Correctly combine alias.scope metadata by a union instead of intersecting
[oota-llvm.git] / lib / Analysis / TypeBasedAliasAnalysis.cpp
1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 //   !0 = metadata !{ metadata !"an example type tree" }
27 //   !1 = metadata !{ metadata !"int", metadata !0 }
28 //   !2 = metadata !{ metadata !"float", metadata !0 }
29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 //   short s;
67 // } A;
68 // typedef struct {
69 //   uint16_t s;
70 //   A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 //                                                           // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 //         Root (!0)
87 //         char (!1)  -- edge to Root
88 //         short (!2) -- edge to char
89 //         A (!3) -- edge with offset 0 to short
90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 //   struct X {
110 //     double d;
111 //     int i;
112 //   };
113 //   void foo(struct X *x, struct X *y, double *p) {
114 //     *x = *y;
115 //     *p = 0.0;
116 //   }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123
124 #include "llvm/Analysis/Passes.h"
125 #include "llvm/Analysis/AliasAnalysis.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Metadata.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Pass.h"
131 #include "llvm/Support/CommandLine.h"
132 using namespace llvm;
133
134 // A handy option for disabling TBAA functionality. The same effect can also be
135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
136 // more convenient.
137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
138
139 namespace {
140   /// TBAANode - This is a simple wrapper around an MDNode which provides a
141   /// higher-level interface by hiding the details of how alias analysis
142   /// information is encoded in its operands.
143   class TBAANode {
144     const MDNode *Node;
145
146   public:
147     TBAANode() : Node(nullptr) {}
148     explicit TBAANode(const MDNode *N) : Node(N) {}
149
150     /// getNode - Get the MDNode for this TBAANode.
151     const MDNode *getNode() const { return Node; }
152
153     /// getParent - Get this TBAANode's Alias tree parent.
154     TBAANode getParent() const {
155       if (Node->getNumOperands() < 2)
156         return TBAANode();
157       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
158       if (!P)
159         return TBAANode();
160       // Ok, this node has a valid parent. Return it.
161       return TBAANode(P);
162     }
163
164     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
165     /// which are not modified (by any means) in the context where this
166     /// AliasAnalysis is relevant.
167     bool TypeIsImmutable() const {
168       if (Node->getNumOperands() < 3)
169         return false;
170       ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
171       if (!CI)
172         return false;
173       return CI->getValue()[0];
174     }
175   };
176
177   /// This is a simple wrapper around an MDNode which provides a
178   /// higher-level interface by hiding the details of how alias analysis
179   /// information is encoded in its operands.
180   class TBAAStructTagNode {
181     /// This node should be created with createTBAAStructTagNode.
182     const MDNode *Node;
183
184   public:
185     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
186
187     /// Get the MDNode for this TBAAStructTagNode.
188     const MDNode *getNode() const { return Node; }
189
190     const MDNode *getBaseType() const {
191       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
192     }
193     const MDNode *getAccessType() const {
194       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
195     }
196     uint64_t getOffset() const {
197       return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
198     }
199     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
200     /// objects which are not modified (by any means) in the context where this
201     /// AliasAnalysis is relevant.
202     bool TypeIsImmutable() const {
203       if (Node->getNumOperands() < 4)
204         return false;
205       ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
206       if (!CI)
207         return false;
208       return CI->getValue()[0];
209     }
210   };
211
212   /// This is a simple wrapper around an MDNode which provides a
213   /// higher-level interface by hiding the details of how alias analysis
214   /// information is encoded in its operands.
215   class TBAAStructTypeNode {
216     /// This node should be created with createTBAAStructTypeNode.
217     const MDNode *Node;
218
219   public:
220     TBAAStructTypeNode() : Node(nullptr) {}
221     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
222
223     /// Get the MDNode for this TBAAStructTypeNode.
224     const MDNode *getNode() const { return Node; }
225
226     /// Get this TBAAStructTypeNode's field in the type DAG with
227     /// given offset. Update the offset to be relative to the field type.
228     TBAAStructTypeNode getParent(uint64_t &Offset) const {
229       // Parent can be omitted for the root node.
230       if (Node->getNumOperands() < 2)
231         return TBAAStructTypeNode();
232
233       // Fast path for a scalar type node and a struct type node with a single
234       // field.
235       if (Node->getNumOperands() <= 3) {
236         uint64_t Cur = Node->getNumOperands() == 2
237                            ? 0
238                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
239                                  ->getZExtValue();
240         Offset -= Cur;
241         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
242         if (!P)
243           return TBAAStructTypeNode();
244         return TBAAStructTypeNode(P);
245       }
246
247       // Assume the offsets are in order. We return the previous field if
248       // the current offset is bigger than the given offset.
249       unsigned TheIdx = 0;
250       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
251         uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
252                            ->getZExtValue();
253         if (Cur > Offset) {
254           assert(Idx >= 3 &&
255                  "TBAAStructTypeNode::getParent should have an offset match!");
256           TheIdx = Idx - 2;
257           break;
258         }
259       }
260       // Move along the last field.
261       if (TheIdx == 0)
262         TheIdx = Node->getNumOperands() - 2;
263       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
264                          ->getZExtValue();
265       Offset -= Cur;
266       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
267       if (!P)
268         return TBAAStructTypeNode();
269       return TBAAStructTypeNode(P);
270     }
271   };
272 }
273
274 namespace {
275   /// TypeBasedAliasAnalysis - This is a simple alias analysis
276   /// implementation that uses TypeBased to answer queries.
277   class TypeBasedAliasAnalysis : public ImmutablePass,
278                                  public AliasAnalysis {
279   public:
280     static char ID; // Class identification, replacement for typeinfo
281     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
282       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
283     }
284
285     void initializePass() override {
286       InitializeAliasAnalysis(this);
287     }
288
289     /// getAdjustedAnalysisPointer - This method is used when a pass implements
290     /// an analysis interface through multiple inheritance.  If needed, it
291     /// should override this to adjust the this pointer as needed for the
292     /// specified pass info.
293     void *getAdjustedAnalysisPointer(const void *PI) override {
294       if (PI == &AliasAnalysis::ID)
295         return (AliasAnalysis*)this;
296       return this;
297     }
298
299     bool Aliases(const MDNode *A, const MDNode *B) const;
300     bool PathAliases(const MDNode *A, const MDNode *B) const;
301
302   private:
303     void getAnalysisUsage(AnalysisUsage &AU) const override;
304     AliasResult alias(const Location &LocA, const Location &LocB) override;
305     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
306     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
307     ModRefBehavior getModRefBehavior(const Function *F) override;
308     ModRefResult getModRefInfo(ImmutableCallSite CS,
309                                const Location &Loc) override;
310     ModRefResult getModRefInfo(ImmutableCallSite CS1,
311                                ImmutableCallSite CS2) override;
312   };
313 }  // End of anonymous namespace
314
315 // Register this pass...
316 char TypeBasedAliasAnalysis::ID = 0;
317 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
318                    "Type-Based Alias Analysis", false, true, false)
319
320 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
321   return new TypeBasedAliasAnalysis();
322 }
323
324 void
325 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
326   AU.setPreservesAll();
327   AliasAnalysis::getAnalysisUsage(AU);
328 }
329
330 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
331 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
332 /// format.
333 static bool isStructPathTBAA(const MDNode *MD) {
334   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
335   // a TBAA tag.
336   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
337 }
338
339 /// Aliases - Test whether the type represented by A may alias the
340 /// type represented by B.
341 bool
342 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
343                                 const MDNode *B) const {
344   // Make sure that both MDNodes are struct-path aware.
345   if (isStructPathTBAA(A) && isStructPathTBAA(B))
346     return PathAliases(A, B);
347
348   // Keep track of the root node for A and B.
349   TBAANode RootA, RootB;
350
351   // Climb the tree from A to see if we reach B.
352   for (TBAANode T(A); ; ) {
353     if (T.getNode() == B)
354       // B is an ancestor of A.
355       return true;
356
357     RootA = T;
358     T = T.getParent();
359     if (!T.getNode())
360       break;
361   }
362
363   // Climb the tree from B to see if we reach A.
364   for (TBAANode T(B); ; ) {
365     if (T.getNode() == A)
366       // A is an ancestor of B.
367       return true;
368
369     RootB = T;
370     T = T.getParent();
371     if (!T.getNode())
372       break;
373   }
374
375   // Neither node is an ancestor of the other.
376   
377   // If they have different roots, they're part of different potentially
378   // unrelated type systems, so we must be conservative.
379   if (RootA.getNode() != RootB.getNode())
380     return true;
381
382   // If they have the same root, then we've proved there's no alias.
383   return false;
384 }
385
386 /// Test whether the struct-path tag represented by A may alias the
387 /// struct-path tag represented by B.
388 bool
389 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
390                                     const MDNode *B) const {
391   // Verify that both input nodes are struct-path aware.
392   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
393   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
394
395   // Keep track of the root node for A and B.
396   TBAAStructTypeNode RootA, RootB;
397   TBAAStructTagNode TagA(A), TagB(B);
398
399   // TODO: We need to check if AccessType of TagA encloses AccessType of
400   // TagB to support aggregate AccessType. If yes, return true.
401
402   // Start from the base type of A, follow the edge with the correct offset in
403   // the type DAG and adjust the offset until we reach the base type of B or
404   // until we reach the Root node.
405   // Compare the adjusted offset once we have the same base.
406
407   // Climb the type DAG from base type of A to see if we reach base type of B.
408   const MDNode *BaseA = TagA.getBaseType();
409   const MDNode *BaseB = TagB.getBaseType();
410   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
411   for (TBAAStructTypeNode T(BaseA); ; ) {
412     if (T.getNode() == BaseB)
413       // Base type of A encloses base type of B, check if the offsets match.
414       return OffsetA == OffsetB;
415
416     RootA = T;
417     // Follow the edge with the correct offset, OffsetA will be adjusted to
418     // be relative to the field type.
419     T = T.getParent(OffsetA);
420     if (!T.getNode())
421       break;
422   }
423
424   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
425   // base type of A.
426   OffsetA = TagA.getOffset();
427   for (TBAAStructTypeNode T(BaseB); ; ) {
428     if (T.getNode() == BaseA)
429       // Base type of B encloses base type of A, check if the offsets match.
430       return OffsetA == OffsetB;
431
432     RootB = T;
433     // Follow the edge with the correct offset, OffsetB will be adjusted to
434     // be relative to the field type.
435     T = T.getParent(OffsetB);
436     if (!T.getNode())
437       break;
438   }
439
440   // Neither node is an ancestor of the other.
441
442   // If they have different roots, they're part of different potentially
443   // unrelated type systems, so we must be conservative.
444   if (RootA.getNode() != RootB.getNode())
445     return true;
446
447   // If they have the same root, then we've proved there's no alias.
448   return false;
449 }
450
451 AliasAnalysis::AliasResult
452 TypeBasedAliasAnalysis::alias(const Location &LocA,
453                               const Location &LocB) {
454   if (!EnableTBAA)
455     return AliasAnalysis::alias(LocA, LocB);
456
457   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
458   // be conservative.
459   const MDNode *AM = LocA.AATags.TBAA;
460   if (!AM) return AliasAnalysis::alias(LocA, LocB);
461   const MDNode *BM = LocB.AATags.TBAA;
462   if (!BM) return AliasAnalysis::alias(LocA, LocB);
463
464   // If they may alias, chain to the next AliasAnalysis.
465   if (Aliases(AM, BM))
466     return AliasAnalysis::alias(LocA, LocB);
467
468   // Otherwise return a definitive result.
469   return NoAlias;
470 }
471
472 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
473                                                     bool OrLocal) {
474   if (!EnableTBAA)
475     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
476
477   const MDNode *M = Loc.AATags.TBAA;
478   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
479
480   // If this is an "immutable" type, we can assume the pointer is pointing
481   // to constant memory.
482   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
483       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
484     return true;
485
486   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
487 }
488
489 AliasAnalysis::ModRefBehavior
490 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
491   if (!EnableTBAA)
492     return AliasAnalysis::getModRefBehavior(CS);
493
494   ModRefBehavior Min = UnknownModRefBehavior;
495
496   // If this is an "immutable" type, we can assume the call doesn't write
497   // to memory.
498   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
499     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
500         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
501       Min = OnlyReadsMemory;
502
503   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
504 }
505
506 AliasAnalysis::ModRefBehavior
507 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
508   // Functions don't have metadata. Just chain to the next implementation.
509   return AliasAnalysis::getModRefBehavior(F);
510 }
511
512 AliasAnalysis::ModRefResult
513 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
514                                       const Location &Loc) {
515   if (!EnableTBAA)
516     return AliasAnalysis::getModRefInfo(CS, Loc);
517
518   if (const MDNode *L = Loc.AATags.TBAA)
519     if (const MDNode *M =
520             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
521       if (!Aliases(L, M))
522         return NoModRef;
523
524   return AliasAnalysis::getModRefInfo(CS, Loc);
525 }
526
527 AliasAnalysis::ModRefResult
528 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
529                                       ImmutableCallSite CS2) {
530   if (!EnableTBAA)
531     return AliasAnalysis::getModRefInfo(CS1, CS2);
532
533   if (const MDNode *M1 =
534           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
535     if (const MDNode *M2 =
536             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
537       if (!Aliases(M1, M2))
538         return NoModRef;
539
540   return AliasAnalysis::getModRefInfo(CS1, CS2);
541 }
542
543 bool MDNode::isTBAAVtableAccess() const {
544   if (!isStructPathTBAA(this)) {
545     if (getNumOperands() < 1) return false;
546     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
547       if (Tag1->getString() == "vtable pointer") return true;
548     }
549     return false;
550   }
551
552   // For struct-path aware TBAA, we use the access type of the tag.
553   if (getNumOperands() < 2) return false;
554   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
555   if (!Tag) return false;
556   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
557     if (Tag1->getString() == "vtable pointer") return true;
558   }
559   return false;  
560 }
561
562 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
563   if (!A || !B)
564     return nullptr;
565
566   if (A == B)
567     return A;
568
569   // For struct-path aware TBAA, we use the access type of the tag.
570   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
571   if (StructPath) {
572     A = cast_or_null<MDNode>(A->getOperand(1));
573     if (!A) return nullptr;
574     B = cast_or_null<MDNode>(B->getOperand(1));
575     if (!B) return nullptr;
576   }
577
578   SmallVector<MDNode *, 4> PathA;
579   MDNode *T = A;
580   while (T) {
581     PathA.push_back(T);
582     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
583                                  : nullptr;
584   }
585
586   SmallVector<MDNode *, 4> PathB;
587   T = B;
588   while (T) {
589     PathB.push_back(T);
590     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
591                                  : nullptr;
592   }
593
594   int IA = PathA.size() - 1;
595   int IB = PathB.size() - 1;
596
597   MDNode *Ret = nullptr;
598   while (IA >= 0 && IB >=0) {
599     if (PathA[IA] == PathB[IB])
600       Ret = PathA[IA];
601     else
602       break;
603     --IA;
604     --IB;
605   }
606   if (!StructPath)
607     return Ret;
608
609   if (!Ret)
610     return nullptr;
611   // We need to convert from a type node to a tag node.
612   Type *Int64 = IntegerType::get(A->getContext(), 64);
613   Metadata *Ops[3] = {Ret, Ret,
614                       ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
615   return MDNode::get(A->getContext(), Ops);
616 }
617
618 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
619   if (Merge)
620     N.TBAA =
621         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
622   else
623     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
624
625   if (Merge)
626     N.Scope = MDNode::getMostGenericAliasScope(
627         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
628   else
629     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
630
631   if (Merge)
632     N.NoAlias =
633         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
634   else
635     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
636 }
637