696     if (Lex.getKind() == lltok::MetadataVar) {
1697       AteExtraComma = true;
1698       return false;
1699     }
1700
1701     if (Lex.getKind() != lltok::kw_align)
1702       return Error(Lex.getLoc(), "expected metadata or 'align'");
1703
1704     if (ParseOptionalAlignment(Alignment)) return true;
1705   }
1706
1707   return false;
1708 }
1709
1710 /// ParseScopeAndOrdering
1711 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1712 ///   else: ::=
1713 ///
1714 /// This sets Scope and Ordering to the parsed values.
1715 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1716                                      AtomicOrdering &Ordering) {
1717   if (!isAtomic)
1718     return false;
1719
1720   Scope = CrossThread;
1721   if (EatIfPresent(lltok::kw_singlethread))
1722     Scope = SingleThread;
1723
1724   return ParseOrdering(Ordering);
1725 }
1726
1727 /// ParseOrdering
1728 ///   ::= AtomicOrdering
1729 ///
1730 /// This sets Ordering to the parsed value.
1731 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1732   switch (Lex.getKind()) {
1733   default: return TokError("Expected ordering on atomic instruction");
1734   case lltok::kw_unordered: Ordering = Unordered; break;
1735   case lltok::kw_monotonic: Ordering = Monotonic; break;
1736   case lltok::kw_acquire: Ordering = Acquire; break;
1737   case lltok::kw_release: Ordering = Release; break;
1738   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1739   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1740   }
1741   Lex.Lex();
1742   return false;
1743 }
1744
1745 /// ParseOptionalStackAlignment
1746 ///   ::= /* empty */
1747 ///   ::= 'alignstack' '(' 4 ')'
1748 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1749   Alignment = 0;
1750   if (!EatIfPresent(lltok::kw_alignstack))
1751     return false;
1752   LocTy ParenLoc = Lex.getLoc();
1753   if (!EatIfPresent(lltok::lparen))
1754     return Error(ParenLoc, "expected '('");
1755   LocTy AlignLoc = Lex.getLoc();
1756   if (ParseUInt32(Alignment)) return true;
1757   ParenLoc = Lex.getLoc();
1758   if (!EatIfPresent(lltok::rparen))
1759     return Error(ParenLoc, "expected ')'");
1760   if (!isPowerOf2_32(Alignment))
1761     return Error(AlignLoc, "stack alignment is not a power of two");
1762   return false;
1763 }
1764
1765 /// ParseIndexList - This parses the index list for an insert/extractvalue
1766 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1767 /// comma at the end of the line and find that it is followed by metadata.
1768 /// Clients that don't allow metadata can call the version of this function that
1769 /// only takes one argument.
1770 ///
1771 /// ParseIndexList
1772 ///    ::=  (',' uint32)+
1773 ///
1774 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1775                               bool &AteExtraComma) {
1776   AteExtraComma = false;
1777
1778   if (Lex.getKind() != lltok::comma)
1779     return TokError("expected ',' as start of index list");
1780
1781   while (EatIfPresent(lltok::comma)) {
1782     if (Lex.getKind() == lltok::MetadataVar) {
1783       if (Indices.empty()) return TokError("expected index");
1784       AteExtraComma = true;
1785       return false;
1786     }
1787     unsigned Idx = 0;
1788     if (ParseUInt32(Idx)) return true;
1789     Indices.push_back(Idx);
1790   }
1791
1792   return false;
1793 }
1794
1795 //===----------------------------------------------------------------------===//
1796 // Type Parsing.
1797 //===----------------------------------------------------------------------===//
1798
1799 /// ParseType - Parse a type.
1800 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1801   SMLoc TypeLoc = Lex.getLoc();
1802   switch (Lex.getKind()) {
1803   default:
1804     return TokError(Msg);
1805   case lltok::Type:
1806     // Type ::= 'float' | 'void' (etc)
1807     Result = Lex.getTyVal();
1808     Lex.Lex();
1809     break;
1810   case lltok::lbrace:
1811     // Type ::= StructType
1812     if (ParseAnonStructType(Result, false))
1813       return true;
1814     break;
1815   case lltok::lsquare:
1816     // Type ::= '[' ... ']'
1817     Lex.Lex(); // eat the lsquare.
1818     if (ParseArrayVectorType(Result, false))
1819       return true;
1820     break;
1821   case lltok::less: // Either vector or packed struct.
1822     // Type ::= '<' ... '>'
1823     Lex.Lex();
1824     if (Lex.getKind() == lltok::lbrace) {
1825       if (ParseAnonStructType(Result, true) ||
1826           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1827         return true;
1828     } else if (ParseArrayVectorType(Result, true))
1829       return true;
1830     break;
1831   case lltok::LocalVar: {
1832     // Type ::= %foo
1833     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1834
1835     // If the type hasn't been defined yet, create a forward definition and
1836     // remember where that forward def'n was seen (in case it never is defined).
1837     if (!Entry.first) {
1838       Entry.first = StructType::create(Context, Lex.getStrVal());
1839       Entry.second = Lex.getLoc();
1840     }
1841     Result = Entry.first;
1842     Lex.Lex();
1843     break;
1844   }
1845
1846   case lltok::LocalVarID: {
1847     // Type ::= %4
1848     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1849
1850     // If the type hasn't been defined yet, create a forward definition and
1851     // remember where that forward def'n was seen (in case it never is defined).
1852     if (!Entry.first) {
1853       Entry.first = StructType::create(Context);
1854       Entry.second = Lex.getLoc();
1855     }
1856     Result = Entry.first;
1857     Lex.Lex();
1858     break;
1859   }
1860   }
1861
1862   // Parse the type suffixes.
1863   while (1) {
1864     switch (Lex.getKind()) {
1865     // End of type.
1866     default:
1867       if (!AllowVoid && Result->isVoidTy())
1868         return Error(TypeLoc, "void type only allowed for function results");
1869       return false;
1870
1871     // Type ::= Type '*'
1872     case lltok::star:
1873       if (Result->isLabelTy())
1874         return TokError("basic block pointers are invalid");
1875       if (Result->isVoidTy())
1876         return TokError("pointers to void are invalid - use i8* instead");
1877       if (!PointerType::isValidElementType(Result))
1878         return TokError("pointer to this type is invalid");
1879       Result = PointerType::getUnqual(Result);
1880       Lex.Lex();
1881       break;
1882
1883     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1884     case lltok::kw_addrspace: {
1885       if (Result->isLabelTy())
1886         return TokError("basic block pointers are invalid");
1887       if (Result->isVoidTy())
1888         return TokError("pointers to void are invalid; use i8* instead");
1889       if (!PointerType::isValidElementType(Result))
1890         return TokError("pointer to this type is invalid");
1891       unsigned AddrSpace;
1892       if (ParseOptionalAddrSpace(AddrSpace) ||
1893           ParseToken(lltok::star, "expected '*' in address space"))
1894         return true;
1895
1896       Result = PointerType::get(Result, AddrSpace);
1897       break;
1898     }
1899
1900     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1901     case lltok::lparen:
1902       if (ParseFunctionType(Result))
1903         return true;
1904       break;
1905     }
1906   }
1907 }
1908
1909 /// ParseParameterList
1910 ///    ::= '(' ')'
1911 ///    ::= '(' Arg (',' Arg)* ')'
1912 ///  Arg
1913 ///    ::= Type OptionalAttributes Value OptionalAttributes
1914 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1915                                   PerFunctionState &PFS, bool IsMustTailCall,
1916                                   bool InVarArgsFunc) {
1917   if (ParseToken(lltok::lparen, "expected '(' in call"))
1918     return true;
1919
1920   unsigned AttrIndex = 1;
1921   while (Lex.getKind() != lltok::rparen) {
1922     // If this isn't the first argument, we need a comma.
1923     if (!ArgList.empty() &&
1924         ParseToken(lltok::comma, "expected ',' in argument list"))
1925       return true;
1926
1927     // Parse an ellipsis if this is a musttail call in a variadic function.
1928     if (Lex.getKind() == lltok::dotdotdot) {
1929       const char *Msg = "unexpected ellipsis in argument list for ";
1930       if (!IsMustTailCall)
1931         return TokError(Twine(Msg) + "non-musttail call");
1932       if (!InVarArgsFunc)
1933         return TokError(Twine(Msg) + "musttail call in non-varargs function");
1934       Lex.Lex();  // Lex the '...', it is purely for readability.
1935       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1936     }
1937
1938     // Parse the argument.
1939     LocTy ArgLoc;
1940     Type *ArgTy = nullptr;
1941     AttrBuilder ArgAttrs;
1942     Value *V;
1943     if (ParseType(ArgTy, ArgLoc))
1944       return true;
1945
1946     if (ArgTy->isMetadataTy()) {
1947       if (ParseMetadataAsValue(V, PFS))
1948         return true;
1949     } else {
1950       // Otherwise, handle normal operands.
1951       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1952         return true;
1953     }
1954     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1955                                                              AttrIndex++,
1956                                                              ArgAttrs)));
1957   }
1958
1959   if (IsMustTailCall && InVarArgsFunc)
1960     return TokError("expected '...' at end of argument list for musttail call "
1961                     "in varargs function");
1962
1963   Lex.Lex();  // Lex the ')'.
1964   return false;
1965 }
1966
1967 /// ParseOptionalOperandBundles
1968 ///    ::= /*empty*/
1969 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
1970 ///
1971 /// OperandBundle
1972 ///    ::= bundle-tag '(' ')'
1973 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
1974 ///
1975 /// bundle-tag ::= String Constant
1976 bool LLParser::ParseOptionalOperandBundles(
1977     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
1978   LocTy BeginLoc = Lex.getLoc();
1979   if (!EatIfPresent(lltok::lsquare))
1980     return false;
1981
1982   while (Lex.getKind() != lltok::rsquare) {
1983     // If this isn't the first operand bundle, we need a comma.
1984     if (!BundleList.empty() &&
1985         ParseToken(lltok::comma, "expected ',' in input list"))
1986       return true;
1987
1988     std::string Tag;
1989     if (ParseStringConstant(Tag))
1990       return true;
1991
1992     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
1993       return true;
1994
1995     std::vector<Value *> Inputs;
1996     while (Lex.getKind() != lltok::rparen) {
1997       // If this isn't the first input, we need a comma.
1998       if (!Inputs.empty() &&
1999           ParseToken(lltok::comma, "expected ',' in input list"))
2000         return true;
2001
2002       Type *Ty = nullptr;
2003       Value *Input = nullptr;
2004       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2005         return true;
2006       Inputs.push_back(Input);
2007     }
2008
2009     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2010
2011     Lex.Lex(); // Lex the ')'.
2012   }
2013
2014   if (BundleList.empty())
2015     return Error(BeginLoc, "operand bundle set must not be empty");
2016
2017   Lex.Lex(); // Lex the ']'.
2018   return false;
2019 }
2020
2021 /// ParseArgumentList - Parse the argument list for a function type or function
2022 /// prototype.
2023 ///   ::= '(' ArgTypeListI ')'
2024 /// ArgTypeListI
2025 ///   ::= /*empty*/
2026 ///   ::= '...'
2027 ///   ::= ArgTypeList ',' '...'
2028 ///   ::= ArgType (',' ArgType)*
2029 ///
2030 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2031                                  bool &isVarArg){
2032   isVarArg = false;
2033   assert(Lex.getKind() == lltok::lparen);
2034   Lex.Lex(); // eat the (.
2035
2036   if (Lex.getKind() == lltok::rparen) {
2037     // empty
2038   } else if (Lex.getKind() == lltok::dotdotdot) {
2039     isVarArg = true;
2040     Lex.Lex();
2041   } else {
2042     LocTy TypeLoc = Lex.getLoc();
2043     Type *ArgTy = nullptr;
2044     AttrBuilder Attrs;
2045     std::string Name;
2046
2047     if (ParseType(ArgTy) ||
2048         ParseOptionalParamAttrs(Attrs)) return true;
2049
2050     if (ArgTy->isVoidTy())
2051       return Error(TypeLoc, "argument can not have void type");
2052
2053     if (Lex.getKind() == lltok::LocalVar) {
2054       Name = Lex.getStrVal();
2055       Lex.Lex();
2056     }
2057
2058     if (!FunctionType::isValidArgumentType(ArgTy))
2059       return Error(TypeLoc, "invalid type for function argument");
2060
2061     unsigned AttrIndex = 1;
2062     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2063                                                            AttrIndex++, Attrs),
2064                          std::move(Name));
2065
2066     while (EatIfPresent(lltok::comma)) {
2067       // Handle ... at end of arg list.
2068       if (EatIfPresent(lltok::dotdotdot)) {
2069         isVarArg = true;
2070         break;
2071       }
2072
2073       // Otherwise must be an argument type.
2074       TypeLoc = Lex.getLoc();
2075       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2076
2077       if (ArgTy->isVoidTy())
2078         return Error(TypeLoc, "argument can not have void type");
2079
2080       if (Lex.getKind() == lltok::LocalVar) {
2081         Name = Lex.getStrVal();
2082         Lex.Lex();
2083       } else {
2084         Name = "";
2085       }
2086
2087       if (!ArgTy->isFirstClassType())
2088         return Error(TypeLoc, "invalid type for function argument");
2089
2090       ArgList.emplace_back(
2091           TypeLoc, ArgTy,
2092           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2093           std::move(Name));
2094     }
2095   }
2096
2097   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2098 }
2099
2100 /// ParseFunctionType
2101 ///  ::= Type ArgumentList OptionalAttrs
2102 bool LLParser::ParseFunctionType(Type *&Result) {
2103   assert(Lex.getKind() == lltok::lparen);
2104
2105   if (!FunctionType::isValidReturnType(Result))
2106     return TokError("invalid function return type");
2107
2108   SmallVector<ArgInfo, 8> ArgList;
2109   bool isVarArg;
2110   if (ParseArgumentList(ArgList, isVarArg))
2111     return true;
2112
2113   // Reject names on the arguments lists.
2114   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2115     if (!ArgList[i].Name.empty())
2116       return Error(ArgList[i].Loc, "argument name invalid in function type");
2117     if (ArgList[i].Attrs.hasAttributes(i + 1))
2118       return Error(ArgList[i].Loc,
2119                    "argument attributes invalid in function type");
2120   }
2121
2122   SmallVector<Type*, 16> ArgListTy;
2123   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2124     ArgListTy.push_back(ArgList[i].Ty);
2125
2126   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2127   return false;
2128 }
2129
2130 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2131 /// other structs.
2132 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2133   SmallVector<Type*, 8> Elts;
2134   if (ParseStructBody(Elts)) return true;
2135
2136   Result = StructType::get(Context, Elts, Packed);
2137   return false;
2138 }
2139
2140 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2141 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2142                                      std::pair<Type*, LocTy> &Entry,
2143                                      Type *&ResultTy) {
2144   // If the type was already defined, diagnose the redefinition.
2145   if (Entry.first && !Entry.second.isValid())
2146     return Error(TypeLoc, "redefinition of type");
2147
2148   // If we have opaque, just return without filling in the definition for the
2149   // struct.  This counts as a definition as far as the .ll file goes.
2150   if (EatIfPresent(lltok::kw_opaque)) {
2151     // This type is being defined, so clear the location to indicate this.
2152     Entry.second = SMLoc();
2153
2154     // If this type number has never been uttered, create it.
2155     if (!Entry.first)
2156       Entry.first = StructType::create(Context, Name);
2157     ResultTy = Entry.first;
2158     return false;
2159   }
2160
2161   // If the type starts with '<', then it is either a packed struct or a vector.
2162   bool isPacked = EatIfPresent(lltok::less);
2163
2164   // If we don't have a struct, then we have a random type alias, which we
2165   // accept for compatibility with old files.  These types are not allowed to be
2166   // forward referenced and not allowed to be recursive.
2167   if (Lex.getKind() != lltok::lbrace) {
2168     if (Entry.first)
2169       return Error(TypeLoc, "forward references to non-struct type");
2170
2171     ResultTy = nullptr;
2172     if (isPacked)
2173       return ParseArrayVectorType(ResultTy, true);
2174     return ParseType(ResultTy);
2175   }
2176
2177   // This type is being defined, so clear the location to indicate this.
2178   Entry.second = SMLoc();
2179
2180   // If this type number has never been uttered, create it.
2181   if (!Entry.first)
2182     Entry.first = StructType::create(Context, Name);
2183
2184   StructType *STy = cast<StructType>(Entry.first);
2185
2186   SmallVector<Type*, 8> Body;
2187   if (ParseStructBody(Body) ||
2188       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2189     return true;
2190
2191   STy->setBody(Body, isPacked);
2192   ResultTy = STy;
2193   return false;
2194 }
2195
2196
2197 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2198 ///   StructType
2199 ///     ::= '{' '}'
2200 ///     ::= '{' Type (',' Type)* '}'
2201 ///     ::= '<' '{' '}' '>'
2202 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2203 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2204   assert(Lex.getKind() == lltok::lbrace);
2205   Lex.Lex(); // Consume the '{'
2206
2207   // Handle the empty struct.
2208   if (EatIfPresent(lltok::rbrace))
2209     return false;
2210
2211   LocTy EltTyLoc = Lex.getLoc();
2212   Type *Ty = nullptr;
2213   if (ParseType(Ty)) return true;
2214   Body.push_back(Ty);
2215
2216   if (!StructType::isValidElementType(Ty))
2217     return Error(EltTyLoc, "invalid element type for struct");
2218
2219   while (EatIfPresent(lltok::comma)) {
2220     EltTyLoc = Lex.getLoc();
2221     if (ParseType(Ty)) return true;
2222
2223     if (!StructType::isValidElementType(Ty))
2224       return Error(EltTyLoc, "invalid element type for struct");
2225
2226     Body.push_back(Ty);
2227   }
2228
2229   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2230 }
2231
2232 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2233 /// token has already been consumed.
2234 ///   Type
2235 ///     ::= '[' APSINTVAL 'x' Types ']'
2236 ///     ::= '<' APSINTVAL 'x' Types '>'
2237 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2238   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2239       Lex.getAPSIntVal().getBitWidth() > 64)
2240     return TokError("expected number in address space");
2241
2242   LocTy SizeLoc = Lex.getLoc();
2243   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2244   Lex.Lex();
2245
2246   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2247       return true;
2248
2249   LocTy TypeLoc = Lex.getLoc();
2250   Type *EltTy = nullptr;
2251   if (ParseType(EltTy)) return true;
2252
2253   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2254                  "expected end of sequential type"))
2255     return true;
2256
2257   if (isVector) {
2258     if (Size == 0)
2259       return Error(SizeLoc, "zero element vector is illegal");
2260     if ((unsigned)Size != Size)
2261       return Error(SizeLoc, "size too large for vector");
2262     if (!VectorType::isValidElementType(EltTy))
2263       return Error(TypeLoc, "invalid vector element type");
2264     Result = VectorType::get(EltTy, unsigned(Size));
2265   } else {
2266     if (!ArrayType::isValidElementType(EltTy))
2267       return Error(TypeLoc, "invalid array element type");
2268     Result = ArrayType::get(EltTy, Size);
2269   }
2270   return false;
2271 }
2272
2273 //===----------------------------------------------------------------------===//
2274 // Function Semantic Analysis.
2275 //===----------------------------------------------------------------------===//
2276
2277 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2278                                              int functionNumber)
2279   : P(p), F(f), FunctionNumber(functionNumber) {
2280
2281   // Insert unnamed arguments into the NumberedVals list.
2282   for (Argument &A : F.args())
2283     if (!A.hasName())
2284       NumberedVals.push_back(&A);
2285 }
2286
2287 LLParser::PerFunctionState::~PerFunctionState() {
2288   // If there were any forward referenced non-basicblock values, delete them.
2289
2290   for (const auto &P : ForwardRefVals) {
2291     if (isa<BasicBlock>(P.second.first))
2292       continue;
2293     P.second.first->replaceAllUsesWith(
2294         UndefValue::get(P.second.first->getType()));
2295     delete P.second.first;
2296   }
2297
2298   for (const auto &P : ForwardRefValIDs) {
2299     if (isa<BasicBlock>(P.second.first))
2300       continue;
2301     P.second.first->replaceAllUsesWith(
2302         UndefValue::get(P.second.first->getType()));
2303     delete P.second.first;
2304   }
2305 }
2306
2307 bool LLParser::PerFunctionState::FinishFunction() {
2308   if (!ForwardRefVals.empty())
2309     return P.Error(ForwardRefVals.begin()->second.second,
2310                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2311                    "'");
2312   if (!ForwardRefValIDs.empty())
2313     return P.Error(ForwardRefValIDs.begin()->second.second,
2314                    "use of undefined value '%" +
2315                    Twine(ForwardRefValIDs.begin()->first) + "'");
2316   return false;
2317 }
2318
2319
2320 /// GetVal - Get a value with the specified name or ID, creating a
2321 /// forward reference record if needed.  This can return null if the value
2322 /// exists but does not have the right type.
2323 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2324                                           LocTy Loc) {
2325   // Look this name up in the normal function symbol table.
2326   Value *Val = F.getValueSymbolTable().lookup(Name);
2327
2328   // If this is a forward reference for the value, see if we already created a
2329   // forward ref record.
2330   if (!Val) {
2331     auto I = ForwardRefVals.find(Name);
2332     if (I != ForwardRefVals.end())
2333       Val = I->second.first;
2334   }
2335
2336   // If we have the value in the symbol table or fwd-ref table, return it.
2337   if (Val) {
2338     if (Val->getType() == Ty) return Val;
2339     if (Ty->isLabelTy())
2340       P.Error(Loc, "'%" + Name + "' is not a basic block");
2341     else
2342       P.Error(Loc, "'%" + Name + "' defined with type '" +
2343               getTypeString(Val->getType()) + "'");
2344     return nullptr;
2345   }
2346
2347   // Don't make placeholders with invalid type.
2348   if (!Ty->isFirstClassType()) {
2349     P.Error(Loc, "invalid use of a non-first-class type");
2350     return nullptr;
2351   }
2352
2353   // Otherwise, create a new forward reference for this value and remember it.
2354   Value *FwdVal;
2355   if (Ty->isLabelTy()) {
2356     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2357   } else {
2358     FwdVal = new Argument(Ty, Name);
2359   }
2360
2361   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2362   return FwdVal;
2363 }
2364
2365 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2366   // Look this name up in the normal function symbol table.
2367   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2368
2369   // If this is a forward reference for the value, see if we already created a
2370   // forward ref record.
2371   if (!Val) {
2372     auto I = ForwardRefValIDs.find(ID);
2373     if (I != ForwardRefValIDs.end())
2374       Val = I->second.first;
2375   }
2376
2377   // If we have the value in the symbol table or fwd-ref table, return it.
2378   if (Val) {
2379     if (Val->getType() == Ty) return Val;
2380     if (Ty->isLabelTy())
2381       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2382     else
2383       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2384               getTypeString(Val->getType()) + "'");
2385     return nullptr;
2386   }
2387
2388   if (!Ty->isFirstClassType()) {
2389     P.Error(Loc, "invalid use of a non-first-class type");
2390     return nullptr;
2391   }
2392
2393   // Otherwise, create a new forward reference for this value and remember it.
2394   Value *FwdVal;
2395   if (Ty->isLabelTy()) {
2396     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2397   } else {
2398     FwdVal = new Argument(Ty);
2399   }
2400
2401   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2402   return FwdVal;
2403 }
2404
2405 /// SetInstName - After an instruction is parsed and inserted into its
2406 /// basic block, this installs its name.
2407 bool LLParser::PerFunctionState::SetInstName(int NameID,
2408                                              const std::string &NameStr,
2409                                              LocTy NameLoc, Instruction *Inst) {
2410   // If this instruction has void type, it cannot have a name or ID specified.
2411   if (Inst->getType()->isVoidTy()) {
2412     if (NameID != -1 || !NameStr.empty())
2413       return P.Error(NameLoc, "instructions returning void cannot have a name");
2414     return false;
2415   }
2416
2417   // If this was a numbered instruction, verify that the instruction is the
2418   // expected value and resolve any forward references.
2419   if (NameStr.empty()) {
2420     // If neither a name nor an ID was specified, just use the next ID.
2421     if (NameID == -1)
2422       NameID = NumberedVals.size();
2423
2424     if (unsigned(NameID) != NumberedVals.size())
2425       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2426                      Twine(NumberedVals.size()) + "'");
2427
2428     auto FI = ForwardRefValIDs.find(NameID);
2429     if (FI != ForwardRefValIDs.end()) {
2430       Value *Sentinel = FI->second.first;
2431       if (Sentinel->getType() != Inst->getType())
2432         return P.Error(NameLoc, "instruction forward referenced with type '" +
2433                        getTypeString(FI->second.first->getType()) + "'");
2434
2435       Sentinel->replaceAllUsesWith(Inst);
2436       delete Sentinel;
2437       ForwardRefValIDs.erase(FI);
2438     }
2439
2440     NumberedVals.push_back(Inst);
2441     return false;
2442   }
2443
2444   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2445   auto FI = ForwardRefVals.find(NameStr);
2446   if (FI != ForwardRefVals.end()) {
2447     Value *Sentinel = FI->second.first;
2448     if (Sentinel->getType() != Inst->getType())
2449       return P.Error(NameLoc, "instruction forward referenced with type '" +
2450                      getTypeString(FI->second.first->getType()) + "'");
2451
2452     Sentinel->replaceAllUsesWith(Inst);
2453     delete Sentinel;
2454     ForwardRefVals.erase(FI);
2455   }
2456
2457   // Set the name on the instruction.
2458   Inst->setName(NameStr);
2459
2460   if (Inst->getName() != NameStr)
2461     return P.Error(NameLoc, "multiple definition of local value named '" +
2462                    NameStr + "'");
2463   return false;
2464 }
2465
2466 /// GetBB - Get a basic block with the specified name or ID, creating a
2467 /// forward reference record if needed.
2468 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2469                                               LocTy Loc) {
2470   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2471                                       Type::getLabelTy(F.getContext()), Loc));
2472 }
2473
2474 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2475   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2476                                       Type::getLabelTy(F.getContext()), Loc));
2477 }
2478
2479 /// DefineBB - Define the specified basic block, which is either named or
2480 /// unnamed.  If there is an error, this returns null otherwise it returns
2481 /// the block being defined.
2482 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2483                                                  LocTy Loc) {
2484   BasicBlock *BB;
2485   if (Name.empty())
2486     BB = GetBB(NumberedVals.size(), Loc);
2487   else
2488     BB = GetBB(Name, Loc);
2489   if (!BB) return nullptr; // Already diagnosed error.
2490
2491   // Move the block to the end of the function.  Forward ref'd blocks are
2492   // inserted wherever they happen to be referenced.
2493   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2494
2495   // Remove the block from forward ref sets.
2496   if (Name.empty()) {
2497     ForwardRefValIDs.erase(NumberedVals.size());
2498     NumberedVals.push_back(BB);
2499   } else {
2500     // BB forward references are already in the function symbol table.
2501     ForwardRefVals.erase(Name);
2502   }
2503
2504   return BB;
2505 }
2506
2507 //===----------------------------------------------------------------------===//
2508 // Constants.
2509 //===----------------------------------------------------------------------===//
2510
2511 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2512 /// type implied.  For example, if we parse "4" we don't know what integer type
2513 /// it has.  The value will later be combined with its type and checked for
2514 /// sanity.  PFS is used to convert function-local operands of metadata (since
2515 /// metadata operands are not just parsed here but also converted to values).
2516 /// PFS can be null when we are not parsing metadata values inside a function.
2517 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2518   ID.Loc = Lex.getLoc();
2519   switch (Lex.getKind()) {
2520   default: return TokError("expected value token");
2521   case lltok::GlobalID:  // @42
2522     ID.UIntVal = Lex.getUIntVal();
2523     ID.Kind = ValID::t_GlobalID;
2524     break;
2525   case lltok::GlobalVar:  // @foo
2526     ID.StrVal = Lex.getStrVal();
2527     ID.Kind = ValID::t_GlobalName;
2528     break;
2529   case lltok::LocalVarID:  // %42
2530     ID.UIntVal = Lex.getUIntVal();
2531     ID.Kind = ValID::t_LocalID;
2532     break;
2533   case lltok::LocalVar:  // %foo
2534     ID.StrVal = Lex.getStrVal();
2535     ID.Kind = ValID::t_LocalName;
2536     break;
2537   case lltok::APSInt:
2538     ID.APSIntVal = Lex.getAPSIntVal();
2539     ID.Kind = ValID::t_APSInt;
2540     break;
2541   case lltok::APFloat:
2542     ID.APFloatVal = Lex.getAPFloatVal();
2543     ID.Kind = ValID::t_APFloat;
2544     break;
2545   case lltok::kw_true:
2546     ID.ConstantVal = ConstantInt::getTrue(Context);
2547     ID.Kind = ValID::t_Constant;
2548     break;
2549   case lltok::kw_false:
2550     ID.ConstantVal = ConstantInt::getFalse(Context);
2551     ID.Kind = ValID::t_Constant;
2552     break;
2553   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2554   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2555   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2556   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2557
2558   case lltok::lbrace: {
2559     // ValID ::= '{' ConstVector '}'
2560     Lex.Lex();
2561     SmallVector<Constant*, 16> Elts;
2562     if (ParseGlobalValueVector(Elts) ||
2563         ParseToken(lltok::rbrace, "expected end of struct constant"))
2564       return true;
2565
2566     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2567     ID.UIntVal = Elts.size();
2568     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2569            Elts.size() * sizeof(Elts[0]));
2570     ID.Kind = ValID::t_ConstantStruct;
2571     return false;
2572   }
2573   case lltok::less: {
2574     // ValID ::= '<' ConstVector '>'         --> Vector.
2575     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2576     Lex.Lex();
2577     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2578
2579     SmallVector<Constant*, 16> Elts;
2580     LocTy FirstEltLoc = Lex.getLoc();
2581     if (ParseGlobalValueVector(Elts) ||
2582         (isPackedStruct &&
2583          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2584         ParseToken(lltok::greater, "expected end of constant"))
2585       return true;
2586
2587     if (isPackedStruct) {
2588       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2589       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2590              Elts.size() * sizeof(Elts[0]));
2591       ID.UIntVal = Elts.size();
2592       ID.Kind = ValID::t_PackedConstantStruct;
2593       return false;
2594     }
2595
2596     if (Elts.empty())
2597       return Error(ID.Loc, "constant vector must not be empty");
2598
2599     if (!Elts[0]->getType()->isIntegerTy() &&
2600         !Elts[0]->getType()->isFloatingPointTy() &&
2601         !Elts[0]->getType()->isPointerTy())
2602       return Error(FirstEltLoc,
2603             "vector elements must have integer, pointer or floating point type");
2604
2605     // Verify that all the vector elements have the same type.
2606     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2607       if (Elts[i]->getType() != Elts[0]->getType())
2608         return Error(FirstEltLoc,
2609                      "vector element #" + Twine(i) +
2610                     " is not of type '" + getTypeString(Elts[0]->getType()));
2611
2612     ID.ConstantVal = ConstantVector::get(Elts);
2613     ID.Kind = ValID::t_Constant;
2614     return false;
2615   }
2616   case lltok::lsquare: {   // Array Constant
2617     Lex.Lex();
2618     SmallVector<Constant*, 16> Elts;
2619     LocTy FirstEltLoc = Lex.getLoc();
2620     if (ParseGlobalValueVector(Elts) ||
2621         ParseToken(lltok::rsquare, "expected end of array constant"))
2622       return true;
2623
2624     // Handle empty element.
2625     if (Elts.empty()) {
2626       // Use undef instead of an array because it's inconvenient to determine
2627       // the element type at this point, there being no elements to examine.
2628       ID.Kind = ValID::t_EmptyArray;
2629       return false;
2630     }
2631
2632     if (!Elts[0]->getType()->isFirstClassType())
2633       return Error(FirstEltLoc, "invalid array element type: " +
2634                    getTypeString(Elts[0]->getType()));
2635
2636     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2637
2638     // Verify all elements are correct type!
2639     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2640       if (Elts[i]->getType() != Elts[0]->getType())
2641         return Error(FirstEltLoc,
2642                      "array element #" + Twine(i) +
2643                      " is not of type '" + getTypeString(Elts[0]->getType()));
2644     }
2645
2646     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2647     ID.Kind = ValID::t_Constant;
2648     return false;
2649   }
2650   case lltok::kw_c:  // c "foo"
2651     Lex.Lex();
2652     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2653                                                   false);
2654     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2655     ID.Kind = ValID::t_Constant;
2656     return false;
2657
2658   case lltok::kw_asm: {
2659     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2660     //             STRINGCONSTANT
2661     bool HasSideEffect, AlignStack, AsmDialect;
2662     Lex.Lex();
2663     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2664         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2665         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2666         ParseStringConstant(ID.StrVal) ||
2667         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2668         ParseToken(lltok::StringConstant, "expected constraint string"))
2669       return true;
2670     ID.StrVal2 = Lex.getStrVal();
2671     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2672       (unsigned(AsmDialect)<<2);
2673     ID.Kind = ValID::t_InlineAsm;
2674     return false;
2675   }
2676
2677   case lltok::kw_blockaddress: {
2678     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2679     Lex.Lex();
2680
2681     ValID Fn, Label;
2682
2683     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2684         ParseValID(Fn) ||
2685         ParseToken(lltok::comma, "expected comma in block address expression")||
2686         ParseValID(Label) ||
2687         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2688       return true;
2689
2690     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2691       return Error(Fn.Loc, "expected function name in blockaddress");
2692     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2693       return Error(Label.Loc, "expected basic block name in blockaddress");
2694
2695     // Try to find the function (but skip it if it's forward-referenced).
2696     GlobalValue *GV = nullptr;
2697     if (Fn.Kind == ValID::t_GlobalID) {
2698       if (Fn.UIntVal < NumberedVals.size())
2699         GV = NumberedVals[Fn.UIntVal];
2700     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2701       GV = M->getNamedValue(Fn.StrVal);
2702     }
2703     Function *F = nullptr;
2704     if (GV) {
2705       // Confirm that it's actually a function with a definition.
2706       if (!isa<Function>(GV))
2707         return Error(Fn.Loc, "expected function name in blockaddress");
2708       F = cast<Function>(GV);
2709       if (F->isDeclaration())
2710         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2711     }
2712
2713     if (!F) {
2714       // Make a global variable as a placeholder for this reference.
2715       GlobalValue *&FwdRef =
2716           ForwardRefBlockAddresses.insert(std::make_pair(
2717                                               std::move(Fn),
2718                                               std::map<ValID, GlobalValue *>()))
2719               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2720               .first->second;
2721       if (!FwdRef)
2722         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2723                                     GlobalValue::InternalLinkage, nullptr, "");
2724       ID.ConstantVal = FwdRef;
2725       ID.Kind = ValID::t_Constant;
2726       return false;
2727     }
2728
2729     // We found the function; now find the basic block.  Don't use PFS, since we
2730     // might be inside a constant expression.
2731     BasicBlock *BB;
2732     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2733       if (Label.Kind == ValID::t_LocalID)
2734         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2735       else
2736         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2737       if (!BB)
2738         return Error(Label.Loc, "referenced value is not a basic block");
2739     } else {
2740       if (Label.Kind == ValID::t_LocalID)
2741         return Error(Label.Loc, "cannot take address of numeric label after "
2742                                 "the function is defined");
2743       BB = dyn_cast_or_null<BasicBlock>(
2744           F->getValueSymbolTable().lookup(Label.StrVal));
2745       if (!BB)
2746         return Error(Label.Loc, "referenced value is not a basic block");
2747     }
2748
2749     ID.ConstantVal = BlockAddress::get(F, BB);
2750     ID.Kind = ValID::t_Constant;
2751     return false;
2752   }
2753
2754   case lltok::kw_trunc:
2755   case lltok::kw_zext:
2756   case lltok::kw_sext:
2757   case lltok::kw_fptrunc:
2758   case lltok::kw_fpext:
2759   case lltok::kw_bitcast:
2760   case lltok::kw_addrspacecast:
2761   case lltok::kw_uitofp:
2762   case lltok::kw_sitofp:
2763   case lltok::kw_fptoui:
2764   case lltok::kw_fptosi:
2765   case lltok::kw_inttoptr:
2766   case lltok::kw_ptrtoint: {
2767     unsigned Opc = Lex.getUIntVal();
2768     Type *DestTy = nullptr;
2769     Constant *SrcVal;
2770     Lex.Lex();
2771     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2772         ParseGlobalTypeAndValue(SrcVal) ||
2773         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2774         ParseType(DestTy) ||
2775         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2776       return true;
2777     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2778       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2779                    getTypeString(SrcVal->getType()) + "' to '" +
2780                    getTypeString(DestTy) + "'");
2781     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2782                                                  SrcVal, DestTy);
2783     ID.Kind = ValID::t_Constant;
2784     return false;
2785   }
2786   case lltok::kw_extractvalue: {
2787     Lex.Lex();
2788     Constant *Val;
2789     SmallVector<unsigned, 4> Indices;
2790     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2791         ParseGlobalTypeAndValue(Val) ||
2792         ParseIndexList(Indices) ||
2793         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2794       return true;
2795
2796     if (!Val->getType()->isAggregateType())
2797       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2798     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2799       return Error(ID.Loc, "invalid indices for extractvalue");
2800     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2801     ID.Kind = ValID::t_Constant;
2802     return false;
2803   }
2804   case lltok::kw_insertvalue: {
2805     Lex.Lex();
2806     Constant *Val0, *Val1;
2807     SmallVector<unsigned, 4> Indices;
2808     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2809         ParseGlobalTypeAndValue(Val0) ||
2810         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2811         ParseGlobalTypeAndValue(Val1) ||
2812         ParseIndexList(Indices) ||
2813         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2814       return true;
2815     if (!Val0->getType()->isAggregateType())
2816       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2817     Type *IndexedType =
2818         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2819     if (!IndexedType)
2820       return Error(ID.Loc, "invalid indices for insertvalue");
2821     if (IndexedType != Val1->getType())
2822       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2823                                getTypeString(Val1->getType()) +
2824                                "' instead of '" + getTypeString(IndexedType) +
2825                                "'");
2826     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2827     ID.Kind = ValID::t_Constant;
2828     return false;
2829   }
2830   case lltok::kw_icmp:
2831   case lltok::kw_fcmp: {
2832     unsigned PredVal, Opc = Lex.getUIntVal();
2833     Constant *Val0, *Val1;
2834     Lex.Lex();
2835     if (ParseCmpPredicate(PredVal, Opc) ||
2836         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2837         ParseGlobalTypeAndValue(Val0) ||
2838         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2839         ParseGlobalTypeAndValue(Val1) ||
2840         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2841       return true;
2842
2843     if (Val0->getType() != Val1->getType())
2844       return Error(ID.Loc, "compare operands must have the same type");
2845
2846     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2847
2848     if (Opc == Instruction::FCmp) {
2849       if (!Val0->getType()->isFPOrFPVectorTy())
2850         return Error(ID.Loc, "fcmp requires floating point operands");
2851       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2852     } else {
2853       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2854       if (!Val0->getType()->isIntOrIntVectorTy() &&
2855           !Val0->getType()->getScalarType()->isPointerTy())
2856         return Error(ID.Loc, "icmp requires pointer or integer operands");
2857       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2858     }
2859     ID.Kind = ValID::t_Constant;
2860     return false;
2861   }
2862
2863   // Binary Operators.
2864   case lltok::kw_add:
2865   case lltok::kw_fadd:
2866   case lltok::kw_sub:
2867   case lltok::kw_fsub:
2868   case lltok::kw_mul:
2869   case lltok::kw_fmul:
2870   case lltok::kw_udiv:
2871   case lltok::kw_sdiv:
2872   case lltok::kw_fdiv:
2873   case lltok::kw_urem:
2874   case lltok::kw_srem:
2875   case lltok::kw_frem:
2876   case lltok::kw_shl:
2877   case lltok::kw_lshr:
2878   case lltok::kw_ashr: {
2879     bool NUW = false;
2880     bool NSW = false;
2881     bool Exact = false;
2882     unsigned Opc = Lex.getUIntVal();
2883     Constant *Val0, *Val1;
2884     Lex.Lex();
2885     LocTy ModifierLoc = Lex.getLoc();
2886     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2887         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2888       if (EatIfPresent(lltok::kw_nuw))
2889         NUW = true;
2890       if (EatIfPresent(lltok::kw_nsw)) {
2891         NSW = true;
2892         if (EatIfPresent(lltok::kw_nuw))
2893           NUW = true;
2894       }
2895     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2896                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2897       if (EatIfPresent(lltok::kw_exact))
2898         Exact = true;
2899     }
2900     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2901         ParseGlobalTypeAndValue(Val0) ||
2902         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2903         ParseGlobalTypeAndValue(Val1) ||
2904         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2905       return true;
2906     if (Val0->getType() != Val1->getType())
2907       return Error(ID.Loc, "operands of constexpr must have same type");
2908     if (!Val0->getType()->isIntOrIntVectorTy()) {
2909       if (NUW)
2910         return Error(ModifierLoc, "nuw only applies to integer operations");
2911       if (NSW)
2912         return Error(ModifierLoc, "nsw only applies to integer operations");
2913     }
2914     // Check that the type is valid for the operator.
2915     switch (Opc) {
2916     case Instruction::Add:
2917     case Instruction::Sub:
2918     case Instruction::Mul:
2919     case Instruction::UDiv:
2920     case Instruction::SDiv:
2921     case Instruction::URem:
2922     case Instruction::SRem:
2923     case Instruction::Shl:
2924     case Instruction::AShr:
2925     case Instruction::LShr:
2926       if (!Val0->getType()->isIntOrIntVectorTy())
2927         return Error(ID.Loc, "constexpr requires integer operands");
2928       break;
2929     case Instruction::FAdd:
2930     case Instruction::FSub:
2931     case Instruction::FMul:
2932     case Instruction::FDiv:
2933     case Instruction::FRem:
2934       if (!Val0->getType()->isFPOrFPVectorTy())
2935         return Error(ID.Loc, "constexpr requires fp operands");
2936       break;
2937     default: llvm_unreachable("Unknown binary operator!");
2938     }
2939     unsigned Flags = 0;
2940     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2941     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2942     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2943     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2944     ID.ConstantVal = C;
2945     ID.Kind = ValID::t_Constant;
2946     return false;
2947   }
2948
2949   // Logical Operations
2950   case lltok::kw_and:
2951   case lltok::kw_or:
2952   case lltok::kw_xor: {
2953     unsigned Opc = Lex.getUIntVal();
2954     Constant *Val0, *Val1;
2955     Lex.Lex();
2956     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2957         ParseGlobalTypeAndValue(Val0) ||
2958         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2959         ParseGlobalTypeAndValue(Val1) ||
2960         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2961       return true;
2962     if (Val0->getType() != Val1->getType())
2963       return Error(ID.Loc, "operands of constexpr must have same type");
2964     if (!Val0->getType()->isIntOrIntVectorTy())
2965       return Error(ID.Loc,
2966                    "constexpr requires integer or integer vector operands");
2967     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2968     ID.Kind = ValID::t_Constant;
2969     return false;
2970   }
2971
2972   case lltok::kw_getelementptr:
2973   case lltok::kw_shufflevector:
2974   case lltok::kw_insertelement:
2975   case lltok::kw_extractelement:
2976   case lltok::kw_select: {
2977     unsigned Opc = Lex.getUIntVal();
2978     SmallVector<Constant*, 16> Elts;
2979     bool InBounds = false;
2980     Type *Ty;
2981     Lex.Lex();
2982
2983     if (Opc == Instruction::GetElementPtr)
2984       InBounds = EatIfPresent(lltok::kw_inbounds);
2985
2986     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
2987       return true;
2988
2989     LocTy ExplicitTypeLoc = Lex.getLoc();
2990     if (Opc == Instruction::GetElementPtr) {
2991       if (ParseType(Ty) ||
2992           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
2993         return true;
2994     }
2995
2996     if (ParseGlobalValueVector(Elts) ||
2997         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2998       return true;
2999
3000     if (Opc == Instruction::GetElementPtr) {
3001       if (Elts.size() == 0 ||
3002           !Elts[0]->getType()->getScalarType()->isPointerTy())
3003         return Error(ID.Loc, "base of getelementptr must be a pointer");
3004
3005       Type *BaseType = Elts[0]->getType();
3006       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3007       if (Ty != BasePointerType->getElementType())
3008         return Error(
3009             ExplicitTypeLoc,
3010             "explicit pointee type doesn't match operand's pointee type");
3011
3012       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3013       for (Constant *Val : Indices) {
3014         Type *ValTy = Val->getType();
3015         if (!ValTy->getScalarType()->isIntegerTy())
3016           return Error(ID.Loc, "getelementptr index must be an integer");
3017         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3018           return Error(ID.Loc, "getelementptr index type missmatch");
3019         if (ValTy->isVectorTy()) {
3020           unsigned ValNumEl = ValTy->getVectorNumElements();
3021           unsigned PtrNumEl = BaseType->getVectorNumElements();
3022           if (ValNumEl != PtrNumEl)
3023             return Error(
3024                 ID.Loc,
3025                 "getelementptr vector index has a wrong number of elements");
3026         }
3027       }
3028
3029       SmallPtrSet<Type*, 4> Visited;
3030       if (!Indices.empty() && !Ty->isSized(&Visited))
3031         return Error(ID.Loc, "base element of getelementptr must be sized");
3032
3033       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3034         return Error(ID.Loc, "invalid getelementptr indices");
3035       ID.ConstantVal =
3036           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3037     } else if (Opc == Instruction::Select) {
3038       if (Elts.size() != 3)
3039         return Error(ID.Loc, "expected three operands to select");
3040       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3041                                                               Elts[2]))
3042         return Error(ID.Loc, Reason);
3043       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3044     } else if (Opc == Instruction::ShuffleVector) {
3045       if (Elts.size() != 3)
3046         return Error(ID.Loc, "expected three operands to shufflevector");
3047       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3048         return Error(ID.Loc, "invalid operands to shufflevector");
3049       ID.ConstantVal =
3050                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3051     } else if (Opc == Instruction::ExtractElement) {
3052       if (Elts.size() != 2)
3053         return Error(ID.Loc, "expected two operands to extractelement");
3054       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3055         return Error(ID.Loc, "invalid extractelement operands");
3056       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3057     } else {
3058       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3059       if (Elts.size() != 3)
3060       return Error(ID.Loc, "expected three operands to insertelement");
3061       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3062         return Error(ID.Loc, "invalid insertelement operands");
3063       ID.ConstantVal =
3064                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3065     }
3066
3067     ID.Kind = ValID::t_Constant;
3068     return false;
3069   }
3070   }
3071
3072   Lex.Lex();
3073   return false;
3074 }
3075
3076 /// ParseGlobalValue - Parse a global value with the specified type.
3077 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3078   C = nullptr;
3079   ValID ID;
3080   Value *V = nullptr;
3081   bool Parsed = ParseValID(ID) ||
3082                 ConvertValIDToValue(Ty, ID, V, nullptr);
3083   if (V && !(C = dyn_cast<Constant>(V)))
3084     return Error(ID.Loc, "global values must be constants");
3085   return Parsed;
3086 }
3087
3088 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3089   Type *Ty = nullptr;
3090   return ParseType(Ty) ||
3091          ParseGlobalValue(Ty, V);
3092 }
3093
3094 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3095   C = nullptr;
3096
3097   LocTy KwLoc = Lex.getLoc();
3098   if (!EatIfPresent(lltok::kw_comdat))
3099     return false;
3100
3101   if (EatIfPresent(lltok::lparen)) {
3102     if (Lex.getKind() != lltok::ComdatVar)
3103       return TokError("expected comdat variable");
3104     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3105     Lex.Lex();
3106     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3107       return true;
3108   } else {
3109     if (GlobalName.empty())
3110       return TokError("comdat cannot be unnamed");
3111     C = getComdat(GlobalName, KwLoc);
3112   }
3113
3114   return false;
3115 }
3116
3117 /// ParseGlobalValueVector
3118 ///   ::= /*empty*/
3119 ///   ::= TypeAndValue (',' TypeAndValue)*
3120 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3121   // Empty list.
3122   if (Lex.getKind() == lltok::rbrace ||
3123       Lex.getKind() == lltok::rsquare ||
3124       Lex.getKind() == lltok::greater ||
3125       Lex.getKind() == lltok::rparen)
3126     return false;
3127
3128   Constant *C;
3129   if (ParseGlobalTypeAndValue(C)) return true;
3130   Elts.push_back(C);
3131
3132   while (EatIfPresent(lltok::comma)) {
3133     if (ParseGlobalTypeAndValue(C)) return true;
3134     Elts.push_back(C);
3135   }
3136
3137   return false;
3138 }
3139
3140 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3141   SmallVector<Metadata *, 16> Elts;
3142   if (ParseMDNodeVector(Elts))
3143     return true;
3144
3145   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3146   return false;
3147 }
3148
3149 /// MDNode:
3150 ///  ::= !{ ... }
3151 ///  ::= !7
3152 ///  ::= !DILocation(...)
3153 bool LLParser::ParseMDNode(MDNode *&N) {
3154   if (Lex.getKind() == lltok::MetadataVar)
3155     return ParseSpecializedMDNode(N);
3156
3157   return ParseToken(lltok::exclaim, "expected '!' here") ||
3158          ParseMDNodeTail(N);
3159 }
3160
3161 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3162   // !{ ... }
3163   if (Lex.getKind() == lltok::lbrace)
3164     return ParseMDTuple(N);
3165
3166   // !42
3167   return ParseMDNodeID(N);
3168 }
3169
3170 namespace {
3171
3172 /// Structure to represent an optional metadata field.
3173 template <class FieldTy> struct MDFieldImpl {
3174   typedef MDFieldImpl ImplTy;
3175   FieldTy Val;
3176   bool Seen;
3177
3178   void assign(FieldTy Val) {
3179     Seen = true;
3180     this->Val = std::move(Val);
3181   }
3182
3183   explicit MDFieldImpl(FieldTy Default)
3184       : Val(std::move(Default)), Seen(false) {}
3185 };
3186
3187 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3188   uint64_t Max;
3189
3190   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3191       : ImplTy(Default), Max(Max) {}
3192 };
3193 struct LineField : public MDUnsignedField {
3194   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3195 };
3196 struct ColumnField : public MDUnsignedField {
3197   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3198 };
3199 struct DwarfTagField : public MDUnsignedField {
3200   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3201   DwarfTagField(dwarf::Tag DefaultTag)
3202       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3203 };
3204 struct DwarfMacinfoTypeField : public MDUnsignedField {
3205   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3206   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3207     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3208 };
3209 struct DwarfAttEncodingField : public MDUnsignedField {
3210   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3211 };
3212 struct DwarfVirtualityField : public MDUnsignedField {
3213   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3214 };
3215 struct DwarfLangField : public MDUnsignedField {
3216   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3217 };
3218
3219 struct DIFlagField : public MDUnsignedField {
3220   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3221 };
3222
3223 struct MDSignedField : public MDFieldImpl<int64_t> {
3224   int64_t Min;
3225   int64_t Max;
3226
3227   MDSignedField(int64_t Default = 0)
3228       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3229   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3230       : ImplTy(Default), Min(Min), Max(Max) {}
3231 };
3232
3233 struct MDBoolField : public MDFieldImpl<bool> {
3234   MDBoolField(bool Default = false) : ImplTy(Default) {}
3235 };
3236 struct MDField : public MDFieldImpl<Metadata *> {
3237   bool AllowNull;
3238
3239   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3240 };
3241 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3242   MDConstant() : ImplTy(nullptr) {}
3243 };
3244 struct MDStringField : public MDFieldImpl<MDString *> {
3245   bool AllowEmpty;
3246   MDStringField(bool AllowEmpty = true)
3247       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3248 };
3249 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3250   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3251 };
3252
3253 } // end namespace
3254
3255 namespace llvm {
3256
3257 template <>
3258 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3259                             MDUnsignedField &Result) {
3260   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3261     return TokError("expected unsigned integer");
3262
3263   auto &U = Lex.getAPSIntVal();
3264   if (U.ugt(Result.Max))
3265     return TokError("value for '" + Name + "' too large, limit is " +
3266                     Twine(Result.Max));
3267   Result.assign(U.getZExtValue());
3268   assert(Result.Val <= Result.Max && "Expected value in range");
3269   Lex.Lex();
3270   return false;
3271 }
3272
3273 template <>
3274 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3275   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3276 }
3277 template <>
3278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3279   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3280 }
3281
3282 template <>
3283 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3284   if (Lex.getKind() == lltok::APSInt)
3285     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3286
3287   if (Lex.getKind() != lltok::DwarfTag)
3288     return TokError("expected DWARF tag");
3289
3290   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3291   if (Tag == dwarf::DW_TAG_invalid)
3292     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3293   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3294
3295   Result.assign(Tag);
3296   Lex.Lex();
3297   return false;
3298 }
3299
3300 template <>
3301 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3302                             DwarfMacinfoTypeField &Result) {
3303   if (Lex.getKind() == lltok::APSInt)
3304     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3305
3306   if (Lex.getKind() != lltok::DwarfMacinfo)
3307     return TokError("expected DWARF macinfo type");
3308
3309   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3310   if (Macinfo == dwarf::DW_MACINFO_invalid)
3311     return TokError(
3312         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3313   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3314
3315   Result.assign(Macinfo);
3316   Lex.Lex();
3317   return false;
3318 }
3319
3320 template <>
3321 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3322                             DwarfVirtualityField &Result) {
3323   if (Lex.getKind() == lltok::APSInt)
3324     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3325
3326   if (Lex.getKind() != lltok::DwarfVirtuality)
3327     return TokError("expected DWARF virtuality code");
3328
3329   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3330   if (!Virtuality)
3331     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3332                     Lex.getStrVal() + "'");
3333   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3334   Result.assign(Virtuality);
3335   Lex.Lex();
3336   return false;
3337 }
3338
3339 template <>
3340 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3341   if (Lex.getKind() == lltok::APSInt)
3342     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3343
3344   if (Lex.getKind() != lltok::DwarfLang)
3345     return TokError("expected DWARF language");
3346
3347   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3348   if (!Lang)
3349     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3350                     "'");
3351   assert(Lang <= Result.Max && "Expected valid DWARF language");
3352   Result.assign(Lang);
3353   Lex.Lex();
3354   return false;
3355 }
3356
3357 template <>
3358 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3359                             DwarfAttEncodingField &Result) {
3360   if (Lex.getKind() == lltok::APSInt)
3361     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3362
3363   if (Lex.getKind() != lltok::DwarfAttEncoding)
3364     return TokError("expected DWARF type attribute encoding");
3365
3366   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3367   if (!Encoding)
3368     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3369                     Lex.getStrVal() + "'");
3370   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3371   Result.assign(Encoding);
3372   Lex.Lex();
3373   return false;
3374 }
3375
3376 /// DIFlagField
3377 ///  ::= uint32
3378 ///  ::= DIFlagVector
3379 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3380 template <>
3381 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3382   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3383
3384   // Parser for a single flag.
3385   auto parseFlag = [&](unsigned &Val) {
3386     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3387       return ParseUInt32(Val);
3388
3389     if (Lex.getKind() != lltok::DIFlag)
3390       return TokError("expected debug info flag");
3391
3392     Val = DINode::getFlag(Lex.getStrVal());
3393     if (!Val)
3394       return TokError(Twine("invalid debug info flag flag '") +
3395                       Lex.getStrVal() + "'");
3396     Lex.Lex();
3397     return false;
3398   };
3399
3400   // Parse the flags and combine them together.
3401   unsigned Combined = 0;
3402   do {
3403     unsigned Val;
3404     if (parseFlag(Val))
3405       return true;
3406     Combined |= Val;
3407   } while (EatIfPresent(lltok::bar));
3408
3409   Result.assign(Combined);
3410   return false;
3411 }
3412
3413 template <>
3414 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3415                             MDSignedField &Result) {
3416   if (Lex.getKind() != lltok::APSInt)
3417     return TokError("expected signed integer");
3418
3419   auto &S = Lex.getAPSIntVal();
3420   if (S < Result.Min)
3421     return TokError("value for '" + Name + "' too small, limit is " +
3422                     Twine(Result.Min));
3423   if (S > Result.Max)
3424     return TokError("value for '" + Name + "' too large, limit is " +
3425                     Twine(Result.Max));
3426   Result.assign(S.getExtValue());
3427   assert(Result.Val >= Result.Min && "Expected value in range");
3428   assert(Result.Val <= Result.Max && "Expected value in range");
3429   Lex.Lex();
3430   return false;
3431 }
3432
3433 template <>
3434 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3435   switch (Lex.getKind()) {
3436   default:
3437     return TokError("expected 'true' or 'false'");
3438   case lltok::kw_true:
3439     Result.assign(true);
3440     break;
3441   case lltok::kw_false:
3442     Result.assign(false);
3443     break;
3444   }
3445   Lex.Lex();
3446   return false;
3447 }
3448
3449 template <>
3450 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3451   if (Lex.getKind() == lltok::kw_null) {
3452     if (!Result.AllowNull)
3453       return TokError("'" + Name + "' cannot be null");
3454     Lex.Lex();
3455     Result.assign(nullptr);
3456     return false;
3457   }
3458
3459   Metadata *MD;
3460   if (ParseMetadata(MD, nullptr))
3461     return true;
3462
3463   Result.assign(MD);
3464   return false;
3465 }
3466
3467 template <>
3468 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3469   Metadata *MD;
3470   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3471     return true;
3472
3473   Result.assign(cast<ConstantAsMetadata>(MD));
3474   return false;
3475 }
3476
3477 template <>
3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3479   LocTy ValueLoc = Lex.getLoc();
3480   std::string S;
3481   if (ParseStringConstant(S))
3482     return true;
3483
3484   if (!Result.AllowEmpty && S.empty())
3485     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3486
3487   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3488   return false;
3489 }
3490
3491 template <>
3492 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3493   SmallVector<Metadata *, 4> MDs;
3494   if (ParseMDNodeVector(MDs))
3495     return true;
3496
3497   Result.assign(std::move(MDs));
3498   return false;
3499 }
3500
3501 } // end namespace llvm
3502
3503 template <class ParserTy>
3504 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3505   do {
3506     if (Lex.getKind() != lltok::LabelStr)
3507       return TokError("expected field label here");
3508
3509     if (parseField())
3510       return true;
3511   } while (EatIfPresent(lltok::comma));
3512
3513   return false;
3514 }
3515
3516 template <class ParserTy>
3517 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3518   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3519   Lex.Lex();
3520
3521   if (ParseToken(lltok::lparen, "expected '(' here"))
3522     return true;
3523   if (Lex.getKind() != lltok::rparen)
3524     if (ParseMDFieldsImplBody(parseField))
3525       return true;
3526
3527   ClosingLoc = Lex.getLoc();
3528   return ParseToken(lltok::rparen, "expected ')' here");
3529 }
3530
3531 template <class FieldTy>
3532 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3533   if (Result.Seen)
3534     return TokError("field '" + Name + "' cannot be specified more than once");
3535
3536   LocTy Loc = Lex.getLoc();
3537   Lex.Lex();
3538   return ParseMDField(Loc, Name, Result);
3539 }
3540
3541 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3542   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3543
3544 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3545   if (Lex.getStrVal() == #CLASS)                                               \
3546     return Parse##CLASS(N, IsDistinct);
3547 #include "llvm/IR/Metadata.def"
3548
3549   return TokError("expected metadata type");
3550 }
3551
3552 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3553 #define NOP_FIELD(NAME, TYPE, INIT)
3554 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3555   if (!NAME.Seen)                                                              \
3556     return Error(ClosingLoc, "missing required field '" #NAME "'");
3557 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3558   if (Lex.getStrVal() == #NAME)                                                \
3559     return ParseMDField(#NAME, NAME);
3560 #define PARSE_MD_FIELDS()                                                      \
3561   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3562   do {                                                                         \
3563     LocTy ClosingLoc;                                                          \
3564     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3565       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3566       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3567     }, ClosingLoc))                                                            \
3568       return true;                                                             \
3569     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3570   } while (false)
3571 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3572   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3573
3574 /// ParseDILocationFields:
3575 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3576 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3578   OPTIONAL(line, LineField, );                                                 \
3579   OPTIONAL(column, ColumnField, );                                             \
3580   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3581   OPTIONAL(inlinedAt, MDField, );
3582   PARSE_MD_FIELDS();
3583 #undef VISIT_MD_FIELDS
3584
3585   Result = GET_OR_DISTINCT(
3586       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3587   return false;
3588 }
3589
3590 /// ParseGenericDINode:
3591 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3592 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3593 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3594   REQUIRED(tag, DwarfTagField, );                                              \
3595   OPTIONAL(header, MDStringField, );                                           \
3596   OPTIONAL(operands, MDFieldList, );
3597   PARSE_MD_FIELDS();
3598 #undef VISIT_MD_FIELDS
3599
3600   Result = GET_OR_DISTINCT(GenericDINode,
3601                            (Context, tag.Val, header.Val, operands.Val));
3602   return false;
3603 }
3604
3605 /// ParseDISubrange:
3606 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3607 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3608 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3609   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3610   OPTIONAL(lowerBound, MDSignedField, );
3611   PARSE_MD_FIELDS();
3612 #undef VISIT_MD_FIELDS
3613
3614   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3615   return false;
3616 }
3617
3618 /// ParseDIEnumerator:
3619 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3620 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3621 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3622   REQUIRED(name, MDStringField, );                                             \
3623   REQUIRED(value, MDSignedField, );
3624   PARSE_MD_FIELDS();
3625 #undef VISIT_MD_FIELDS
3626
3627   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3628   return false;
3629 }
3630
3631 /// ParseDIBasicType:
3632 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3633 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3635   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3636   OPTIONAL(name, MDStringField, );                                             \
3637   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3638   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3639   OPTIONAL(encoding, DwarfAttEncodingField, );
3640   PARSE_MD_FIELDS();
3641 #undef VISIT_MD_FIELDS
3642
3643   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3644                                          align.Val, encoding.Val));
3645   return false;
3646 }
3647
3648 /// ParseDIDerivedType:
3649 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3650 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3651 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3652 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3654   REQUIRED(tag, DwarfTagField, );                                              \
3655   OPTIONAL(name, MDStringField, );                                             \
3656   OPTIONAL(file, MDField, );                                                   \
3657   OPTIONAL(line, LineField, );                                                 \
3658   OPTIONAL(scope, MDField, );                                                  \
3659   REQUIRED(baseType, MDField, );                                               \
3660   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3661   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3662   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3663   OPTIONAL(flags, DIFlagField, );                                              \
3664   OPTIONAL(extraData, MDField, );
3665   PARSE_MD_FIELDS();
3666 #undef VISIT_MD_FIELDS
3667
3668   Result = GET_OR_DISTINCT(DIDerivedType,
3669                            (Context, tag.Val, name.Val, file.Val, line.Val,
3670                             scope.Val, baseType.Val, size.Val, align.Val,
3671                             offset.Val, flags.Val, extraData.Val));
3672   return false;
3673 }
3674
3675 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3677   REQUIRED(tag, DwarfTagField, );                                              \
3678   OPTIONAL(name, MDStringField, );                                             \
3679   OPTIONAL(file, MDField, );                                                   \
3680   OPTIONAL(line, LineField, );                                                 \
3681   OPTIONAL(scope, MDField, );                                                  \
3682   OPTIONAL(baseType, MDField, );                                               \
3683   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3684   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3685   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3686   OPTIONAL(flags, DIFlagField, );                                              \
3687   OPTIONAL(elements, MDField, );                                               \
3688   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3689   OPTIONAL(vtableHolder, MDField, );                                           \
3690   OPTIONAL(templateParams, MDField, );                                         \
3691   OPTIONAL(identifier, MDStringField, );
3692   PARSE_MD_FIELDS();
3693 #undef VISIT_MD_FIELDS
3694
3695   Result = GET_OR_DISTINCT(
3696       DICompositeType,
3697       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3698        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3699        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3700   return false;
3701 }
3702
3703 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3705   OPTIONAL(flags, DIFlagField, );                                              \
3706   REQUIRED(types, MDField, );
3707   PARSE_MD_FIELDS();
3708 #undef VISIT_MD_FIELDS
3709
3710   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3711   return false;
3712 }
3713
3714 /// ParseDIFileType:
3715 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3716 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3717 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3718   REQUIRED(filename, MDStringField, );                                         \
3719   REQUIRED(directory, MDStringField, );
3720   PARSE_MD_FIELDS();
3721 #undef VISIT_MD_FIELDS
3722
3723   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3724   return false;
3725 }
3726
3727 /// ParseDICompileUnit:
3728 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3729 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3730 ///                      splitDebugFilename: "abc.debug", emissionKind: 1,
3731 ///                      enums: !1, retainedTypes: !2, subprograms: !3,
3732 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3733 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3734   if (!IsDistinct)
3735     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3736
3737 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3738   REQUIRED(language, DwarfLangField, );                                        \
3739   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3740   OPTIONAL(producer, MDStringField, );                                         \
3741   OPTIONAL(isOptimized, MDBoolField, );                                        \
3742   OPTIONAL(flags, MDStringField, );                                            \
3743   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3744   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3745   OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX));                    \
3746   OPTIONAL(enums, MDField, );                                                  \
3747   OPTIONAL(retainedTypes, MDField, );                                          \
3748   OPTIONAL(subprograms, MDField, );                                            \
3749   OPTIONAL(globals, MDField, );                                                \
3750   OPTIONAL(imports, MDField, );                                                \
3751   OPTIONAL(macros, MDField, );                                                 \
3752   OPTIONAL(dwoId, MDUnsignedField, );
3753   PARSE_MD_FIELDS();
3754 #undef VISIT_MD_FIELDS
3755
3756   Result = DICompileUnit::getDistinct(
3757       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3758       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3759       retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val,
3760       dwoId.Val);
3761   return false;
3762 }
3763
3764 /// ParseDISubprogram:
3765 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3766 ///                     file: !1, line: 7, type: !2, isLocal: false,
3767 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3768 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3769 ///                     virtualIndex: 10, flags: 11,
3770 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3771 ///                     variables: !6)
3772 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3773   auto Loc = Lex.getLoc();
3774 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3775   OPTIONAL(scope, MDField, );                                                  \
3776   OPTIONAL(name, MDStringField, );                                             \
3777   OPTIONAL(linkageName, MDStringField, );                                      \
3778   OPTIONAL(file, MDField, );                                                   \
3779   OPTIONAL(line, LineField, );                                                 \
3780   OPTIONAL(type, MDField, );                                                   \
3781   OPTIONAL(isLocal, MDBoolField, );                                            \
3782   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3783   OPTIONAL(scopeLine, LineField, );                                            \
3784   OPTIONAL(containingType, MDField, );                                         \
3785   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3786   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3787   OPTIONAL(flags, DIFlagField, );                                              \
3788   OPTIONAL(isOptimized, MDBoolField, );                                        \
3789   OPTIONAL(templateParams, MDField, );                                         \
3790   OPTIONAL(declaration, MDField, );                                            \
3791   OPTIONAL(variables, MDField, );
3792   PARSE_MD_FIELDS();
3793 #undef VISIT_MD_FIELDS
3794
3795   if (isDefinition.Val && !IsDistinct)
3796     return Lex.Error(
3797         Loc,
3798         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3799
3800   Result = GET_OR_DISTINCT(
3801       DISubprogram,
3802       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
3803        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
3804        containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val,
3805        isOptimized.Val, templateParams.Val, declaration.Val, variables.Val));
3806   return false;
3807 }
3808
3809 /// ParseDILexicalBlock:
3810 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3811 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3813   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3814   OPTIONAL(file, MDField, );                                                   \
3815   OPTIONAL(line, LineField, );                                                 \
3816   OPTIONAL(column, ColumnField, );
3817   PARSE_MD_FIELDS();
3818 #undef VISIT_MD_FIELDS
3819
3820   Result = GET_OR_DISTINCT(
3821       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3822   return false;
3823 }
3824
3825 /// ParseDILexicalBlockFile:
3826 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3827 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3829   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3830   OPTIONAL(file, MDField, );                                                   \
3831   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3832   PARSE_MD_FIELDS();
3833 #undef VISIT_MD_FIELDS
3834
3835   Result = GET_OR_DISTINCT(DILexicalBlockFile,
3836                            (Context, scope.Val, file.Val, discriminator.Val));
3837   return false;
3838 }
3839
3840 /// ParseDINamespace:
3841 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3842 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
3843 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3844   REQUIRED(scope, MDField, );                                                  \
3845   OPTIONAL(file, MDField, );                                                   \
3846   OPTIONAL(name, MDStringField, );                                             \
3847   OPTIONAL(line, LineField, );
3848   PARSE_MD_FIELDS();
3849 #undef VISIT_MD_FIELDS
3850
3851   Result = GET_OR_DISTINCT(DINamespace,
3852                            (Context, scope.Val, file.Val, name.Val, line.Val));
3853   return false;
3854 }
3855
3856 /// ParseDIMacro:
3857 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
3858 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
3859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3860   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
3861   REQUIRED(line, LineField, );                                                 \
3862   REQUIRED(name, MDStringField, );                                             \
3863   OPTIONAL(value, MDStringField, );
3864   PARSE_MD_FIELDS();
3865 #undef VISIT_MD_FIELDS
3866
3867   Result = GET_OR_DISTINCT(DIMacro,
3868                            (Context, type.Val, line.Val, name.Val, value.Val));
3869   return false;
3870 }
3871
3872 /// ParseDIMacroFile:
3873 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
3874 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
3875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3876   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
3877   REQUIRED(line, LineField, );                                                 \
3878   REQUIRED(file, MDField, );                                                   \
3879   OPTIONAL(nodes, MDField, );
3880   PARSE_MD_FIELDS();
3881 #undef VISIT_MD_FIELDS
3882
3883   Result = GET_OR_DISTINCT(DIMacroFile,
3884                            (Context, type.Val, line.Val, file.Val, nodes.Val));
3885   return false;
3886 }
3887
3888
3889 /// ParseDIModule:
3890 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
3891 ///                 includePath: "/usr/include", isysroot: "/")
3892 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
3893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3894   REQUIRED(scope, MDField, );                                                  \
3895   REQUIRED(name, MDStringField, );                                             \
3896   OPTIONAL(configMacros, MDStringField, );                                     \
3897   OPTIONAL(includePath, MDStringField, );                                      \
3898   OPTIONAL(isysroot, MDStringField, );
3899   PARSE_MD_FIELDS();
3900 #undef VISIT_MD_FIELDS
3901
3902   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
3903                            configMacros.Val, includePath.Val, isysroot.Val));
3904   return false;
3905 }
3906
3907 /// ParseDITemplateTypeParameter:
3908 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
3909 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3911   OPTIONAL(name, MDStringField, );                                             \
3912   REQUIRED(type, MDField, );
3913   PARSE_MD_FIELDS();
3914 #undef VISIT_MD_FIELDS
3915
3916   Result =
3917       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
3918   return false;
3919 }
3920
3921 /// ParseDITemplateValueParameter:
3922 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
3923 ///                                 name: "V", type: !1, value: i32 7)
3924 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3925 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3926   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
3927   OPTIONAL(name, MDStringField, );                                             \
3928   OPTIONAL(type, MDField, );                                                   \
3929   REQUIRED(value, MDField, );
3930   PARSE_MD_FIELDS();
3931 #undef VISIT_MD_FIELDS
3932
3933   Result = GET_OR_DISTINCT(DITemplateValueParameter,
3934                            (Context, tag.Val, name.Val, type.Val, value.Val));
3935   return false;
3936 }
3937
3938 /// ParseDIGlobalVariable:
3939 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3940 ///                         file: !1, line: 7, type: !2, isLocal: false,
3941 ///                         isDefinition: true, variable: i32* @foo,
3942 ///                         declaration: !3)
3943 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
3944 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3945   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
3946   OPTIONAL(scope, MDField, );                                                  \
3947   OPTIONAL(linkageName, MDStringField, );                                      \
3948   OPTIONAL(file, MDField, );                                                   \
3949   OPTIONAL(line, LineField, );                                                 \
3950   OPTIONAL(type, MDField, );                                                   \
3951   OPTIONAL(isLocal, MDBoolField, );                                            \
3952   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3953   OPTIONAL(variable, MDConstant, );                                            \
3954   OPTIONAL(declaration, MDField, );
3955   PARSE_MD_FIELDS();
3956 #undef VISIT_MD_FIELDS
3957
3958   Result = GET_OR_DISTINCT(DIGlobalVariable,
3959                            (Context, scope.Val, name.Val, linkageName.Val,
3960                             file.Val, line.Val, type.Val, isLocal.Val,
3961                             isDefinition.Val, variable.Val, declaration.Val));
3962   return false;
3963 }
3964
3965 /// ParseDILocalVariable:
3966 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
3967 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3968 ///   ::= !DILocalVariable(scope: !0, name: "foo",
3969 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3970 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
3971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3972   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3973   OPTIONAL(name, MDStringField, );                                             \
3974   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
3975   OPTIONAL(file, MDField, );                                                   \
3976   OPTIONAL(line, LineField, );                                                 \
3977   OPTIONAL(type, MDField, );                                                   \
3978   OPTIONAL(flags, DIFlagField, );
3979   PARSE_MD_FIELDS();
3980 #undef VISIT_MD_FIELDS
3981
3982   Result = GET_OR_DISTINCT(DILocalVariable,
3983                            (Context, scope.Val, name.Val, file.Val, line.Val,
3984                             type.Val, arg.Val, flags.Val));
3985   return false;
3986 }
3987
3988 /// ParseDIExpression:
3989 ///   ::= !DIExpression(0, 7, -1)
3990 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
3991   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3992   Lex.Lex();
3993
3994   if (ParseToken(lltok::lparen, "expected '(' here"))
3995     return true;
3996
3997   SmallVector<uint64_t, 8> Elements;
3998   if (Lex.getKind() != lltok::rparen)
3999     do {
4000       if (Lex.getKind() == lltok::DwarfOp) {
4001         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4002           Lex.Lex();
4003           Elements.push_back(Op);
4004           continue;
4005         }
4006         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4007       }
4008
4009       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4010         return TokError("expected unsigned integer");
4011
4012       auto &U = Lex.getAPSIntVal();
4013       if (U.ugt(UINT64_MAX))
4014         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4015       Elements.push_back(U.getZExtValue());
4016       Lex.Lex();
4017     } while (EatIfPresent(lltok::comma));
4018
4019   if (ParseToken(lltok::rparen, "expected ')' here"))
4020     return true;
4021
4022   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4023   return false;
4024 }
4025
4026 /// ParseDIObjCProperty:
4027 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4028 ///                       getter: "getFoo", attributes: 7, type: !2)
4029 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4031   OPTIONAL(name, MDStringField, );                                             \
4032   OPTIONAL(file, MDField, );                                                   \
4033   OPTIONAL(line, LineField, );                                                 \
4034   OPTIONAL(setter, MDStringField, );                                           \
4035   OPTIONAL(getter, MDStringField, );                                           \
4036   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4037   OPTIONAL(type, MDField, );
4038   PARSE_MD_FIELDS();
4039 #undef VISIT_MD_FIELDS
4040
4041   Result = GET_OR_DISTINCT(DIObjCProperty,
4042                            (Context, name.Val, file.Val, line.Val, setter.Val,
4043                             getter.Val, attributes.Val, type.Val));
4044   return false;
4045 }
4046
4047 /// ParseDIImportedEntity:
4048 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4049 ///                         line: 7, name: "foo")
4050 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4051 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4052   REQUIRED(tag, DwarfTagField, );                                              \
4053   REQUIRED(scope, MDField, );                                                  \
4054   OPTIONAL(entity, MDField, );                                                 \
4055   OPTIONAL(line, LineField, );                                                 \
4056   OPTIONAL(name, MDStringField, );
4057   PARSE_MD_FIELDS();
4058 #undef VISIT_MD_FIELDS
4059
4060   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4061                                               entity.Val, line.Val, name.Val));
4062   return false;
4063 }
4064
4065 #undef PARSE_MD_FIELD
4066 #undef NOP_FIELD
4067 #undef REQUIRE_FIELD
4068 #undef DECLARE_FIELD
4069
4070 /// ParseMetadataAsValue
4071 ///  ::= metadata i32 %local
4072 ///  ::= metadata i32 @global
4073 ///  ::= metadata i32 7
4074 ///  ::= metadata !0
4075 ///  ::= metadata !{...}
4076 ///  ::= metadata !"string"
4077 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4078   // Note: the type 'metadata' has already been parsed.
4079   Metadata *MD;
4080   if (ParseMetadata(MD, &PFS))
4081     return true;
4082
4083   V = MetadataAsValue::get(Context, MD);
4084   return false;
4085 }
4086
4087 /// ParseValueAsMetadata
4088 ///  ::= i32 %local
4089 ///  ::= i32 @global
4090 ///  ::= i32 7
4091 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4092                                     PerFunctionState *PFS) {
4093   Type *Ty;
4094   LocTy Loc;
4095   if (ParseType(Ty, TypeMsg, Loc))
4096     return true;
4097   if (Ty->isMetadataTy())
4098     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4099
4100   Value *V;
4101   if (ParseValue(Ty, V, PFS))
4102     return true;
4103
4104   MD = ValueAsMetadata::get(V);
4105   return false;
4106 }
4107
4108 /// ParseMetadata
4109 ///  ::= i32 %local
4110 ///  ::= i32 @global
4111 ///  ::= i32 7
4112 ///  ::= !42
4113 ///  ::= !{...}
4114 ///  ::= !"string"
4115 ///  ::= !DILocation(...)
4116 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4117   if (Lex.getKind() == lltok::MetadataVar) {
4118     MDNode *N;
4119     if (ParseSpecializedMDNode(N))
4120       return true;
4121     MD = N;
4122     return false;
4123   }
4124
4125   // ValueAsMetadata:
4126   // <type> <value>
4127   if (Lex.getKind() != lltok::exclaim)
4128     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4129
4130   // '!'.
4131   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4132   Lex.Lex();
4133
4134   // MDString:
4135   //   ::= '!' STRINGCONSTANT
4136   if (Lex.getKind() == lltok::StringConstant) {
4137     MDString *S;
4138     if (ParseMDString(S))
4139       return true;
4140     MD = S;
4141     return false;
4142   }
4143
4144   // MDNode:
4145   // !{ ... }
4146   // !7
4147   MDNode *N;
4148   if (ParseMDNodeTail(N))
4149     return true;
4150   MD = N;
4151   return false;
4152 }
4153
4154
4155 //===----------------------------------------------------------------------===//
4156 // Function Parsing.
4157 //===----------------------------------------------------------------------===//
4158
4159 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4160                                    PerFunctionState *PFS) {
4161   if (Ty->isFunctionTy())
4162     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4163
4164   switch (ID.Kind) {
4165   case ValID::t_LocalID:
4166     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4167     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4168     return V == nullptr;
4169   case ValID::t_LocalName:
4170     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4171     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4172     return V == nullptr;
4173   case ValID::t_InlineAsm: {
4174     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4175       return Error(ID.Loc, "invalid type for inline asm constraint string");
4176     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4177                        (ID.UIntVal >> 1) & 1,
4178                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4179     return false;
4180   }
4181   case ValID::t_GlobalName:
4182     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4183     return V == nullptr;
4184   case ValID::t_GlobalID:
4185     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4186     return V == nullptr;
4187   case ValID::t_APSInt:
4188     if (!Ty->isIntegerTy())
4189       return Error(ID.Loc, "integer constant must have integer type");
4190     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4191     V = ConstantInt::get(Context, ID.APSIntVal);
4192     return false;
4193   case ValID::t_APFloat:
4194     if (!Ty->isFloatingPointTy() ||
4195         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4196       return Error(ID.Loc, "floating point constant invalid for type");
4197
4198     // The lexer has no type info, so builds all half, float, and double FP
4199     // constants as double.  Fix this here.  Long double does not need this.
4200     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4201       bool Ignored;
4202       if (Ty->isHalfTy())
4203         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4204                               &Ignored);
4205       else if (Ty->isFloatTy())
4206         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4207                               &Ignored);
4208     }
4209     V = ConstantFP::get(Context, ID.APFloatVal);
4210
4211     if (V->getType() != Ty)
4212       return Error(ID.Loc, "floating point constant does not have type '" +
4213                    getTypeString(Ty) + "'");
4214
4215     return false;
4216   case ValID::t_Null:
4217     if (!Ty->isPointerTy())
4218       return Error(ID.Loc, "null must be a pointer type");
4219     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4220     return false;
4221   case ValID::t_Undef:
4222     // FIXME: LabelTy should not be a first-class type.
4223     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4224       return Error(ID.Loc, "invalid type for undef constant");
4225     V = UndefValue::get(Ty);
4226     return false;
4227   case ValID::t_EmptyArray:
4228     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4229       return Error(ID.Loc, "invalid empty array initializer");
4230     V = UndefValue::get(Ty);
4231     return false;
4232   case ValID::t_Zero:
4233     // FIXME: LabelTy should not be a first-class type.
4234     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4235       return Error(ID.Loc, "invalid type for null constant");
4236     V = Constant::getNullValue(Ty);
4237     return false;
4238   case ValID::t_None:
4239     if (!Ty->isTokenTy())
4240       return Error(ID.Loc, "invalid type for none constant");
4241     V = Constant::getNullValue(Ty);
4242     return false;
4243   case ValID::t_Constant:
4244     if (ID.ConstantVal->getType() != Ty)
4245       return Error(ID.Loc, "constant expression type mismatch");
4246
4247     V = ID.ConstantVal;
4248     return false;
4249   case ValID::t_ConstantStruct:
4250   case ValID::t_PackedConstantStruct:
4251     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4252       if (ST->getNumElements() != ID.UIntVal)
4253         return Error(ID.Loc,
4254                      "initializer with struct type has wrong # elements");
4255       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4256         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4257
4258       // Verify that the elements are compatible with the structtype.
4259       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4260         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4261           return Error(ID.Loc, "element " + Twine(i) +
4262                     " of struct initializer doesn't match struct element type");
4263
4264       V = ConstantStruct::get(
4265           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4266     } else
4267       return Error(ID.Loc, "constant expression type mismatch");
4268     return false;
4269   }
4270   llvm_unreachable("Invalid ValID");
4271 }
4272
4273 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4274   C = nullptr;
4275   ValID ID;
4276   auto Loc = Lex.getLoc();
4277   if (ParseValID(ID, /*PFS=*/nullptr))
4278     return true;
4279   switch (ID.Kind) {
4280   case ValID::t_APSInt:
4281   case ValID::t_APFloat:
4282   case ValID::t_Undef:
4283   case ValID::t_Constant:
4284   case ValID::t_ConstantStruct:
4285   case ValID::t_PackedConstantStruct: {
4286     Value *V;
4287     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4288       return true;
4289     assert(isa<Constant>(V) && "Expected a constant value");
4290     C = cast<Constant>(V);
4291     return false;
4292   }
4293   default:
4294     return Error(Loc, "expected a constant value");
4295   }
4296 }
4297
4298 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4299   V = nullptr;
4300   ValID ID;
4301   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4302 }
4303
4304 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4305   Type *Ty = nullptr;
4306   return ParseType(Ty) ||
4307          ParseValue(Ty, V, PFS);
4308 }
4309
4310 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4311                                       PerFunctionState &PFS) {
4312   Value *V;
4313   Loc = Lex.getLoc();
4314   if (ParseTypeAndValue(V, PFS)) return true;
4315   if (!isa<BasicBlock>(V))
4316     return Error(Loc, "expected a basic block");
4317   BB = cast<BasicBlock>(V);
4318   return false;
4319 }
4320
4321
4322 /// FunctionHeader
4323 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4324 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4325 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4326 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4327   // Parse the linkage.
4328   LocTy LinkageLoc = Lex.getLoc();
4329   unsigned Linkage;
4330
4331   unsigned Visibility;
4332   unsigned DLLStorageClass;
4333   AttrBuilder RetAttrs;
4334   unsigned CC;
4335   Type *RetType = nullptr;
4336   LocTy RetTypeLoc = Lex.getLoc();
4337   if (ParseOptionalLinkage(Linkage) ||
4338       ParseOptionalVisibility(Visibility) ||
4339       ParseOptionalDLLStorageClass(DLLStorageClass) ||
4340       ParseOptionalCallingConv(CC) ||
4341       ParseOptionalReturnAttrs(RetAttrs) ||
4342       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4343     return true;
4344
4345   // Verify that the linkage is ok.
4346   switch ((GlobalValue::LinkageTypes)Linkage) {
4347   case GlobalValue::ExternalLinkage:
4348     break; // always ok.
4349   case GlobalValue::ExternalWeakLinkage:
4350     if (isDefine)
4351       return Error(LinkageLoc, "invalid linkage for function definition");
4352     break;
4353   case GlobalValue::PrivateLinkage:
4354   case GlobalValue::InternalLinkage:
4355   case GlobalValue::AvailableExternallyLinkage:
4356   case GlobalValue::LinkOnceAnyLinkage:
4357   case GlobalValue::LinkOnceODRLinkage:
4358   case GlobalValue::WeakAnyLinkage:
4359   case GlobalValue::WeakODRLinkage:
4360     if (!isDefine)
4361       return Error(LinkageLoc, "invalid linkage for function declaration");
4362     break;
4363   case GlobalValue::AppendingLinkage:
4364   case GlobalValue::CommonLinkage:
4365     return Error(LinkageLoc, "invalid function linkage type");
4366   }
4367
4368   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4369     return Error(LinkageLoc,
4370                  "symbol with local linkage must have default visibility");
4371
4372   if (!FunctionType::isValidReturnType(RetType))
4373     return Error(RetTypeLoc, "invalid function return type");
4374
4375   LocTy NameLoc = Lex.getLoc();
4376
4377   std::string FunctionName;
4378   if (Lex.getKind() == lltok::GlobalVar) {
4379     FunctionName = Lex.getStrVal();
4380   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4381     unsigned NameID = Lex.getUIntVal();
4382
4383     if (NameID != NumberedVals.size())
4384       return TokError("function expected to be numbered '%" +
4385                       Twine(NumberedVals.size()) + "'");
4386   } else {
4387     return TokError("expected function name");
4388   }
4389
4390   Lex.Lex();
4391
4392   if (Lex.getKind() != lltok::lparen)
4393     return TokError("expected '(' in function argument list");
4394
4395   SmallVector<ArgInfo, 8> ArgList;
4396   bool isVarArg;
4397   AttrBuilder FuncAttrs;
4398   std::vector<unsigned> FwdRefAttrGrps;
4399   LocTy BuiltinLoc;
4400   std::string Section;
4401   unsigned Alignment;
4402   std::string GC;
4403   bool UnnamedAddr;
4404   LocTy UnnamedAddrLoc;
4405   Constant *Prefix = nullptr;
4406   Constant *Prologue = nullptr;
4407   Constant *PersonalityFn = nullptr;
4408   Comdat *C;
4409
4410   if (ParseArgumentList(ArgList, isVarArg) ||
4411       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4412                          &UnnamedAddrLoc) ||
4413       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4414                                  BuiltinLoc) ||
4415       (EatIfPresent(lltok::kw_section) &&
4416        ParseStringConstant(Section)) ||
4417       parseOptionalComdat(FunctionName, C) ||
4418       ParseOptionalAlignment(Alignment) ||
4419       (EatIfPresent(lltok::kw_gc) &&
4420        ParseStringConstant(GC)) ||
4421       (EatIfPresent(lltok::kw_prefix) &&
4422        ParseGlobalTypeAndValue(Prefix)) ||
4423       (EatIfPresent(lltok::kw_prologue) &&
4424        ParseGlobalTypeAndValue(Prologue)) ||
4425       (EatIfPresent(lltok::kw_personality) &&
4426        ParseGlobalTypeAndValue(PersonalityFn)))
4427     return true;
4428
4429   if (FuncAttrs.contains(Attribute::Builtin))
4430     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4431
4432   // If the alignment was parsed as an attribute, move to the alignment field.
4433   if (FuncAttrs.hasAlignmentAttr()) {
4434     Alignment = FuncAttrs.getAlignment();
4435     FuncAttrs.removeAttribute(Attribute::Alignment);
4436   }
4437
4438   // Okay, if we got here, the function is syntactically valid.  Convert types
4439   // and do semantic checks.
4440   std::vector<Type*> ParamTypeList;
4441   SmallVector<AttributeSet, 8> Attrs;
4442
4443   if (RetAttrs.hasAttributes())
4444     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4445                                       AttributeSet::ReturnIndex,
4446                                       RetAttrs));
4447
4448   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4449     ParamTypeList.push_back(ArgList[i].Ty);
4450     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4451       AttrBuilder B(ArgList[i].Attrs, i + 1);
4452       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4453     }
4454   }
4455
4456   if (FuncAttrs.hasAttributes())
4457     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4458                                       AttributeSet::FunctionIndex,
4459                                       FuncAttrs));
4460
4461   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4462
4463   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4464     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4465
4466   FunctionType *FT =
4467     FunctionType::get(RetType, ParamTypeList, isVarArg);
4468   PointerType *PFT = PointerType::getUnqual(FT);
4469
4470   Fn = nullptr;
4471   if (!FunctionName.empty()) {
4472     // If this was a definition of a forward reference, remove the definition
4473     // from the forward reference table and fill in the forward ref.
4474     auto FRVI = ForwardRefVals.find(FunctionName);
4475     if (FRVI != ForwardRefVals.end()) {
4476       Fn = M->getFunction(FunctionName);
4477       if (!Fn)
4478         return Error(FRVI->second.second, "invalid forward reference to "
4479                      "function as global value!");
4480       if (Fn->getType() != PFT)
4481         return Error(FRVI->second.second, "invalid forward reference to "
4482                      "function '" + FunctionName + "' with wrong type!");
4483
4484       ForwardRefVals.erase(FRVI);
4485     } else if ((Fn = M->getFunction(FunctionName))) {
4486       // Reject redefinitions.
4487       return Error(NameLoc, "invalid redefinition of function '" +
4488                    FunctionName + "'");
4489     } else if (M->getNamedValue(FunctionName)) {
4490       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4491     }
4492
4493   } else {
4494     // If this is a definition of a forward referenced function, make sure the
4495     // types agree.
4496     auto I = ForwardRefValIDs.find(NumberedVals.size());
4497     if (I != ForwardRefValIDs.end()) {
4498       Fn = cast<Function>(I->second.first);
4499       if (Fn->getType() != PFT)
4500         return Error(NameLoc, "type of definition and forward reference of '@" +
4501                      Twine(NumberedVals.size()) + "' disagree");
4502       ForwardRefValIDs.erase(I);
4503     }
4504   }
4505
4506   if (!Fn)
4507     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4508   else // Move the forward-reference to the correct spot in the module.
4509     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4510
4511   if (FunctionName.empty())
4512     NumberedVals.push_back(Fn);
4513
4514   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4515   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4516   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4517   Fn->setCallingConv(CC);
4518   Fn->setAttributes(PAL);
4519   Fn->setUnnamedAddr(UnnamedAddr);
4520   Fn->setAlignment(Alignment);
4521   Fn->setSection(Section);
4522   Fn->setComdat(C);
4523   Fn->setPersonalityFn(PersonalityFn);
4524   if (!GC.empty()) Fn->setGC(GC.c_str());
4525   Fn->setPrefixData(Prefix);
4526   Fn->setPrologueData(Prologue);
4527   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4528
4529   // Add all of the arguments we parsed to the function.
4530   Function::arg_iterator ArgIt = Fn->arg_begin();
4531   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4532     // If the argument has a name, insert it into the argument symbol table.
4533     if (ArgList[i].Name.empty()) continue;
4534
4535     // Set the name, if it conflicted, it will be auto-renamed.
4536     ArgIt->setName(ArgList[i].Name);
4537
4538     if (ArgIt->getName() != ArgList[i].Name)
4539       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4540                    ArgList[i].Name + "'");
4541   }
4542
4543   if (isDefine)
4544     return false;
4545
4546   // Check the declaration has no block address forward references.
4547   ValID ID;
4548   if (FunctionName.empty()) {
4549     ID.Kind = ValID::t_GlobalID;
4550     ID.UIntVal = NumberedVals.size() - 1;
4551   } else {
4552     ID.Kind = ValID::t_GlobalName;
4553     ID.StrVal = FunctionName;
4554   }
4555   auto Blocks = ForwardRefBlockAddresses.find(ID);
4556   if (Blocks != ForwardRefBlockAddresses.end())
4557     return Error(Blocks->first.Loc,
4558                  "cannot take blockaddress inside a declaration");
4559   return false;
4560 }
4561
4562 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4563   ValID ID;
4564   if (FunctionNumber == -1) {
4565     ID.Kind = ValID::t_GlobalName;
4566     ID.StrVal = F.getName();
4567   } else {
4568     ID.Kind = ValID::t_GlobalID;
4569     ID.UIntVal = FunctionNumber;
4570   }
4571
4572   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4573   if (Blocks == P.ForwardRefBlockAddresses.end())
4574     return false;
4575
4576   for (const auto &I : Blocks->second) {
4577     const ValID &BBID = I.first;
4578     GlobalValue *GV = I.second;
4579
4580     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4581            "Expected local id or name");
4582     BasicBlock *BB;
4583     if (BBID.Kind == ValID::t_LocalName)
4584       BB = GetBB(BBID.StrVal, BBID.Loc);
4585     else
4586       BB = GetBB(BBID.UIntVal, BBID.Loc);
4587     if (!BB)
4588       return P.Error(BBID.Loc, "referenced value is not a basic block");
4589
4590     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4591     GV->eraseFromParent();
4592   }
4593
4594   P.ForwardRefBlockAddresses.erase(Blocks);
4595   return false;
4596 }
4597
4598 /// ParseFunctionBody
4599 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4600 bool LLParser::ParseFunctionBody(Function &Fn) {
4601   if (Lex.getKind() != lltok::lbrace)
4602     return TokError("expected '{' in function body");
4603   Lex.Lex();  // eat the {.
4604
4605   int FunctionNumber = -1;
4606   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4607
4608   PerFunctionState PFS(*this, Fn, FunctionNumber);
4609
4610   // Resolve block addresses and allow basic blocks to be forward-declared
4611   // within this function.
4612   if (PFS.resolveForwardRefBlockAddresses())
4613     return true;
4614   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4615
4616   // We need at least one basic block.
4617   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4618     return TokError("function body requires at least one basic block");
4619
4620   while (Lex.getKind() != lltok::rbrace &&
4621          Lex.getKind() != lltok::kw_uselistorder)
4622     if (ParseBasicBlock(PFS)) return true;
4623
4624   while (Lex.getKind() != lltok::rbrace)
4625     if (ParseUseListOrder(&PFS))
4626       return true;
4627
4628   // Eat the }.
4629   Lex.Lex();
4630
4631   // Verify function is ok.
4632   return PFS.FinishFunction();
4633 }
4634
4635 /// ParseBasicBlock
4636 ///   ::= LabelStr? Instruction*
4637 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4638   // If this basic block starts out with a name, remember it.
4639   std::string Name;
4640   LocTy NameLoc = Lex.getLoc();
4641   if (Lex.getKind() == lltok::LabelStr) {
4642     Name = Lex.getStrVal();
4643     Lex.Lex();
4644   }
4645
4646   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4647   if (!BB)
4648     return Error(NameLoc,
4649                  "unable to create block named '" + Name + "'");
4650
4651   std::string NameStr;
4652
4653   // Parse the instructions in this block until we get a terminator.
4654   Instruction *Inst;
4655   do {
4656     // This instruction may have three possibilities for a name: a) none
4657     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4658     LocTy NameLoc = Lex.getLoc();
4659     int NameID = -1;
4660     NameStr = "";
4661
4662     if (Lex.getKind() == lltok::LocalVarID) {
4663       NameID = Lex.getUIntVal();
4664       Lex.Lex();
4665       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4666         return true;
4667     } else if (Lex.getKind() == lltok::LocalVar) {
4668       NameStr = Lex.getStrVal();
4669       Lex.Lex();
4670       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4671         return true;
4672     }
4673
4674     switch (ParseInstruction(Inst, BB, PFS)) {
4675     default: llvm_unreachable("Unknown ParseInstruction result!");
4676     case InstError: return true;
4677     case InstNormal:
4678       BB->getInstList().push_back(Inst);
4679
4680       // With a normal result, we check to see if the instruction is followed by
4681       // a comma and metadata.
4682       if (EatIfPresent(lltok::comma))
4683         if (ParseInstructionMetadata(*Inst))
4684           return true;
4685       break;
4686     case InstExtraComma:
4687       BB->getInstList().push_back(Inst);
4688
4689       // If the instruction parser ate an extra comma at the end of it, it
4690       // *must* be followed by metadata.
4691       if (ParseInstructionMetadata(*Inst))
4692         return true;
4693       break;
4694     }
4695
4696     // Set the name on the instruction.
4697     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4698   } while (!isa<TerminatorInst>(Inst));
4699
4700   return false;
4701 }
4702
4703 //===----------------------------------------------------------------------===//
4704 // Instruction Parsing.
4705 //===----------------------------------------------------------------------===//
4706
4707 /// ParseInstruction - Parse one of the many different instructions.
4708 ///
4709 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4710                                PerFunctionState &PFS) {
4711   lltok::Kind Token = Lex.getKind();
4712   if (Token == lltok::Eof)
4713     return TokError("found end of file when expecting more instructions");
4714   LocTy Loc = Lex.getLoc();
4715   unsigned KeywordVal = Lex.getUIntVal();
4716   Lex.Lex();  // Eat the keyword.
4717
4718   switch (Token) {
4719   default:                    return Error(Loc, "expected instruction opcode");
4720   // Terminator Instructions.
4721   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4722   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4723   case lltok::kw_br:          return ParseBr(Inst, PFS);
4724   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4725   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4726   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4727   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4728   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4729   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4730   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4731   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4732   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4733   // Binary Operators.
4734   case lltok::kw_add:
4735   case lltok::kw_sub:
4736   case lltok::kw_mul:
4737   case lltok::kw_shl: {
4738     bool NUW = EatIfPresent(lltok::kw_nuw);
4739     bool NSW = EatIfPresent(lltok::kw_nsw);
4740     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4741
4742     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4743
4744     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4745     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4746     return false;
4747   }
4748   case lltok::kw_fadd:
4749   case lltok::kw_fsub:
4750   case lltok::kw_fmul:
4751   case lltok::kw_fdiv:
4752   case lltok::kw_frem: {
4753     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4754     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4755     if (Res != 0)
4756       return Res;
4757     if (FMF.any())
4758       Inst->setFastMathFlags(FMF);
4759     return 0;
4760   }
4761
4762   case lltok::kw_sdiv:
4763   case lltok::kw_udiv:
4764   case lltok::kw_lshr:
4765   case lltok::kw_ashr: {
4766     bool Exact = EatIfPresent(lltok::kw_exact);
4767
4768     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4769     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4770     return false;
4771   }
4772
4773   case lltok::kw_urem:
4774   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4775   case lltok::kw_and:
4776   case lltok::kw_or:
4777   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4778   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4779   case lltok::kw_fcmp: {
4780     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4781     int Res = ParseCompare(Inst, PFS, KeywordVal);
4782     if (Res != 0)
4783       return Res;
4784     if (FMF.any())
4785       Inst->setFastMathFlags(FMF);
4786     return 0;
4787   }
4788
4789   // Casts.
4790   case lltok::kw_trunc:
4791   case lltok::kw_zext:
4792   case lltok::kw_sext:
4793   case lltok::kw_fptrunc:
4794   case lltok::kw_fpext:
4795   case lltok::kw_bitcast:
4796   case lltok::kw_addrspacecast:
4797   case lltok::kw_uitofp:
4798   case lltok::kw_sitofp:
4799   case lltok::kw_fptoui:
4800   case lltok::kw_fptosi:
4801   case lltok::kw_inttoptr:
4802   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4803   // Other.
4804   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4805   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4806   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4807   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4808   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4809   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4810   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4811   // Call.
4812   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4813   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4814   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4815   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4816   // Memory.
4817   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4818   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4819   case lltok::kw_store:          return ParseStore(Inst, PFS);
4820   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4821   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4822   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4823   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4824   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4825   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4826   }
4827 }
4828
4829 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4830 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4831   if (Opc == Instruction::FCmp) {
4832     switch (Lex.getKind()) {
4833     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4834     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4835     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4836     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4837     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4838     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4839     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4840     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4841     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4842     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4843     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4844     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4845     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4846     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4847     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4848     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4849     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4850     }
4851   } else {
4852     switch (Lex.getKind()) {
4853     default: return TokError("expected icmp predicate (e.g. 'eq')");
4854     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
4855     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
4856     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4857     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4858     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4859     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4860     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4861     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4862     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4863     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4864     }
4865   }
4866   Lex.Lex();
4867   return false;
4868 }
4869
4870 //===----------------------------------------------------------------------===//
4871 // Terminator Instructions.
4872 //===----------------------------------------------------------------------===//
4873
4874 /// ParseRet - Parse a return instruction.
4875 ///   ::= 'ret' void (',' !dbg, !1)*
4876 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
4877 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4878                         PerFunctionState &PFS) {
4879   SMLoc TypeLoc = Lex.getLoc();
4880   Type *Ty = nullptr;
4881   if (ParseType(Ty, true /*void allowed*/)) return true;
4882
4883   Type *ResType = PFS.getFunction().getReturnType();
4884
4885   if (Ty->isVoidTy()) {
4886     if (!ResType->isVoidTy())
4887       return Error(TypeLoc, "value doesn't match function result type '" +
4888                    getTypeString(ResType) + "'");
4889
4890     Inst = ReturnInst::Create(Context);
4891     return false;
4892   }
4893
4894   Value *RV;
4895   if (ParseValue(Ty, RV, PFS)) return true;
4896
4897   if (ResType != RV->getType())
4898     return Error(TypeLoc, "value doesn't match function result type '" +
4899                  getTypeString(ResType) + "'");
4900
4901   Inst = ReturnInst::Create(Context, RV);
4902   return false;
4903 }
4904
4905
4906 /// ParseBr
4907 ///   ::= 'br' TypeAndValue
4908 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4909 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4910   LocTy Loc, Loc2;
4911   Value *Op0;
4912   BasicBlock *Op1, *Op2;
4913   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4914
4915   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4916     Inst = BranchInst::Create(BB);
4917     return false;
4918   }
4919
4920   if (Op0->getType() != Type::getInt1Ty(Context))
4921     return Error(Loc, "branch condition must have 'i1' type");
4922
4923   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4924       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4925       ParseToken(lltok::comma, "expected ',' after true destination") ||
4926       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4927     return true;
4928
4929   Inst = BranchInst::Create(Op1, Op2, Op0);
4930   return false;
4931 }
4932
4933 /// ParseSwitch
4934 ///  Instruction
4935 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4936 ///  JumpTable
4937 ///    ::= (TypeAndValue ',' TypeAndValue)*
4938 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4939   LocTy CondLoc, BBLoc;
4940   Value *Cond;
4941   BasicBlock *DefaultBB;
4942   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4943       ParseToken(lltok::comma, "expected ',' after switch condition") ||
4944       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4945       ParseToken(lltok::lsquare, "expected '[' with switch table"))
4946     return true;
4947
4948   if (!Cond->getType()->isIntegerTy())
4949     return Error(CondLoc, "switch condition must have integer type");
4950
4951   // Parse the jump table pairs.
4952   SmallPtrSet<Value*, 32> SeenCases;
4953   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4954   while (Lex.getKind() != lltok::rsquare) {
4955     Value *Constant;
4956     BasicBlock *DestBB;
4957
4958     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4959         ParseToken(lltok::comma, "expected ',' after case value") ||
4960         ParseTypeAndBasicBlock(DestBB, PFS))
4961       return true;
4962
4963     if (!SeenCases.insert(Constant).second)
4964       return Error(CondLoc, "duplicate case value in switch");
4965     if (!isa<ConstantInt>(Constant))
4966       return Error(CondLoc, "case value is not a constant integer");
4967
4968     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4969   }
4970
4971   Lex.Lex();  // Eat the ']'.
4972
4973   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4974   for (unsigned i = 0, e = Table.size(); i != e; ++i)
4975     SI->addCase(Table[i].first, Table[i].second);
4976   Inst = SI;
4977   return false;
4978 }
4979
4980 /// ParseIndirectBr
4981 ///  Instruction
4982 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
4983 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
4984   LocTy AddrLoc;
4985   Value *Address;
4986   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
4987       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
4988       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
4989     return true;
4990
4991   if (!Address->getType()->isPointerTy())
4992     return Error(AddrLoc, "indirectbr address must have pointer type");
4993
4994   // Parse the destination list.
4995   SmallVector<BasicBlock*, 16> DestList;
4996
4997   if (Lex.getKind() != lltok::rsquare) {
4998     BasicBlock *DestBB;
4999     if (ParseTypeAndBasicBlock(DestBB, PFS))
5000       return true;
5001     DestList.push_back(DestBB);
5002
5003     while (EatIfPresent(lltok::comma)) {
5004       if (ParseTypeAndBasicBlock(DestBB, PFS))
5005         return true;
5006       DestList.push_back(DestBB);
5007     }
5008   }
5009
5010   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5011     return true;
5012
5013   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5014   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5015     IBI->addDestination(DestList[i]);
5016   Inst = IBI;
5017   return false;
5018 }
5019
5020
5021 /// ParseInvoke
5022 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5023 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5024 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5025   LocTy CallLoc = Lex.getLoc();
5026   AttrBuilder RetAttrs, FnAttrs;
5027   std::vector<unsigned> FwdRefAttrGrps;
5028   LocTy NoBuiltinLoc;
5029   unsigned CC;
5030   Type *RetType = nullptr;
5031   LocTy RetTypeLoc;
5032   ValID CalleeID;
5033   SmallVector<ParamInfo, 16> ArgList;
5034   SmallVector<OperandBundleDef, 2> BundleList;
5035
5036   BasicBlock *NormalBB, *UnwindBB;
5037   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5038       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5039       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5040       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5041                                  NoBuiltinLoc) ||
5042       ParseOptionalOperandBundles(BundleList, PFS) ||
5043       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5044       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5045       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5046       ParseTypeAndBasicBlock(UnwindBB, PFS))
5047     return true;
5048
5049   // If RetType is a non-function pointer type, then this is the short syntax
5050   // for the call, which means that RetType is just the return type.  Infer the
5051   // rest of the function argument types from the arguments that are present.
5052   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5053   if (!Ty) {
5054     // Pull out the types of all of the arguments...
5055     std::vector<Type*> ParamTypes;
5056     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5057       ParamTypes.push_back(ArgList[i].V->getType());
5058
5059     if (!FunctionType::isValidReturnType(RetType))
5060       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5061
5062     Ty = FunctionType::get(RetType, ParamTypes, false);
5063   }
5064
5065   CalleeID.FTy = Ty;
5066
5067   // Look up the callee.
5068   Value *Callee;
5069   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5070     return true;
5071
5072   // Set up the Attribute for the function.
5073   SmallVector<AttributeSet, 8> Attrs;
5074   if (RetAttrs.hasAttributes())
5075     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5076                                       AttributeSet::ReturnIndex,
5077                                       RetAttrs));
5078
5079   SmallVector<Value*, 8> Args;
5080
5081   // Loop through FunctionType's arguments and ensure they are specified
5082   // correctly.  Also, gather any parameter attributes.
5083   FunctionType::param_iterator I = Ty->param_begin();
5084   FunctionType::param_iterator E = Ty->param_end();
5085   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5086     Type *ExpectedTy = nullptr;
5087     if (I != E) {
5088       ExpectedTy = *I++;
5089     } else if (!Ty->isVarArg()) {
5090       return Error(ArgList[i].Loc, "too many arguments specified");
5091     }
5092
5093     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5094       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5095                    getTypeString(ExpectedTy) + "'");
5096     Args.push_back(ArgList[i].V);
5097     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5098       AttrBuilder B(ArgList[i].Attrs, i + 1);
5099       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5100     }
5101   }
5102
5103   if (I != E)
5104     return Error(CallLoc, "not enough parameters specified for call");
5105
5106   if (FnAttrs.hasAttributes()) {
5107     if (FnAttrs.hasAlignmentAttr())
5108       return Error(CallLoc, "invoke instructions may not have an alignment");
5109
5110     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5111                                       AttributeSet::FunctionIndex,
5112                                       FnAttrs));
5113   }
5114
5115   // Finish off the Attribute and check them
5116   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5117
5118   InvokeInst *II =
5119       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5120   II->setCallingConv(CC);
5121   II->setAttributes(PAL);
5122   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5123   Inst = II;
5124   return false;
5125 }
5126
5127 /// ParseResume
5128 ///   ::= 'resume' TypeAndValue
5129 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5130   Value *Exn; LocTy ExnLoc;
5131   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5132     return true;
5133
5134   ResumeInst *RI = ResumeInst::Create(Exn);
5135   Inst = RI;
5136   return false;
5137 }
5138
5139 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5140                                   PerFunctionState &PFS) {
5141   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5142     return true;
5143
5144   while (Lex.getKind() != lltok::rsquare) {
5145     // If this isn't the first argument, we need a comma.
5146     if (!Args.empty() &&
5147         ParseToken(lltok::comma, "expected ',' in argument list"))
5148       return true;
5149
5150     // Parse the argument.
5151     LocTy ArgLoc;
5152     Type *ArgTy = nullptr;
5153     if (ParseType(ArgTy, ArgLoc))
5154       return true;
5155
5156     Value *V;
5157     if (ArgTy->isMetadataTy()) {
5158       if (ParseMetadataAsValue(V, PFS))
5159         return true;
5160     } else {
5161       if (ParseValue(ArgTy, V, PFS))
5162         return true;
5163     }
5164     Args.push_back(V);
5165   }
5166
5167   Lex.Lex();  // Lex the ']'.
5168   return false;
5169 }
5170
5171 /// ParseCleanupRet
5172 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5173 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5174   Value *CleanupPad = nullptr;
5175
5176   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5177     return true;
5178
5179   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5180     return true;
5181
5182   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5183     return true;
5184
5185   BasicBlock *UnwindBB = nullptr;
5186   if (Lex.getKind() == lltok::kw_to) {
5187     Lex.Lex();
5188     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5189       return true;
5190   } else {
5191     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5192       return true;
5193     }
5194   }
5195
5196   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5197   return false;
5198 }
5199
5200 /// ParseCatchRet
5201 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5202 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5203   Value *CatchPad = nullptr;
5204
5205   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5206     return true;
5207
5208   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5209     return true;
5210
5211   BasicBlock *BB;
5212   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5213       ParseTypeAndBasicBlock(BB, PFS))
5214       return true;
5215
5216   Inst = CatchReturnInst::Create(CatchPad, BB);
5217   return false;
5218 }
5219
5220 /// ParseCatchSwitch
5221 ///   ::= 'catchswitch' within Parent
5222 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5223   Value *ParentPad;
5224   LocTy BBLoc;
5225
5226   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5227     return true;
5228
5229   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5230       Lex.getKind() != lltok::LocalVarID)
5231     return TokError("expected scope value for catchswitch");
5232
5233   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5234     return true;
5235
5236   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5237     return true;
5238
5239   SmallVector<BasicBlock *, 32> Table;
5240   do {
5241     BasicBlock *DestBB;
5242     if (ParseTypeAndBasicBlock(DestBB, PFS))
5243       return true;
5244     Table.push_back(DestBB);
5245   } while (EatIfPresent(lltok::comma));
5246
5247   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5248     return true;
5249
5250   if (ParseToken(lltok::kw_unwind,
5251                  "expected 'unwind' after catchswitch scope"))
5252     return true;
5253
5254   BasicBlock *UnwindBB = nullptr;
5255   if (EatIfPresent(lltok::kw_to)) {
5256     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5257       return true;
5258   } else {
5259     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5260       return true;
5261   }
5262
5263   auto *CatchSwitch =
5264       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5265   for (BasicBlock *DestBB : Table)
5266     CatchSwitch->addHandler(DestBB);
5267   Inst = CatchSwitch;
5268   return false;
5269 }
5270
5271 /// ParseCatchPad
5272 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5273 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5274   Value *CatchSwitch = nullptr;
5275
5276   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5277     return true;
5278
5279   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5280     return TokError("expected scope value for catchpad");
5281
5282   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5283     return true;
5284
5285   SmallVector<Value *, 8> Args;
5286   if (ParseExceptionArgs(Args, PFS))
5287     return true;
5288
5289   Inst = CatchPadInst::Create(CatchSwitch, Args);
5290   return false;
5291 }
5292
5293 /// ParseCleanupPad
5294 ///   ::= 'cleanuppad' within Parent ParamList
5295 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5296   Value *ParentPad = nullptr;
5297
5298   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5299     return true;
5300
5301   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5302       Lex.getKind() != lltok::LocalVarID)
5303     return TokError("expected scope value for cleanuppad");
5304
5305   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5306     return true;
5307
5308   SmallVector<Value *, 8> Args;
5309   if (ParseExceptionArgs(Args, PFS))
5310     return true;
5311
5312   Inst = CleanupPadInst::Create(ParentPad, Args);
5313   return false;
5314 }
5315
5316 //===----------------------------------------------------------------------===//
5317 // Binary Operators.
5318 //===----------------------------------------------------------------------===//
5319
5320 /// ParseArithmetic
5321 ///  ::= ArithmeticOps TypeAndValue ',' Value
5322 ///
5323 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5324 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5325 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5326                                unsigned Opc, unsigned OperandType) {
5327   LocTy Loc; Value *LHS, *RHS;
5328   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5329       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5330       ParseValue(LHS->getType(), RHS, PFS))
5331     return true;
5332
5333   bool Valid;
5334   switch (OperandType) {
5335   default: llvm_unreachable("Unknown operand type!");
5336   case 0: // int or FP.
5337     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5338             LHS->getType()->isFPOrFPVectorTy();
5339     break;
5340   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5341   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5342   }
5343
5344   if (!Valid)
5345     return Error(Loc, "invalid operand type for instruction");
5346
5347   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5348   return false;
5349 }
5350
5351 /// ParseLogical
5352 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5353 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5354                             unsigned Opc) {
5355   LocTy Loc; Value *LHS, *RHS;
5356   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5357       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5358       ParseValue(LHS->getType(), RHS, PFS))
5359     return true;
5360
5361   if (!LHS->getType()->isIntOrIntVectorTy())
5362     return Error(Loc,"instruction requires integer or integer vector operands");
5363
5364   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5365   return false;
5366 }
5367
5368
5369 /// ParseCompare
5370 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5371 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5372 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5373                             unsigned Opc) {
5374   // Parse the integer/fp comparison predicate.
5375   LocTy Loc;
5376   unsigned Pred;
5377   Value *LHS, *RHS;
5378   if (ParseCmpPredicate(Pred, Opc) ||
5379       ParseTypeAndValue(LHS, Loc, PFS) ||
5380       ParseToken(lltok::comma, "expected ',' after compare value") ||
5381       ParseValue(LHS->getType(), RHS, PFS))
5382     return true;
5383
5384   if (Opc == Instruction::FCmp) {
5385     if (!LHS->getType()->isFPOrFPVectorTy())
5386       return Error(Loc, "fcmp requires floating point operands");
5387     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5388   } else {
5389     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5390     if (!LHS->getType()->isIntOrIntVectorTy() &&
5391         !LHS->getType()->getScalarType()->isPointerTy())
5392       return Error(Loc, "icmp requires integer operands");
5393     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5394   }
5395   return false;
5396 }
5397
5398 //===----------------------------------------------------------------------===//
5399 // Other Instructions.
5400 //===----------------------------------------------------------------------===//
5401
5402
5403 /// ParseCast
5404 ///   ::= CastOpc TypeAndValue 'to' Type
5405 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5406                          unsigned Opc) {
5407   LocTy Loc;
5408   Value *Op;
5409   Type *DestTy = nullptr;
5410   if (ParseTypeAndValue(Op, Loc, PFS) ||
5411       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5412       ParseType(DestTy))
5413     return true;
5414
5415   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5416     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5417     return Error(Loc, "invalid cast opcode for cast from '" +
5418                  getTypeString(Op->getType()) + "' to '" +
5419                  getTypeString(DestTy) + "'");
5420   }
5421   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5422   return false;
5423 }
5424
5425 /// ParseSelect
5426 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5427 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5428   LocTy Loc;
5429   Value *Op0, *Op1, *Op2;
5430   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5431       ParseToken(lltok::comma, "expected ',' after select condition") ||
5432       ParseTypeAndValue(Op1, PFS) ||
5433       ParseToken(lltok::comma, "expected ',' after select value") ||
5434       ParseTypeAndValue(Op2, PFS))
5435     return true;
5436
5437   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5438     return Error(Loc, Reason);
5439
5440   Inst = SelectInst::Create(Op0, Op1, Op2);
5441   return false;
5442 }
5443
5444 /// ParseVA_Arg
5445 ///   ::= 'va_arg' TypeAndValue ',' Type
5446 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5447   Value *Op;
5448   Type *EltTy = nullptr;
5449   LocTy TypeLoc;
5450   if (ParseTypeAndValue(Op, PFS) ||
5451       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5452       ParseType(EltTy, TypeLoc))
5453     return true;
5454
5455   if (!EltTy->isFirstClassType())
5456     return Error(TypeLoc, "va_arg requires operand with first class type");
5457
5458   Inst = new VAArgInst(Op, EltTy);
5459   return false;
5460 }
5461
5462 /// ParseExtractElement
5463 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5464 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5465   LocTy Loc;
5466   Value *Op0, *Op1;
5467   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5468       ParseToken(lltok::comma, "expected ',' after extract value") ||
5469       ParseTypeAndValue(Op1, PFS))
5470     return true;
5471
5472   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5473     return Error(Loc, "invalid extractelement operands");
5474
5475   Inst = ExtractElementInst::Create(Op0, Op1);
5476   return false;
5477 }
5478
5479 /// ParseInsertElement
5480 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5481 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5482   LocTy Loc;
5483   Value *Op0, *Op1, *Op2;
5484   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5485       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5486       ParseTypeAndValue(Op1, PFS) ||
5487       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5488       ParseTypeAndValue(Op2, PFS))
5489     return true;
5490
5491   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5492     return Error(Loc, "invalid insertelement operands");
5493
5494   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5495   return false;
5496 }
5497
5498 /// ParseShuffleVector
5499 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5500 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5501   LocTy Loc;
5502   Value *Op0, *Op1, *Op2;
5503   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5504       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5505       ParseTypeAndValue(Op1, PFS) ||
5506       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5507       ParseTypeAndValue(Op2, PFS))
5508     return true;
5509
5510   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5511     return Error(Loc, "invalid shufflevector operands");
5512
5513   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5514   return false;
5515 }
5516
5517 /// ParsePHI
5518 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5519 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5520   Type *Ty = nullptr;  LocTy TypeLoc;
5521   Value *Op0, *Op1;
5522
5523   if (ParseType(Ty, TypeLoc) ||
5524       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5525       ParseValue(Ty, Op0, PFS) ||
5526       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5527       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5528       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5529     return true;
5530
5531   bool AteExtraComma = false;
5532   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5533   while (1) {
5534     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5535
5536     if (!EatIfPresent(lltok::comma))
5537       break;
5538
5539     if (Lex.getKind() == lltok::MetadataVar) {
5540       AteExtraComma = true;
5541       break;
5542     }
5543
5544     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5545         ParseValue(Ty, Op0, PFS) ||
5546         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5547         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5548         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5549       return true;
5550   }
5551
5552   if (!Ty->isFirstClassType())
5553     return Error(TypeLoc, "phi node must have first class type");
5554
5555   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5556   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5557     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5558   Inst = PN;
5559   return AteExtraComma ? InstExtraComma : InstNormal;
5560 }
5561
5562 /// ParseLandingPad
5563 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5564 /// Clause
5565 ///   ::= 'catch' TypeAndValue
5566 ///   ::= 'filter'
5567 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5568 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5569   Type *Ty = nullptr; LocTy TyLoc;
5570
5571   if (ParseType(Ty, TyLoc))
5572     return true;
5573
5574   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5575   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5576
5577   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5578     LandingPadInst::ClauseType CT;
5579     if (EatIfPresent(lltok::kw_catch))
5580       CT = LandingPadInst::Catch;
5581     else if (EatIfPresent(lltok::kw_filter))
5582       CT = LandingPadInst::Filter;
5583     else
5584       return TokError("expected 'catch' or 'filter' clause type");
5585
5586     Value *V;
5587     LocTy VLoc;
5588     if (ParseTypeAndValue(V, VLoc, PFS))
5589       return true;
5590
5591     // A 'catch' type expects a non-array constant. A filter clause expects an
5592     // array constant.
5593     if (CT == LandingPadInst::Catch) {
5594       if (isa<ArrayType>(V->getType()))
5595         Error(VLoc, "'catch' clause has an invalid type");
5596     } else {
5597       if (!isa<ArrayType>(V->getType()))
5598         Error(VLoc, "'filter' clause has an invalid type");
5599     }
5600
5601     Constant *CV = dyn_cast<Constant>(V);
5602     if (!CV)
5603       return Error(VLoc, "clause argument must be a constant");
5604     LP->addClause(CV);
5605   }
5606
5607   Inst = LP.release();
5608   return false;
5609 }
5610
5611 /// ParseCall
5612 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5613 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5614 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5615 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5616 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5617 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5618 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5619 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5620 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5621                          CallInst::TailCallKind TCK) {
5622   AttrBuilder RetAttrs, FnAttrs;
5623   std::vector<unsigned> FwdRefAttrGrps;
5624   LocTy BuiltinLoc;
5625   unsigned CC;
5626   Type *RetType = nullptr;
5627   LocTy RetTypeLoc;
5628   ValID CalleeID;
5629   SmallVector<ParamInfo, 16> ArgList;
5630   SmallVector<OperandBundleDef, 2> BundleList;
5631   LocTy CallLoc = Lex.getLoc();
5632
5633   if (TCK != CallInst::TCK_None &&
5634       ParseToken(lltok::kw_call,
5635                  "expected 'tail call', 'musttail call', or 'notail call'"))
5636     return true;
5637
5638   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5639
5640   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5641       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5642       ParseValID(CalleeID) ||
5643       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5644                          PFS.getFunction().isVarArg()) ||
5645       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5646       ParseOptionalOperandBundles(BundleList, PFS))
5647     return true;
5648
5649   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5650     return Error(CallLoc, "fast-math-flags specified for call without "
5651                           "floating-point scalar or vector return type");
5652
5653   // If RetType is a non-function pointer type, then this is the short syntax
5654   // for the call, which means that RetType is just the return type.  Infer the
5655   // rest of the function argument types from the arguments that are present.
5656   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5657   if (!Ty) {
5658     // Pull out the types of all of the arguments...
5659     std::vector<Type*> ParamTypes;
5660     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5661       ParamTypes.push_back(ArgList[i].V->getType());
5662
5663     if (!FunctionType::isValidReturnType(RetType))
5664       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5665
5666     Ty = FunctionType::get(RetType, ParamTypes, false);
5667   }
5668
5669   CalleeID.FTy = Ty;
5670
5671   // Look up the callee.
5672   Value *Callee;
5673   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5674     return true;
5675
5676   // Set up the Attribute for the function.
5677   SmallVector<AttributeSet, 8> Attrs;
5678   if (RetAttrs.hasAttributes())
5679     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5680                                       AttributeSet::ReturnIndex,
5681                                       RetAttrs));
5682
5683   SmallVector<Value*, 8> Args;
5684
5685   // Loop through FunctionType's arguments and ensure they are specified
5686   // correctly.  Also, gather any parameter attributes.
5687   FunctionType::param_iterator I = Ty->param_begin();
5688   FunctionType::param_iterator E = Ty->param_end();
5689   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5690     Type *ExpectedTy = nullptr;
5691     if (I != E) {
5692       ExpectedTy = *I++;
5693     } else if (!Ty->isVarArg()) {
5694       return Error(ArgList[i].Loc, "too many arguments specified");
5695     }
5696
5697     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5698       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5699                    getTypeString(ExpectedTy) + "'");
5700     Args.push_back(ArgList[i].V);
5701     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5702       AttrBuilder B(ArgList[i].Attrs, i + 1);
5703       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5704     }
5705   }
5706
5707   if (I != E)
5708     return Error(CallLoc, "not enough parameters specified for call");
5709
5710   if (FnAttrs.hasAttributes()) {
5711     if (FnAttrs.hasAlignmentAttr())
5712       return Error(CallLoc, "call instructions may not have an alignment");
5713
5714     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5715                                       AttributeSet::FunctionIndex,
5716                                       FnAttrs));
5717   }
5718
5719   // Finish off the Attribute and check them
5720   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5721
5722   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5723   CI->setTailCallKind(TCK);
5724   CI->setCallingConv(CC);
5725   if (FMF.any())
5726     CI->setFastMathFlags(FMF);
5727   CI->setAttributes(PAL);
5728   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5729   Inst = CI;
5730   return false;
5731 }
5732
5733 //===----------------------------------------------------------------------===//
5734 // Memory Instructions.
5735 //===----------------------------------------------------------------------===//
5736
5737 /// ParseAlloc
5738 ///   ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
5739 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5740   Value *Size = nullptr;
5741   LocTy SizeLoc, TyLoc;
5742   unsigned Alignment = 0;
5743   Type *Ty = nullptr;
5744
5745   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5746
5747   if (ParseType(Ty, TyLoc)) return true;
5748
5749   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5750     return Error(TyLoc, "invalid type for alloca");
5751
5752   bool AteExtraComma = false;
5753   if (EatIfPresent(lltok::comma)) {
5754     if (Lex.getKind() == lltok::kw_align) {
5755       if (ParseOptionalAlignment(Alignment)) return true;
5756     } else if (Lex.getKind() == lltok::MetadataVar) {
5757       AteExtraComma = true;
5758     } else {
5759       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5760           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5761         return true;
5762     }
5763   }
5764
5765   if (Size && !Size->getType()->isIntegerTy())
5766     return Error(SizeLoc, "element count must have integer type");
5767
5768   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5769   AI->setUsedWithInAlloca(IsInAlloca);
5770   Inst = AI;
5771   return AteExtraComma ? InstExtraComma : InstNormal;
5772 }
5773
5774 /// ParseLoad
5775 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5776 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5777 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5778 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5779   Value *Val; LocTy Loc;
5780   unsigned Alignment = 0;
5781   bool AteExtraComma = false;
5782   bool isAtomic = false;
5783   AtomicOrdering Ordering = NotAtomic;
5784   SynchronizationScope Scope = CrossThread;
5785
5786   if (Lex.getKind() == lltok::kw_atomic) {
5787     isAtomic = true;
5788     Lex.Lex();
5789   }
5790
5791   bool isVolatile = false;
5792   if (Lex.getKind() == lltok::kw_volatile) {
5793     isVolatile = true;
5794     Lex.Lex();
5795   }
5796
5797   Type *Ty;
5798   LocTy ExplicitTypeLoc = Lex.getLoc();
5799   if (ParseType(Ty) ||
5800       ParseToken(lltok::comma, "expected comma after load's type") ||
5801       ParseTypeAndValue(Val, Loc, PFS) ||
5802       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5803       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5804     return true;
5805
5806   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5807     return Error(Loc, "load operand must be a pointer to a first class type");
5808   if (isAtomic && !Alignment)
5809     return Error(Loc, "atomic load must have explicit non-zero alignment");
5810   if (Ordering == Release || Ordering == AcquireRelease)
5811     return Error(Loc, "atomic load cannot use Release ordering");
5812
5813   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5814     return Error(ExplicitTypeLoc,
5815                  "explicit pointee type doesn't match operand's pointee type");
5816
5817   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5818   return AteExtraComma ? InstExtraComma : InstNormal;
5819 }
5820
5821 /// ParseStore
5822
5823 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5824 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5825 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5826 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5827   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5828   unsigned Alignment = 0;
5829   bool AteExtraComma = false;
5830   bool isAtomic = false;
5831   AtomicOrdering Ordering = NotAtomic;
5832   SynchronizationScope Scope = CrossThread;
5833
5834   if (Lex.getKind() == lltok::kw_atomic) {
5835     isAtomic = true;
5836     Lex.Lex();
5837   }
5838
5839   bool isVolatile = false;
5840   if (Lex.getKind() == lltok::kw_volatile) {
5841     isVolatile = true;
5842     Lex.Lex();
5843   }
5844
5845   if (ParseTypeAndValue(Val, Loc, PFS) ||
5846       ParseToken(lltok::comma, "expected ',' after store operand") ||
5847       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5848       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5849       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5850     return true;
5851
5852   if (!Ptr->getType()->isPointerTy())
5853     return Error(PtrLoc, "store operand must be a pointer");
5854   if (!Val->getType()->isFirstClassType())
5855     return Error(Loc, "store operand must be a first class value");
5856   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5857     return Error(Loc, "stored value and pointer type do not match");
5858   if (isAtomic && !Alignment)
5859     return Error(Loc, "atomic store must have explicit non-zero alignment");
5860   if (Ordering == Acquire || Ordering == AcquireRelease)
5861     return Error(Loc, "atomic store cannot use Acquire ordering");
5862
5863   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5864   return AteExtraComma ? InstExtraComma : InstNormal;
5865 }
5866
5867 /// ParseCmpXchg
5868 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5869 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
5870 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5871   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5872   bool AteExtraComma = false;
5873   AtomicOrdering SuccessOrdering = NotAtomic;
5874   AtomicOrdering FailureOrdering = NotAtomic;
5875   SynchronizationScope Scope = CrossThread;
5876   bool isVolatile = false;
5877   bool isWeak = false;
5878
5879   if (EatIfPresent(lltok::kw_weak))
5880     isWeak = true;
5881
5882   if (EatIfPresent(lltok::kw_volatile))
5883     isVolatile = true;
5884
5885   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5886       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5887       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5888       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5889       ParseTypeAndValue(New, NewLoc, PFS) ||
5890       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5891       ParseOrdering(FailureOrdering))
5892     return true;
5893
5894   if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5895     return TokError("cmpxchg cannot be unordered");
5896   if (SuccessOrdering < FailureOrdering)
5897     return TokError("cmpxchg must be at least as ordered on success as failure");
5898   if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5899     return TokError("cmpxchg failure ordering cannot include release semantics");
5900   if (!Ptr->getType()->isPointerTy())
5901     return Error(PtrLoc, "cmpxchg operand must be a pointer");
5902   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5903     return Error(CmpLoc, "compare value and pointer type do not match");
5904   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5905     return Error(NewLoc, "new value and pointer type do not match");
5906   if (!New->getType()->isIntegerTy())
5907     return Error(NewLoc, "cmpxchg operand must be an integer");
5908   unsigned Size = New->getType()->getPrimitiveSizeInBits();
5909   if (Size < 8 || (Size & (Size - 1)))
5910     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
5911                          " integer");
5912
5913   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5914       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5915   CXI->setVolatile(isVolatile);
5916   CXI->setWeak(isWeak);
5917   Inst = CXI;
5918   return AteExtraComma ? InstExtraComma : InstNormal;
5919 }
5920
5921 /// ParseAtomicRMW
5922 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5923 ///       'singlethread'? AtomicOrdering
5924 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5925   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5926   bool AteExtraComma = false;
5927   AtomicOrdering Ordering = NotAtomic;
5928   SynchronizationScope Scope = CrossThread;
5929   bool isVolatile = false;
5930   AtomicRMWInst::BinOp Operation;
5931
5932   if (EatIfPresent(lltok::kw_volatile))
5933     isVolatile = true;
5934
5935   switch (Lex.getKind()) {
5936   default: return TokError("expected binary operation in atomicrmw");
5937   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5938   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5939   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5940   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5941   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5942   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5943   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5944   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5945   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5946   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5947   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5948   }
5949   Lex.Lex();  // Eat the operation.
5950
5951   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5952       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5953       ParseTypeAndValue(Val, ValLoc, PFS) ||
5954       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5955     return true;
5956
5957   if (Ordering == Unordered)
5958     return TokError("atomicrmw cannot be unordered");
5959   if (!Ptr->getType()->isPointerTy())
5960     return Error(PtrLoc, "atomicrmw operand must be a pointer");
5961   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5962     return Error(ValLoc, "atomicrmw value and pointer type do not match");
5963   if (!Val->getType()->isIntegerTy())
5964     return Error(ValLoc, "atomicrmw operand must be an integer");
5965   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5966   if (Size < 8 || (Size & (Size - 1)))
5967     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5968                          " integer");
5969
5970   AtomicRMWInst *RMWI =
5971     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5972   RMWI->setVolatile(isVolatile);
5973   Inst = RMWI;
5974   return AteExtraComma ? InstExtraComma : InstNormal;
5975 }
5976
5977 /// ParseFence
5978 ///   ::= 'fence' 'singlethread'? AtomicOrdering
5979 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5980   AtomicOrdering Ordering = NotAtomic;
5981   SynchronizationScope Scope = CrossThread;
5982   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5983     return true;
5984
5985   if (Ordering == Unordered)
5986     return TokError("fence cannot be unordered");
5987   if (Ordering == Monotonic)
5988     return TokError("fence cannot be monotonic");
5989
5990   Inst = new FenceInst(Context, Ordering, Scope);
5991   return InstNormal;
5992 }
5993
5994 /// ParseGetElementPtr
5995 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
5996 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
5997   Value *Ptr = nullptr;
5998   Value *Val = nullptr;
5999   LocTy Loc, EltLoc;
6000
6001   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6002
6003   Type *Ty = nullptr;
6004   LocTy ExplicitTypeLoc = Lex.getLoc();
6005   if (ParseType(Ty) ||
6006       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6007       ParseTypeAndValue(Ptr, Loc, PFS))
6008     return true;
6009
6010   Type *BaseType = Ptr->getType();
6011   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6012   if (!BasePointerType)
6013     return Error(Loc, "base of getelementptr must be a pointer");
6014
6015   if (Ty != BasePointerType->getElementType())
6016     return Error(ExplicitTypeLoc,
6017                  "explicit pointee type doesn't match operand's pointee type");
6018
6019   SmallVector<Value*, 16> Indices;
6020   bool AteExtraComma = false;
6021   // GEP returns a vector of pointers if at least one of parameters is a vector.
6022   // All vector parameters should have the same vector width.
6023   unsigned GEPWidth = BaseType->isVectorTy() ?
6024     BaseType->getVectorNumElements() : 0;
6025
6026   while (EatIfPresent(lltok::comma)) {
6027     if (Lex.getKind() == lltok::MetadataVar) {
6028       AteExtraComma = true;
6029       break;
6030     }
6031     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6032     if (!Val->getType()->getScalarType()->isIntegerTy())
6033       return Error(EltLoc, "getelementptr index must be an integer");
6034
6035     if (Val->getType()->isVectorTy()) {
6036       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6037       if (GEPWidth && GEPWidth != ValNumEl)
6038         return Error(EltLoc,
6039           "getelementptr vector index has a wrong number of elements");
6040       GEPWidth = ValNumEl;
6041     }
6042     Indices.push_back(Val);
6043   }
6044
6045   SmallPtrSet<Type*, 4> Visited;
6046   if (!Indices.empty() && !Ty->isSized(&Visited))
6047     return Error(Loc, "base element of getelementptr must be sized");
6048
6049   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6050     return Error(Loc, "invalid getelementptr indices");
6051   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6052   if (InBounds)
6053     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6054   return AteExtraComma ? InstExtraComma : InstNormal;
6055 }
6056
6057 /// ParseExtractValue
6058 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6059 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6060   Value *Val; LocTy Loc;
6061   SmallVector<unsigned, 4> Indices;
6062   bool AteExtraComma;
6063   if (ParseTypeAndValue(Val, Loc, PFS) ||
6064       ParseIndexList(Indices, AteExtraComma))
6065     return true;
6066
6067   if (!Val->getType()->isAggregateType())
6068     return Error(Loc, "extractvalue operand must be aggregate type");
6069
6070   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6071     return Error(Loc, "invalid indices for extractvalue");
6072   Inst = ExtractValueInst::Create(Val, Indices);
6073   return AteExtraComma ? InstExtraComma : InstNormal;
6074 }
6075
6076 /// ParseInsertValue
6077 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6078 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6079   Value *Val0, *Val1; LocTy Loc0, Loc1;
6080   SmallVector<unsigned, 4> Indices;
6081   bool AteExtraComma;
6082   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6083       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6084       ParseTypeAndValue(Val1, Loc1, PFS) ||
6085       ParseIndexList(Indices, AteExtraComma))
6086     return true;
6087
6088   if (!Val0->getType()->isAggregateType())
6089     return Error(Loc0, "insertvalue operand must be aggregate type");
6090
6091   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6092   if (!IndexedType)
6093     return Error(Loc0, "invalid indices for insertvalue");
6094   if (IndexedType != Val1->getType())
6095     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6096                            getTypeString(Val1->getType()) + "' instead of '" +
6097                            getTypeString(IndexedType) + "'");
6098   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6099   return AteExtraComma ? InstExtraComma : InstNormal;
6100 }
6101
6102 //===----------------------------------------------------------------------===//
6103 // Embedded metadata.
6104 //===----------------------------------------------------------------------===//
6105
6106 /// ParseMDNodeVector
6107 ///   ::= { Element (',' Element)* }
6108 /// Element
6109 ///   ::= 'null' | TypeAndValue
6110 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6111   if (ParseToken(lltok::lbrace, "expected '{' here"))
6112     return true;
6113
6114   // Check for an empty list.
6115   if (EatIfPresent(lltok::rbrace))
6116     return false;
6117
6118   do {
6119     // Null is a special case since it is typeless.
6120     if (EatIfPresent(lltok::kw_null)) {
6121       Elts.push_back(nullptr);
6122       continue;
6123     }
6124
6125     Metadata *MD;
6126     if (ParseMetadata(MD, nullptr))
6127       return true;
6128     Elts.push_back(MD);
6129   } while (EatIfPresent(lltok::comma));
6130
6131   return ParseToken(lltok::rbrace, "expected end of metadata node");
6132 }
6133
6134 //===----------------------------------------------------------------------===//
6135 // Use-list order directives.
6136 //===----------------------------------------------------------------------===//
6137 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6138                                 SMLoc Loc) {
6139   if (V->use_empty())
6140     return Error(Loc, "value has no uses");
6141
6142   unsigned NumUses = 0;
6143   SmallDenseMap<const Use *, unsigned, 16> Order;
6144   for (const Use &U : V->uses()) {
6145     if (++NumUses > Indexes.size())
6146       break;
6147     Order[&U] = Indexes[NumUses - 1];
6148   }
6149   if (NumUses < 2)
6150     return Error(Loc, "value only has one use");
6151   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6152     return Error(Loc, "wrong number of indexes, expected " +
6153                           Twine(std::distance(V->use_begin(), V->use_end())));
6154
6155   V->sortUseList([&](const Use &L, const Use &R) {
6156     return Order.lookup(&L) < Order.lookup(&R);
6157   });
6158   return false;
6159 }
6160
6161 /// ParseUseListOrderIndexes
6162 ///   ::= '{' uint32 (',' uint32)+ '}'
6163 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6164   SMLoc Loc = Lex.getLoc();
6165   if (ParseToken(lltok::lbrace, "expected '{' here"))
6166     return true;
6167   if (Lex.getKind() == lltok::rbrace)
6168     return Lex.Error("expected non-empty list of uselistorder indexes");
6169
6170   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6171   // indexes should be distinct numbers in the range [0, size-1], and should
6172   // not be in order.
6173   unsigned Offset = 0;
6174   unsigned Max = 0;
6175   bool IsOrdered = true;
6176   assert(Indexes.empty() && "Expected empty order vector");
6177   do {
6178     unsigned Index;
6179     if (ParseUInt32(Index))
6180       return true;
6181
6182     // Update consistency checks.
6183     Offset += Index - Indexes.size();
6184     Max = std::max(Max, Index);
6185     IsOrdered &= Index == Indexes.size();
6186
6187     Indexes.push_back(Index);
6188   } while (EatIfPresent(lltok::comma));
6189
6190   if (ParseToken(lltok::rbrace, "expected '}' here"))
6191     return true;
6192
6193   if (Indexes.size() < 2)
6194     return Error(Loc, "expected >= 2 uselistorder indexes");
6195   if (Offset != 0 || Max >= Indexes.size())
6196     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6197   if (IsOrdered)
6198     return Error(Loc, "expected uselistorder indexes to change the order");
6199
6200   return false;
6201 }
6202
6203 /// ParseUseListOrder
6204 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6205 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6206   SMLoc Loc = Lex.getLoc();
6207   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6208     return true;
6209
6210   Value *V;
6211   SmallVector<unsigned, 16> Indexes;
6212   if (ParseTypeAndValue(V, PFS) ||
6213       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6214       ParseUseListOrderIndexes(Indexes))
6215     return true;
6216
6217   return sortUseListOrder(V, Indexes, Loc);
6218 }
6219
6220 /// ParseUseListOrderBB
6221 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6222 bool LLParser::ParseUseListOrderBB() {
6223   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6224   SMLoc Loc = Lex.getLoc();
6225   Lex.Lex();
6226
6227   ValID Fn, Label;
6228   SmallVector<unsigned, 16> Indexes;
6229   if (ParseValID(Fn) ||
6230       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6231       ParseValID(Label) ||
6232       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6233       ParseUseListOrderIndexes(Indexes))
6234     return true;
6235
6236   // Check the function.
6237   GlobalValue *GV;
6238   if (Fn.Kind == ValID::t_GlobalName)
6239     GV = M->getNamedValue(Fn.StrVal);
6240   else if (Fn.Kind == ValID::t_GlobalID)
6241     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6242   else
6243     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6244   if (!GV)
6245     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6246   auto *F = dyn_cast<Function>(GV);
6247   if (!F)
6248     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6249   if (F->isDeclaration())
6250     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6251
6252   // Check the basic block.
6253   if (Label.Kind == ValID::t_LocalID)
6254     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6255   if (Label.Kind != ValID::t_LocalName)
6256     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6257   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6258   if (!V)
6259     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6260   if (!isa<BasicBlock>(V))
6261     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6262
6263   return sortUseListOrder(V, Indexes, Loc);
6264 }