Revert 179071 because it is not the right way to support non standard new/new[] opera...
[oota-llvm.git] / lib / Analysis / MemoryBuiltins.cpp
1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "memory-builtins"
16 #include "llvm/Analysis/MemoryBuiltins.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace llvm;
32
33 enum AllocType {
34   MallocLike         = 1<<0, // allocates
35   CallocLike         = 1<<1, // allocates + bzero
36   ReallocLike        = 1<<2, // reallocates
37   StrDupLike         = 1<<3,
38   AllocLike          = MallocLike | CallocLike | StrDupLike,
39   AnyAlloc           = MallocLike | CallocLike | ReallocLike | StrDupLike
40 };
41
42 struct AllocFnsTy {
43   LibFunc::Func Func;
44   AllocType AllocTy;
45   unsigned char NumParams;
46   // First and Second size parameters (or -1 if unused)
47   signed char FstParam, SndParam;
48 };
49
50 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
51 // know which functions are nounwind, noalias, nocapture parameters, etc.
52 static const AllocFnsTy AllocationFnData[] = {
53   {LibFunc::malloc,              MallocLike,  1, 0,  -1},
54   {LibFunc::valloc,              MallocLike,  1, 0,  -1},
55   {LibFunc::Znwj,                MallocLike,  1, 0,  -1}, // new(unsigned int)
56   {LibFunc::ZnwjRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new(unsigned int, nothrow)
57   {LibFunc::Znwm,                MallocLike,  1, 0,  -1}, // new(unsigned long)
58   {LibFunc::ZnwmRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new(unsigned long, nothrow)
59   {LibFunc::Znaj,                MallocLike,  1, 0,  -1}, // new[](unsigned int)
60   {LibFunc::ZnajRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new[](unsigned int, nothrow)
61   {LibFunc::Znam,                MallocLike,  1, 0,  -1}, // new[](unsigned long)
62   {LibFunc::ZnamRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new[](unsigned long, nothrow)
63   {LibFunc::posix_memalign,      MallocLike,  3, 2,  -1},
64   {LibFunc::calloc,              CallocLike,  2, 0,   1},
65   {LibFunc::realloc,             ReallocLike, 2, 1,  -1},
66   {LibFunc::reallocf,            ReallocLike, 2, 1,  -1},
67   {LibFunc::strdup,              StrDupLike,  1, -1, -1},
68   {LibFunc::strndup,             StrDupLike,  2, 1,  -1}
69 };
70
71
72 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
73   if (LookThroughBitCast)
74     V = V->stripPointerCasts();
75
76   CallSite CS(const_cast<Value*>(V));
77   if (!CS.getInstruction())
78     return 0;
79
80   Function *Callee = CS.getCalledFunction();
81   if (!Callee || !Callee->isDeclaration())
82     return 0;
83   return Callee;
84 }
85
86 /// \brief Returns the allocation data for the given value if it is a call to a
87 /// known allocation function, and NULL otherwise.
88 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
89                                            const TargetLibraryInfo *TLI,
90                                            bool LookThroughBitCast = false) {
91   // Skip intrinsics
92   if (isa<IntrinsicInst>(V))
93     return 0;
94
95   Function *Callee = getCalledFunction(V, LookThroughBitCast);
96   if (!Callee)
97     return 0;
98
99   // Make sure that the function is available.
100   StringRef FnName = Callee->getName();
101   LibFunc::Func TLIFn;
102   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
103     return 0;
104
105   unsigned i = 0;
106   bool found = false;
107   for ( ; i < array_lengthof(AllocationFnData); ++i) {
108     if (AllocationFnData[i].Func == TLIFn) {
109       found = true;
110       break;
111     }
112   }
113   if (!found)
114     return 0;
115
116   const AllocFnsTy *FnData = &AllocationFnData[i];
117   if ((FnData->AllocTy & AllocTy) == 0)
118     return 0;
119
120   // Check function prototype.
121   int FstParam = FnData->FstParam;
122   int SndParam = FnData->SndParam;
123   FunctionType *FTy = Callee->getFunctionType();
124
125   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
126       FTy->getNumParams() == FnData->NumParams &&
127       (FstParam < 0 ||
128        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
129         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
130       (SndParam < 0 ||
131        FTy->getParamType(SndParam)->isIntegerTy(32) ||
132        FTy->getParamType(SndParam)->isIntegerTy(64)))
133     return FnData;
134   return 0;
135 }
136
137 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
138   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
139   return CS && CS.hasFnAttr(Attribute::NoAlias);
140 }
141
142
143 /// \brief Tests if a value is a call or invoke to a library function that
144 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
145 /// like).
146 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
147                           bool LookThroughBitCast) {
148   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
149 }
150
151 /// \brief Tests if a value is a call or invoke to a function that returns a
152 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
153 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
154                        bool LookThroughBitCast) {
155   // it's safe to consider realloc as noalias since accessing the original
156   // pointer is undefined behavior
157   return isAllocationFn(V, TLI, LookThroughBitCast) ||
158          hasNoAliasAttr(V, LookThroughBitCast);
159 }
160
161 /// \brief Tests if a value is a call or invoke to a library function that
162 /// allocates uninitialized memory (such as malloc).
163 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
164                           bool LookThroughBitCast) {
165   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
166 }
167
168 /// \brief Tests if a value is a call or invoke to a library function that
169 /// allocates zero-filled memory (such as calloc).
170 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
171                           bool LookThroughBitCast) {
172   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
173 }
174
175 /// \brief Tests if a value is a call or invoke to a library function that
176 /// allocates memory (either malloc, calloc, or strdup like).
177 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
178                          bool LookThroughBitCast) {
179   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
180 }
181
182 /// \brief Tests if a value is a call or invoke to a library function that
183 /// reallocates memory (such as realloc).
184 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
185                            bool LookThroughBitCast) {
186   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
187 }
188
189 /// extractMallocCall - Returns the corresponding CallInst if the instruction
190 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
191 /// ignore InvokeInst here.
192 const CallInst *llvm::extractMallocCall(const Value *I,
193                                         const TargetLibraryInfo *TLI) {
194   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : 0;
195 }
196
197 static Value *computeArraySize(const CallInst *CI, const DataLayout *TD,
198                                const TargetLibraryInfo *TLI,
199                                bool LookThroughSExt = false) {
200   if (!CI)
201     return 0;
202
203   // The size of the malloc's result type must be known to determine array size.
204   Type *T = getMallocAllocatedType(CI, TLI);
205   if (!T || !T->isSized() || !TD)
206     return 0;
207
208   unsigned ElementSize = TD->getTypeAllocSize(T);
209   if (StructType *ST = dyn_cast<StructType>(T))
210     ElementSize = TD->getStructLayout(ST)->getSizeInBytes();
211
212   // If malloc call's arg can be determined to be a multiple of ElementSize,
213   // return the multiple.  Otherwise, return NULL.
214   Value *MallocArg = CI->getArgOperand(0);
215   Value *Multiple = 0;
216   if (ComputeMultiple(MallocArg, ElementSize, Multiple,
217                       LookThroughSExt))
218     return Multiple;
219
220   return 0;
221 }
222
223 /// isArrayMalloc - Returns the corresponding CallInst if the instruction
224 /// is a call to malloc whose array size can be determined and the array size
225 /// is not constant 1.  Otherwise, return NULL.
226 const CallInst *llvm::isArrayMalloc(const Value *I,
227                                     const DataLayout *TD,
228                                     const TargetLibraryInfo *TLI) {
229   const CallInst *CI = extractMallocCall(I, TLI);
230   Value *ArraySize = computeArraySize(CI, TD, TLI);
231
232   if (ConstantInt *ConstSize = dyn_cast_or_null<ConstantInt>(ArraySize))
233     if (ConstSize->isOne())
234       return CI;
235
236   // CI is a non-array malloc or we can't figure out that it is an array malloc.
237   return 0;
238 }
239
240 /// getMallocType - Returns the PointerType resulting from the malloc call.
241 /// The PointerType depends on the number of bitcast uses of the malloc call:
242 ///   0: PointerType is the calls' return type.
243 ///   1: PointerType is the bitcast's result type.
244 ///  >1: Unique PointerType cannot be determined, return NULL.
245 PointerType *llvm::getMallocType(const CallInst *CI,
246                                  const TargetLibraryInfo *TLI) {
247   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
248
249   PointerType *MallocType = 0;
250   unsigned NumOfBitCastUses = 0;
251
252   // Determine if CallInst has a bitcast use.
253   for (Value::const_use_iterator UI = CI->use_begin(), E = CI->use_end();
254        UI != E; )
255     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
256       MallocType = cast<PointerType>(BCI->getDestTy());
257       NumOfBitCastUses++;
258     }
259
260   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
261   if (NumOfBitCastUses == 1)
262     return MallocType;
263
264   // Malloc call was not bitcast, so type is the malloc function's return type.
265   if (NumOfBitCastUses == 0)
266     return cast<PointerType>(CI->getType());
267
268   // Type could not be determined.
269   return 0;
270 }
271
272 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
273 /// The Type depends on the number of bitcast uses of the malloc call:
274 ///   0: PointerType is the malloc calls' return type.
275 ///   1: PointerType is the bitcast's result type.
276 ///  >1: Unique PointerType cannot be determined, return NULL.
277 Type *llvm::getMallocAllocatedType(const CallInst *CI,
278                                    const TargetLibraryInfo *TLI) {
279   PointerType *PT = getMallocType(CI, TLI);
280   return PT ? PT->getElementType() : 0;
281 }
282
283 /// getMallocArraySize - Returns the array size of a malloc call.  If the
284 /// argument passed to malloc is a multiple of the size of the malloced type,
285 /// then return that multiple.  For non-array mallocs, the multiple is
286 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
287 /// determined.
288 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *TD,
289                                 const TargetLibraryInfo *TLI,
290                                 bool LookThroughSExt) {
291   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
292   return computeArraySize(CI, TD, TLI, LookThroughSExt);
293 }
294
295
296 /// extractCallocCall - Returns the corresponding CallInst if the instruction
297 /// is a calloc call.
298 const CallInst *llvm::extractCallocCall(const Value *I,
299                                         const TargetLibraryInfo *TLI) {
300   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : 0;
301 }
302
303
304 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
305 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
306   const CallInst *CI = dyn_cast<CallInst>(I);
307   if (!CI || isa<IntrinsicInst>(CI))
308     return 0;
309   Function *Callee = CI->getCalledFunction();
310   if (Callee == 0 || !Callee->isDeclaration())
311     return 0;
312
313   StringRef FnName = Callee->getName();
314   LibFunc::Func TLIFn;
315   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
316     return 0;
317
318   if (TLIFn != LibFunc::free &&
319       TLIFn != LibFunc::ZdlPv && // operator delete(void*)
320       TLIFn != LibFunc::ZdaPv)   // operator delete[](void*)
321     return 0;
322
323   // Check free prototype.
324   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
325   // attribute will exist.
326   FunctionType *FTy = Callee->getFunctionType();
327   if (!FTy->getReturnType()->isVoidTy())
328     return 0;
329   if (FTy->getNumParams() != 1)
330     return 0;
331   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
332     return 0;
333
334   return CI;
335 }
336
337
338
339 //===----------------------------------------------------------------------===//
340 //  Utility functions to compute size of objects.
341 //
342
343
344 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
345 /// object size in Size if successful, and false otherwise.
346 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
347 /// byval arguments, and global variables.
348 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *TD,
349                          const TargetLibraryInfo *TLI, bool RoundToAlign) {
350   if (!TD)
351     return false;
352
353   ObjectSizeOffsetVisitor Visitor(TD, TLI, Ptr->getContext(), RoundToAlign);
354   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
355   if (!Visitor.bothKnown(Data))
356     return false;
357
358   APInt ObjSize = Data.first, Offset = Data.second;
359   // check for overflow
360   if (Offset.slt(0) || ObjSize.ult(Offset))
361     Size = 0;
362   else
363     Size = (ObjSize - Offset).getZExtValue();
364   return true;
365 }
366
367 /// \brief Compute the size of the underlying object pointed by Ptr. Returns
368 /// true and the object size in Size if successful, and false otherwise.
369 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
370 /// byval arguments, and global variables.
371 bool llvm::getUnderlyingObjectSize(const Value *Ptr, uint64_t &Size,
372                                    const DataLayout *TD,
373                                    const TargetLibraryInfo *TLI,
374                                    bool RoundToAlign) {
375   if (!TD)
376     return false;
377
378   ObjectSizeOffsetVisitor Visitor(TD, TLI, Ptr->getContext(), RoundToAlign);
379   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
380   if (!Visitor.knownSize(Data))
381     return false;
382
383   Size = Data.first.getZExtValue();
384   return true;
385 }
386
387
388 STATISTIC(ObjectVisitorArgument,
389           "Number of arguments with unsolved size and offset");
390 STATISTIC(ObjectVisitorLoad,
391           "Number of load instructions with unsolved size and offset");
392
393
394 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
395   if (RoundToAlign && Align)
396     return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
397   return Size;
398 }
399
400 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *TD,
401                                                  const TargetLibraryInfo *TLI,
402                                                  LLVMContext &Context,
403                                                  bool RoundToAlign)
404 : TD(TD), TLI(TLI), RoundToAlign(RoundToAlign) {
405   IntegerType *IntTy = TD->getIntPtrType(Context);
406   IntTyBits = IntTy->getBitWidth();
407   Zero = APInt::getNullValue(IntTyBits);
408 }
409
410 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
411   V = V->stripPointerCasts();
412
413   if (isa<Instruction>(V) || isa<GEPOperator>(V)) {
414     // Return cached value or insert unknown in cache if size of V was not
415     // computed yet in order to avoid recursions in PHis.
416     std::pair<CacheMapTy::iterator, bool> CacheVal =
417       CacheMap.insert(std::make_pair(V, unknown()));
418     if (!CacheVal.second)
419       return CacheVal.first->second;
420
421     SizeOffsetType Result;
422     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
423       Result = visitGEPOperator(*GEP);
424     else
425       Result = visit(cast<Instruction>(*V));
426     return CacheMap[V] = Result;
427   }
428
429   if (Argument *A = dyn_cast<Argument>(V))
430     return visitArgument(*A);
431   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
432     return visitConstantPointerNull(*P);
433   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
434     return visitGlobalAlias(*GA);
435   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
436     return visitGlobalVariable(*GV);
437   if (UndefValue *UV = dyn_cast<UndefValue>(V))
438     return visitUndefValue(*UV);
439   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
440     if (CE->getOpcode() == Instruction::IntToPtr)
441       return unknown(); // clueless
442   }
443
444   DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
445         << '\n');
446   return unknown();
447 }
448
449 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
450   if (!I.getAllocatedType()->isSized())
451     return unknown();
452
453   APInt Size(IntTyBits, TD->getTypeAllocSize(I.getAllocatedType()));
454   if (!I.isArrayAllocation())
455     return std::make_pair(align(Size, I.getAlignment()), Zero);
456
457   Value *ArraySize = I.getArraySize();
458   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
459     Size *= C->getValue().zextOrSelf(IntTyBits);
460     return std::make_pair(align(Size, I.getAlignment()), Zero);
461   }
462   return unknown();
463 }
464
465 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
466   // no interprocedural analysis is done at the moment
467   if (!A.hasByValAttr()) {
468     ++ObjectVisitorArgument;
469     return unknown();
470   }
471   PointerType *PT = cast<PointerType>(A.getType());
472   APInt Size(IntTyBits, TD->getTypeAllocSize(PT->getElementType()));
473   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
474 }
475
476 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
477   const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
478                                                TLI);
479   if (!FnData)
480     return unknown();
481
482   // handle strdup-like functions separately
483   if (FnData->AllocTy == StrDupLike) {
484     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
485     if (!Size)
486       return unknown();
487
488     // strndup limits strlen
489     if (FnData->FstParam > 0) {
490       ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
491       if (!Arg)
492         return unknown();
493
494       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
495       if (Size.ugt(MaxSize))
496         Size = MaxSize + 1;
497     }
498     return std::make_pair(Size, Zero);
499   }
500
501   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
502   if (!Arg)
503     return unknown();
504
505   APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
506   // size determined by just 1 parameter
507   if (FnData->SndParam < 0)
508     return std::make_pair(Size, Zero);
509
510   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
511   if (!Arg)
512     return unknown();
513
514   Size *= Arg->getValue().zextOrSelf(IntTyBits);
515   return std::make_pair(Size, Zero);
516
517   // TODO: handle more standard functions (+ wchar cousins):
518   // - strdup / strndup
519   // - strcpy / strncpy
520   // - strcat / strncat
521   // - memcpy / memmove
522   // - strcat / strncat
523   // - memset
524 }
525
526 SizeOffsetType
527 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
528   return std::make_pair(Zero, Zero);
529 }
530
531 SizeOffsetType
532 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
533   return unknown();
534 }
535
536 SizeOffsetType
537 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
538   // Easy cases were already folded by previous passes.
539   return unknown();
540 }
541
542 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
543   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
544   APInt Offset(IntTyBits, 0);
545   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(*TD, Offset))
546     return unknown();
547
548   return std::make_pair(PtrData.first, PtrData.second + Offset);
549 }
550
551 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
552   if (GA.mayBeOverridden())
553     return unknown();
554   return compute(GA.getAliasee());
555 }
556
557 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
558   if (!GV.hasDefinitiveInitializer())
559     return unknown();
560
561   APInt Size(IntTyBits, TD->getTypeAllocSize(GV.getType()->getElementType()));
562   return std::make_pair(align(Size, GV.getAlignment()), Zero);
563 }
564
565 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
566   // clueless
567   return unknown();
568 }
569
570 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
571   ++ObjectVisitorLoad;
572   return unknown();
573 }
574
575 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PHI) {
576   if (PHI.getNumIncomingValues() == 0)
577     return unknown();
578
579   SizeOffsetType Ret = compute(PHI.getIncomingValue(0));
580   if (!bothKnown(Ret))
581     return unknown();
582
583   // Verify that all PHI incoming pointers have the same size and offset.
584   for (unsigned i = 1, e = PHI.getNumIncomingValues(); i != e; ++i) {
585     SizeOffsetType EdgeData = compute(PHI.getIncomingValue(i));
586     if (!bothKnown(EdgeData) || EdgeData != Ret)
587       return unknown();
588   }
589   return Ret;
590 }
591
592 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
593   SizeOffsetType TrueSide  = compute(I.getTrueValue());
594   SizeOffsetType FalseSide = compute(I.getFalseValue());
595   if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
596     return TrueSide;
597   return unknown();
598 }
599
600 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
601   return std::make_pair(Zero, Zero);
602 }
603
604 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
605   DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
606   return unknown();
607 }
608
609
610 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *TD,
611                                                    const TargetLibraryInfo *TLI,
612                                                      LLVMContext &Context)
613 : TD(TD), TLI(TLI), Context(Context), Builder(Context, TargetFolder(TD)) {
614   IntTy = TD->getIntPtrType(Context);
615   Zero = ConstantInt::get(IntTy, 0);
616 }
617
618 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
619   SizeOffsetEvalType Result = compute_(V);
620
621   if (!bothKnown(Result)) {
622     // erase everything that was computed in this iteration from the cache, so
623     // that no dangling references are left behind. We could be a bit smarter if
624     // we kept a dependency graph. It's probably not worth the complexity.
625     for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
626       CacheMapTy::iterator CacheIt = CacheMap.find(*I);
627       // non-computable results can be safely cached
628       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
629         CacheMap.erase(CacheIt);
630     }
631   }
632
633   SeenVals.clear();
634   return Result;
635 }
636
637 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
638   ObjectSizeOffsetVisitor Visitor(TD, TLI, Context);
639   SizeOffsetType Const = Visitor.compute(V);
640   if (Visitor.bothKnown(Const))
641     return std::make_pair(ConstantInt::get(Context, Const.first),
642                           ConstantInt::get(Context, Const.second));
643
644   V = V->stripPointerCasts();
645
646   // check cache
647   CacheMapTy::iterator CacheIt = CacheMap.find(V);
648   if (CacheIt != CacheMap.end())
649     return CacheIt->second;
650
651   // always generate code immediately before the instruction being
652   // processed, so that the generated code dominates the same BBs
653   Instruction *PrevInsertPoint = Builder.GetInsertPoint();
654   if (Instruction *I = dyn_cast<Instruction>(V))
655     Builder.SetInsertPoint(I);
656
657   // record the pointers that were handled in this run, so that they can be
658   // cleaned later if something fails
659   SeenVals.insert(V);
660
661   // now compute the size and offset
662   SizeOffsetEvalType Result;
663   if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
664     Result = visitGEPOperator(*GEP);
665   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
666     Result = visit(*I);
667   } else if (isa<Argument>(V) ||
668              (isa<ConstantExpr>(V) &&
669               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
670              isa<GlobalAlias>(V) ||
671              isa<GlobalVariable>(V)) {
672     // ignore values where we cannot do more than what ObjectSizeVisitor can
673     Result = unknown();
674   } else {
675     DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
676           << *V << '\n');
677     Result = unknown();
678   }
679
680   if (PrevInsertPoint)
681     Builder.SetInsertPoint(PrevInsertPoint);
682
683   // Don't reuse CacheIt since it may be invalid at this point.
684   CacheMap[V] = Result;
685   return Result;
686 }
687
688 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
689   if (!I.getAllocatedType()->isSized())
690     return unknown();
691
692   // must be a VLA
693   assert(I.isArrayAllocation());
694   Value *ArraySize = I.getArraySize();
695   Value *Size = ConstantInt::get(ArraySize->getType(),
696                                  TD->getTypeAllocSize(I.getAllocatedType()));
697   Size = Builder.CreateMul(Size, ArraySize);
698   return std::make_pair(Size, Zero);
699 }
700
701 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
702   const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
703                                                TLI);
704   if (!FnData)
705     return unknown();
706
707   // handle strdup-like functions separately
708   if (FnData->AllocTy == StrDupLike) {
709     // TODO
710     return unknown();
711   }
712
713   Value *FirstArg = CS.getArgument(FnData->FstParam);
714   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
715   if (FnData->SndParam < 0)
716     return std::make_pair(FirstArg, Zero);
717
718   Value *SecondArg = CS.getArgument(FnData->SndParam);
719   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
720   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
721   return std::make_pair(Size, Zero);
722
723   // TODO: handle more standard functions (+ wchar cousins):
724   // - strdup / strndup
725   // - strcpy / strncpy
726   // - strcat / strncat
727   // - memcpy / memmove
728   // - strcat / strncat
729   // - memset
730 }
731
732 SizeOffsetEvalType
733 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
734   return unknown();
735 }
736
737 SizeOffsetEvalType
738 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
739   return unknown();
740 }
741
742 SizeOffsetEvalType
743 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
744   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
745   if (!bothKnown(PtrData))
746     return unknown();
747
748   Value *Offset = EmitGEPOffset(&Builder, *TD, &GEP, /*NoAssumptions=*/true);
749   Offset = Builder.CreateAdd(PtrData.second, Offset);
750   return std::make_pair(PtrData.first, Offset);
751 }
752
753 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
754   // clueless
755   return unknown();
756 }
757
758 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
759   return unknown();
760 }
761
762 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
763   // create 2 PHIs: one for size and another for offset
764   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
765   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
766
767   // insert right away in the cache to handle recursive PHIs
768   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
769
770   // compute offset/size for each PHI incoming pointer
771   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
772     Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt());
773     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
774
775     if (!bothKnown(EdgeData)) {
776       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
777       OffsetPHI->eraseFromParent();
778       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
779       SizePHI->eraseFromParent();
780       return unknown();
781     }
782     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
783     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
784   }
785
786   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
787   if ((Tmp = SizePHI->hasConstantValue())) {
788     Size = Tmp;
789     SizePHI->replaceAllUsesWith(Size);
790     SizePHI->eraseFromParent();
791   }
792   if ((Tmp = OffsetPHI->hasConstantValue())) {
793     Offset = Tmp;
794     OffsetPHI->replaceAllUsesWith(Offset);
795     OffsetPHI->eraseFromParent();
796   }
797   return std::make_pair(Size, Offset);
798 }
799
800 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
801   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
802   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
803
804   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
805     return unknown();
806   if (TrueSide == FalseSide)
807     return TrueSide;
808
809   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
810                                      FalseSide.first);
811   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
812                                        FalseSide.second);
813   return std::make_pair(Size, Offset);
814 }
815
816 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
817   DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
818   return unknown();
819 }