Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Analysis / LoopAccessAnalysis.cpp
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27
28 #define DEBUG_TYPE "loop-accesses"
29
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67
68 bool VectorizerParams::isInterleaveForced() {
69   return ::VectorizationInterleave.getNumOccurrences() > 0;
70 }
71
72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                     const Function *TheFunction,
74                                     const Loop *TheLoop,
75                                     const char *PassName) {
76   DebugLoc DL = TheLoop->getStartLoc();
77   if (const Instruction *I = Message.getInstr())
78     DL = I->getDebugLoc();
79   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                  *TheFunction, DL, Message.str());
81 }
82
83 Value *llvm::stripIntegerCast(Value *V) {
84   if (CastInst *CI = dyn_cast<CastInst>(V))
85     if (CI->getOperand(0)->getType()->isIntegerTy())
86       return CI->getOperand(0);
87   return V;
88 }
89
90 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
91                                             const ValueToValueMap &PtrToStride,
92                                             Value *Ptr, Value *OrigPtr) {
93   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
94
95   // If there is an entry in the map return the SCEV of the pointer with the
96   // symbolic stride replaced by one.
97   ValueToValueMap::const_iterator SI =
98       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
99   if (SI != PtrToStride.end()) {
100     Value *StrideVal = SI->second;
101
102     // Strip casts.
103     StrideVal = stripIntegerCast(StrideVal);
104
105     // Replace symbolic stride by one.
106     Value *One = ConstantInt::get(StrideVal->getType(), 1);
107     ValueToValueMap RewriteMap;
108     RewriteMap[StrideVal] = One;
109
110     ScalarEvolution *SE = PSE.getSE();
111     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112     const auto *CT =
113         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114
115     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116     auto *Expr = PSE.getSCEV(Ptr);
117
118     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
119                  << "\n");
120     return Expr;
121   }
122
123   // Otherwise, just return the SCEV of the original pointer.
124   return OrigSCEV;
125 }
126
127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                     unsigned DepSetId, unsigned ASId,
129                                     const ValueToValueMap &Strides,
130                                     PredicatedScalarEvolution &PSE) {
131   // Get the stride replaced scev.
132   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
133   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
134   assert(AR && "Invalid addrec expression");
135   ScalarEvolution *SE = PSE.getSE();
136   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
137
138   const SCEV *ScStart = AR->getStart();
139   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
140   const SCEV *Step = AR->getStepRecurrence(*SE);
141
142   // For expressions with negative step, the upper bound is ScStart and the
143   // lower bound is ScEnd.
144   if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
145     if (CStep->getValue()->isNegative())
146       std::swap(ScStart, ScEnd);
147   } else {
148     // Fallback case: the step is not constant, but the we can still
149     // get the upper and lower bounds of the interval by using min/max
150     // expressions.
151     ScStart = SE->getUMinExpr(ScStart, ScEnd);
152     ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
153   }
154
155   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
156 }
157
158 SmallVector<RuntimePointerChecking::PointerCheck, 4>
159 RuntimePointerChecking::generateChecks() const {
160   SmallVector<PointerCheck, 4> Checks;
161
162   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
163     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
164       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
165       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
166
167       if (needsChecking(CGI, CGJ))
168         Checks.push_back(std::make_pair(&CGI, &CGJ));
169     }
170   }
171   return Checks;
172 }
173
174 void RuntimePointerChecking::generateChecks(
175     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
176   assert(Checks.empty() && "Checks is not empty");
177   groupChecks(DepCands, UseDependencies);
178   Checks = generateChecks();
179 }
180
181 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
182                                            const CheckingPtrGroup &N) const {
183   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
184     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
185       if (needsChecking(M.Members[I], N.Members[J]))
186         return true;
187   return false;
188 }
189
190 /// Compare \p I and \p J and return the minimum.
191 /// Return nullptr in case we couldn't find an answer.
192 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
193                                    ScalarEvolution *SE) {
194   const SCEV *Diff = SE->getMinusSCEV(J, I);
195   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
196
197   if (!C)
198     return nullptr;
199   if (C->getValue()->isNegative())
200     return J;
201   return I;
202 }
203
204 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
205   const SCEV *Start = RtCheck.Pointers[Index].Start;
206   const SCEV *End = RtCheck.Pointers[Index].End;
207
208   // Compare the starts and ends with the known minimum and maximum
209   // of this set. We need to know how we compare against the min/max
210   // of the set in order to be able to emit memchecks.
211   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
212   if (!Min0)
213     return false;
214
215   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
216   if (!Min1)
217     return false;
218
219   // Update the low bound  expression if we've found a new min value.
220   if (Min0 == Start)
221     Low = Start;
222
223   // Update the high bound expression if we've found a new max value.
224   if (Min1 != End)
225     High = End;
226
227   Members.push_back(Index);
228   return true;
229 }
230
231 void RuntimePointerChecking::groupChecks(
232     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
233   // We build the groups from dependency candidates equivalence classes
234   // because:
235   //    - We know that pointers in the same equivalence class share
236   //      the same underlying object and therefore there is a chance
237   //      that we can compare pointers
238   //    - We wouldn't be able to merge two pointers for which we need
239   //      to emit a memcheck. The classes in DepCands are already
240   //      conveniently built such that no two pointers in the same
241   //      class need checking against each other.
242
243   // We use the following (greedy) algorithm to construct the groups
244   // For every pointer in the equivalence class:
245   //   For each existing group:
246   //   - if the difference between this pointer and the min/max bounds
247   //     of the group is a constant, then make the pointer part of the
248   //     group and update the min/max bounds of that group as required.
249
250   CheckingGroups.clear();
251
252   // If we need to check two pointers to the same underlying object
253   // with a non-constant difference, we shouldn't perform any pointer
254   // grouping with those pointers. This is because we can easily get
255   // into cases where the resulting check would return false, even when
256   // the accesses are safe.
257   //
258   // The following example shows this:
259   // for (i = 0; i < 1000; ++i)
260   //   a[5000 + i * m] = a[i] + a[i + 9000]
261   //
262   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
263   // (0, 10000) which is always false. However, if m is 1, there is no
264   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
265   // us to perform an accurate check in this case.
266   //
267   // The above case requires that we have an UnknownDependence between
268   // accesses to the same underlying object. This cannot happen unless
269   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
270   // is also false. In this case we will use the fallback path and create
271   // separate checking groups for all pointers.
272
273   // If we don't have the dependency partitions, construct a new
274   // checking pointer group for each pointer. This is also required
275   // for correctness, because in this case we can have checking between
276   // pointers to the same underlying object.
277   if (!UseDependencies) {
278     for (unsigned I = 0; I < Pointers.size(); ++I)
279       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
280     return;
281   }
282
283   unsigned TotalComparisons = 0;
284
285   DenseMap<Value *, unsigned> PositionMap;
286   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
287     PositionMap[Pointers[Index].PointerValue] = Index;
288
289   // We need to keep track of what pointers we've already seen so we
290   // don't process them twice.
291   SmallSet<unsigned, 2> Seen;
292
293   // Go through all equivalence classes, get the "pointer check groups"
294   // and add them to the overall solution. We use the order in which accesses
295   // appear in 'Pointers' to enforce determinism.
296   for (unsigned I = 0; I < Pointers.size(); ++I) {
297     // We've seen this pointer before, and therefore already processed
298     // its equivalence class.
299     if (Seen.count(I))
300       continue;
301
302     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
303                                            Pointers[I].IsWritePtr);
304
305     SmallVector<CheckingPtrGroup, 2> Groups;
306     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
307
308     // Because DepCands is constructed by visiting accesses in the order in
309     // which they appear in alias sets (which is deterministic) and the
310     // iteration order within an equivalence class member is only dependent on
311     // the order in which unions and insertions are performed on the
312     // equivalence class, the iteration order is deterministic.
313     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
314          MI != ME; ++MI) {
315       unsigned Pointer = PositionMap[MI->getPointer()];
316       bool Merged = false;
317       // Mark this pointer as seen.
318       Seen.insert(Pointer);
319
320       // Go through all the existing sets and see if we can find one
321       // which can include this pointer.
322       for (CheckingPtrGroup &Group : Groups) {
323         // Don't perform more than a certain amount of comparisons.
324         // This should limit the cost of grouping the pointers to something
325         // reasonable.  If we do end up hitting this threshold, the algorithm
326         // will create separate groups for all remaining pointers.
327         if (TotalComparisons > MemoryCheckMergeThreshold)
328           break;
329
330         TotalComparisons++;
331
332         if (Group.addPointer(Pointer)) {
333           Merged = true;
334           break;
335         }
336       }
337
338       if (!Merged)
339         // We couldn't add this pointer to any existing set or the threshold
340         // for the number of comparisons has been reached. Create a new group
341         // to hold the current pointer.
342         Groups.push_back(CheckingPtrGroup(Pointer, *this));
343     }
344
345     // We've computed the grouped checks for this partition.
346     // Save the results and continue with the next one.
347     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
348   }
349 }
350
351 bool RuntimePointerChecking::arePointersInSamePartition(
352     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
353     unsigned PtrIdx2) {
354   return (PtrToPartition[PtrIdx1] != -1 &&
355           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
356 }
357
358 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
359   const PointerInfo &PointerI = Pointers[I];
360   const PointerInfo &PointerJ = Pointers[J];
361
362   // No need to check if two readonly pointers intersect.
363   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
364     return false;
365
366   // Only need to check pointers between two different dependency sets.
367   if (PointerI.DependencySetId == PointerJ.DependencySetId)
368     return false;
369
370   // Only need to check pointers in the same alias set.
371   if (PointerI.AliasSetId != PointerJ.AliasSetId)
372     return false;
373
374   return true;
375 }
376
377 void RuntimePointerChecking::printChecks(
378     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
379     unsigned Depth) const {
380   unsigned N = 0;
381   for (const auto &Check : Checks) {
382     const auto &First = Check.first->Members, &Second = Check.second->Members;
383
384     OS.indent(Depth) << "Check " << N++ << ":\n";
385
386     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
387     for (unsigned K = 0; K < First.size(); ++K)
388       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
389
390     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
391     for (unsigned K = 0; K < Second.size(); ++K)
392       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
393   }
394 }
395
396 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
397
398   OS.indent(Depth) << "Run-time memory checks:\n";
399   printChecks(OS, Checks, Depth);
400
401   OS.indent(Depth) << "Grouped accesses:\n";
402   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
403     const auto &CG = CheckingGroups[I];
404
405     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
406     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
407                          << ")\n";
408     for (unsigned J = 0; J < CG.Members.size(); ++J) {
409       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
410                            << "\n";
411     }
412   }
413 }
414
415 namespace {
416 /// \brief Analyses memory accesses in a loop.
417 ///
418 /// Checks whether run time pointer checks are needed and builds sets for data
419 /// dependence checking.
420 class AccessAnalysis {
421 public:
422   /// \brief Read or write access location.
423   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
424   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
425
426   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
427                  MemoryDepChecker::DepCandidates &DA,
428                  PredicatedScalarEvolution &PSE)
429       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
430         PSE(PSE) {}
431
432   /// \brief Register a load  and whether it is only read from.
433   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
434     Value *Ptr = const_cast<Value*>(Loc.Ptr);
435     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
436     Accesses.insert(MemAccessInfo(Ptr, false));
437     if (IsReadOnly)
438       ReadOnlyPtr.insert(Ptr);
439   }
440
441   /// \brief Register a store.
442   void addStore(MemoryLocation &Loc) {
443     Value *Ptr = const_cast<Value*>(Loc.Ptr);
444     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
445     Accesses.insert(MemAccessInfo(Ptr, true));
446   }
447
448   /// \brief Check whether we can check the pointers at runtime for
449   /// non-intersection.
450   ///
451   /// Returns true if we need no check or if we do and we can generate them
452   /// (i.e. the pointers have computable bounds).
453   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
454                        Loop *TheLoop, const ValueToValueMap &Strides,
455                        bool ShouldCheckStride = false);
456
457   /// \brief Goes over all memory accesses, checks whether a RT check is needed
458   /// and builds sets of dependent accesses.
459   void buildDependenceSets() {
460     processMemAccesses();
461   }
462
463   /// \brief Initial processing of memory accesses determined that we need to
464   /// perform dependency checking.
465   ///
466   /// Note that this can later be cleared if we retry memcheck analysis without
467   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
468   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
469
470   /// We decided that no dependence analysis would be used.  Reset the state.
471   void resetDepChecks(MemoryDepChecker &DepChecker) {
472     CheckDeps.clear();
473     DepChecker.clearDependences();
474   }
475
476   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
477
478 private:
479   typedef SetVector<MemAccessInfo> PtrAccessSet;
480
481   /// \brief Go over all memory access and check whether runtime pointer checks
482   /// are needed and build sets of dependency check candidates.
483   void processMemAccesses();
484
485   /// Set of all accesses.
486   PtrAccessSet Accesses;
487
488   const DataLayout &DL;
489
490   /// Set of accesses that need a further dependence check.
491   MemAccessInfoSet CheckDeps;
492
493   /// Set of pointers that are read only.
494   SmallPtrSet<Value*, 16> ReadOnlyPtr;
495
496   /// An alias set tracker to partition the access set by underlying object and
497   //intrinsic property (such as TBAA metadata).
498   AliasSetTracker AST;
499
500   LoopInfo *LI;
501
502   /// Sets of potentially dependent accesses - members of one set share an
503   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
504   /// dependence check.
505   MemoryDepChecker::DepCandidates &DepCands;
506
507   /// \brief Initial processing of memory accesses determined that we may need
508   /// to add memchecks.  Perform the analysis to determine the necessary checks.
509   ///
510   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
511   /// memcheck analysis without dependency checking
512   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
513   /// while this remains set if we have potentially dependent accesses.
514   bool IsRTCheckAnalysisNeeded;
515
516   /// The SCEV predicate containing all the SCEV-related assumptions.
517   PredicatedScalarEvolution &PSE;
518 };
519
520 } // end anonymous namespace
521
522 /// \brief Check whether a pointer can participate in a runtime bounds check.
523 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
524                                 const ValueToValueMap &Strides, Value *Ptr,
525                                 Loop *L) {
526   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
527   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
528   if (!AR)
529     return false;
530
531   return AR->isAffine();
532 }
533
534 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
535                                      ScalarEvolution *SE, Loop *TheLoop,
536                                      const ValueToValueMap &StridesMap,
537                                      bool ShouldCheckStride) {
538   // Find pointers with computable bounds. We are going to use this information
539   // to place a runtime bound check.
540   bool CanDoRT = true;
541
542   bool NeedRTCheck = false;
543   if (!IsRTCheckAnalysisNeeded) return true;
544
545   bool IsDepCheckNeeded = isDependencyCheckNeeded();
546
547   // We assign a consecutive id to access from different alias sets.
548   // Accesses between different groups doesn't need to be checked.
549   unsigned ASId = 1;
550   for (auto &AS : AST) {
551     int NumReadPtrChecks = 0;
552     int NumWritePtrChecks = 0;
553
554     // We assign consecutive id to access from different dependence sets.
555     // Accesses within the same set don't need a runtime check.
556     unsigned RunningDepId = 1;
557     DenseMap<Value *, unsigned> DepSetId;
558
559     for (auto A : AS) {
560       Value *Ptr = A.getValue();
561       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
562       MemAccessInfo Access(Ptr, IsWrite);
563
564       if (IsWrite)
565         ++NumWritePtrChecks;
566       else
567         ++NumReadPtrChecks;
568
569       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
570           // When we run after a failing dependency check we have to make sure
571           // we don't have wrapping pointers.
572           (!ShouldCheckStride ||
573            isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) {
574         // The id of the dependence set.
575         unsigned DepId;
576
577         if (IsDepCheckNeeded) {
578           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
579           unsigned &LeaderId = DepSetId[Leader];
580           if (!LeaderId)
581             LeaderId = RunningDepId++;
582           DepId = LeaderId;
583         } else
584           // Each access has its own dependence set.
585           DepId = RunningDepId++;
586
587         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
588
589         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
590       } else {
591         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
592         CanDoRT = false;
593       }
594     }
595
596     // If we have at least two writes or one write and a read then we need to
597     // check them.  But there is no need to checks if there is only one
598     // dependence set for this alias set.
599     //
600     // Note that this function computes CanDoRT and NeedRTCheck independently.
601     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
602     // for which we couldn't find the bounds but we don't actually need to emit
603     // any checks so it does not matter.
604     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
605       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
606                                                  NumWritePtrChecks >= 1));
607
608     ++ASId;
609   }
610
611   // If the pointers that we would use for the bounds comparison have different
612   // address spaces, assume the values aren't directly comparable, so we can't
613   // use them for the runtime check. We also have to assume they could
614   // overlap. In the future there should be metadata for whether address spaces
615   // are disjoint.
616   unsigned NumPointers = RtCheck.Pointers.size();
617   for (unsigned i = 0; i < NumPointers; ++i) {
618     for (unsigned j = i + 1; j < NumPointers; ++j) {
619       // Only need to check pointers between two different dependency sets.
620       if (RtCheck.Pointers[i].DependencySetId ==
621           RtCheck.Pointers[j].DependencySetId)
622        continue;
623       // Only need to check pointers in the same alias set.
624       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
625         continue;
626
627       Value *PtrI = RtCheck.Pointers[i].PointerValue;
628       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
629
630       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
631       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
632       if (ASi != ASj) {
633         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
634                        " different address spaces\n");
635         return false;
636       }
637     }
638   }
639
640   if (NeedRTCheck && CanDoRT)
641     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
642
643   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
644                << " pointer comparisons.\n");
645
646   RtCheck.Need = NeedRTCheck;
647
648   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
649   if (!CanDoRTIfNeeded)
650     RtCheck.reset();
651   return CanDoRTIfNeeded;
652 }
653
654 void AccessAnalysis::processMemAccesses() {
655   // We process the set twice: first we process read-write pointers, last we
656   // process read-only pointers. This allows us to skip dependence tests for
657   // read-only pointers.
658
659   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
660   DEBUG(dbgs() << "  AST: "; AST.dump());
661   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
662   DEBUG({
663     for (auto A : Accesses)
664       dbgs() << "\t" << *A.getPointer() << " (" <<
665                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
666                                          "read-only" : "read")) << ")\n";
667   });
668
669   // The AliasSetTracker has nicely partitioned our pointers by metadata
670   // compatibility and potential for underlying-object overlap. As a result, we
671   // only need to check for potential pointer dependencies within each alias
672   // set.
673   for (auto &AS : AST) {
674     // Note that both the alias-set tracker and the alias sets themselves used
675     // linked lists internally and so the iteration order here is deterministic
676     // (matching the original instruction order within each set).
677
678     bool SetHasWrite = false;
679
680     // Map of pointers to last access encountered.
681     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
682     UnderlyingObjToAccessMap ObjToLastAccess;
683
684     // Set of access to check after all writes have been processed.
685     PtrAccessSet DeferredAccesses;
686
687     // Iterate over each alias set twice, once to process read/write pointers,
688     // and then to process read-only pointers.
689     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
690       bool UseDeferred = SetIteration > 0;
691       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
692
693       for (auto AV : AS) {
694         Value *Ptr = AV.getValue();
695
696         // For a single memory access in AliasSetTracker, Accesses may contain
697         // both read and write, and they both need to be handled for CheckDeps.
698         for (auto AC : S) {
699           if (AC.getPointer() != Ptr)
700             continue;
701
702           bool IsWrite = AC.getInt();
703
704           // If we're using the deferred access set, then it contains only
705           // reads.
706           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
707           if (UseDeferred && !IsReadOnlyPtr)
708             continue;
709           // Otherwise, the pointer must be in the PtrAccessSet, either as a
710           // read or a write.
711           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
712                   S.count(MemAccessInfo(Ptr, false))) &&
713                  "Alias-set pointer not in the access set?");
714
715           MemAccessInfo Access(Ptr, IsWrite);
716           DepCands.insert(Access);
717
718           // Memorize read-only pointers for later processing and skip them in
719           // the first round (they need to be checked after we have seen all
720           // write pointers). Note: we also mark pointer that are not
721           // consecutive as "read-only" pointers (so that we check
722           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
723           if (!UseDeferred && IsReadOnlyPtr) {
724             DeferredAccesses.insert(Access);
725             continue;
726           }
727
728           // If this is a write - check other reads and writes for conflicts. If
729           // this is a read only check other writes for conflicts (but only if
730           // there is no other write to the ptr - this is an optimization to
731           // catch "a[i] = a[i] + " without having to do a dependence check).
732           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
733             CheckDeps.insert(Access);
734             IsRTCheckAnalysisNeeded = true;
735           }
736
737           if (IsWrite)
738             SetHasWrite = true;
739
740           // Create sets of pointers connected by a shared alias set and
741           // underlying object.
742           typedef SmallVector<Value *, 16> ValueVector;
743           ValueVector TempObjects;
744
745           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
746           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
747           for (Value *UnderlyingObj : TempObjects) {
748             // nullptr never alias, don't join sets for pointer that have "null"
749             // in their UnderlyingObjects list.
750             if (isa<ConstantPointerNull>(UnderlyingObj))
751               continue;
752
753             UnderlyingObjToAccessMap::iterator Prev =
754                 ObjToLastAccess.find(UnderlyingObj);
755             if (Prev != ObjToLastAccess.end())
756               DepCands.unionSets(Access, Prev->second);
757
758             ObjToLastAccess[UnderlyingObj] = Access;
759             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
760           }
761         }
762       }
763     }
764   }
765 }
766
767 static bool isInBoundsGep(Value *Ptr) {
768   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
769     return GEP->isInBounds();
770   return false;
771 }
772
773 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
774 /// i.e. monotonically increasing/decreasing.
775 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
776                            ScalarEvolution *SE, const Loop *L) {
777   // FIXME: This should probably only return true for NUW.
778   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
779     return true;
780
781   // Scalar evolution does not propagate the non-wrapping flags to values that
782   // are derived from a non-wrapping induction variable because non-wrapping
783   // could be flow-sensitive.
784   //
785   // Look through the potentially overflowing instruction to try to prove
786   // non-wrapping for the *specific* value of Ptr.
787
788   // The arithmetic implied by an inbounds GEP can't overflow.
789   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
790   if (!GEP || !GEP->isInBounds())
791     return false;
792
793   // Make sure there is only one non-const index and analyze that.
794   Value *NonConstIndex = nullptr;
795   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
796     if (!isa<ConstantInt>(*Index)) {
797       if (NonConstIndex)
798         return false;
799       NonConstIndex = *Index;
800     }
801   if (!NonConstIndex)
802     // The recurrence is on the pointer, ignore for now.
803     return false;
804
805   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
806   // AddRec using a NSW operation.
807   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
808     if (OBO->hasNoSignedWrap() &&
809         // Assume constant for other the operand so that the AddRec can be
810         // easily found.
811         isa<ConstantInt>(OBO->getOperand(1))) {
812       auto *OpScev = SE->getSCEV(OBO->getOperand(0));
813
814       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
815         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
816     }
817
818   return false;
819 }
820
821 /// \brief Check whether the access through \p Ptr has a constant stride.
822 int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
823                        const Loop *Lp, const ValueToValueMap &StridesMap) {
824   Type *Ty = Ptr->getType();
825   assert(Ty->isPointerTy() && "Unexpected non-ptr");
826
827   // Make sure that the pointer does not point to aggregate types.
828   auto *PtrTy = cast<PointerType>(Ty);
829   if (PtrTy->getElementType()->isAggregateType()) {
830     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
831           << *Ptr << "\n");
832     return 0;
833   }
834
835   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
836
837   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
838   if (!AR) {
839     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
840           << *Ptr << " SCEV: " << *PtrScev << "\n");
841     return 0;
842   }
843
844   // The accesss function must stride over the innermost loop.
845   if (Lp != AR->getLoop()) {
846     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
847           *Ptr << " SCEV: " << *PtrScev << "\n");
848     return 0;
849   }
850
851   // The address calculation must not wrap. Otherwise, a dependence could be
852   // inverted.
853   // An inbounds getelementptr that is a AddRec with a unit stride
854   // cannot wrap per definition. The unit stride requirement is checked later.
855   // An getelementptr without an inbounds attribute and unit stride would have
856   // to access the pointer value "0" which is undefined behavior in address
857   // space 0, therefore we can also vectorize this case.
858   bool IsInBoundsGEP = isInBoundsGep(Ptr);
859   bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, PSE.getSE(), Lp);
860   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
861   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
862     DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
863                  << *Ptr << " SCEV: " << *PtrScev << "\n");
864     return 0;
865   }
866
867   // Check the step is constant.
868   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
869
870   // Calculate the pointer stride and check if it is constant.
871   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
872   if (!C) {
873     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
874           " SCEV: " << *PtrScev << "\n");
875     return 0;
876   }
877
878   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
879   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
880   const APInt &APStepVal = C->getAPInt();
881
882   // Huge step value - give up.
883   if (APStepVal.getBitWidth() > 64)
884     return 0;
885
886   int64_t StepVal = APStepVal.getSExtValue();
887
888   // Strided access.
889   int64_t Stride = StepVal / Size;
890   int64_t Rem = StepVal % Size;
891   if (Rem)
892     return 0;
893
894   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
895   // know we can't "wrap around the address space". In case of address space
896   // zero we know that this won't happen without triggering undefined behavior.
897   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
898       Stride != 1 && Stride != -1)
899     return 0;
900
901   return Stride;
902 }
903
904 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
905   switch (Type) {
906   case NoDep:
907   case Forward:
908   case BackwardVectorizable:
909     return true;
910
911   case Unknown:
912   case ForwardButPreventsForwarding:
913   case Backward:
914   case BackwardVectorizableButPreventsForwarding:
915     return false;
916   }
917   llvm_unreachable("unexpected DepType!");
918 }
919
920 bool MemoryDepChecker::Dependence::isBackward() const {
921   switch (Type) {
922   case NoDep:
923   case Forward:
924   case ForwardButPreventsForwarding:
925   case Unknown:
926     return false;
927
928   case BackwardVectorizable:
929   case Backward:
930   case BackwardVectorizableButPreventsForwarding:
931     return true;
932   }
933   llvm_unreachable("unexpected DepType!");
934 }
935
936 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
937   return isBackward() || Type == Unknown;
938 }
939
940 bool MemoryDepChecker::Dependence::isForward() const {
941   switch (Type) {
942   case Forward:
943   case ForwardButPreventsForwarding:
944     return true;
945
946   case NoDep:
947   case Unknown:
948   case BackwardVectorizable:
949   case Backward:
950   case BackwardVectorizableButPreventsForwarding:
951     return false;
952   }
953   llvm_unreachable("unexpected DepType!");
954 }
955
956 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
957                                                     unsigned TypeByteSize) {
958   // If loads occur at a distance that is not a multiple of a feasible vector
959   // factor store-load forwarding does not take place.
960   // Positive dependences might cause troubles because vectorizing them might
961   // prevent store-load forwarding making vectorized code run a lot slower.
962   //   a[i] = a[i-3] ^ a[i-8];
963   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
964   //   hence on your typical architecture store-load forwarding does not take
965   //   place. Vectorizing in such cases does not make sense.
966   // Store-load forwarding distance.
967   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
968   // Maximum vector factor.
969   unsigned MaxVFWithoutSLForwardIssues =
970     VectorizerParams::MaxVectorWidth * TypeByteSize;
971   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
972     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
973
974   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
975        vf *= 2) {
976     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
977       MaxVFWithoutSLForwardIssues = (vf >>=1);
978       break;
979     }
980   }
981
982   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
983     DEBUG(dbgs() << "LAA: Distance " << Distance <<
984           " that could cause a store-load forwarding conflict\n");
985     return true;
986   }
987
988   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
989       MaxVFWithoutSLForwardIssues !=
990       VectorizerParams::MaxVectorWidth * TypeByteSize)
991     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
992   return false;
993 }
994
995 /// \brief Check the dependence for two accesses with the same stride \p Stride.
996 /// \p Distance is the positive distance and \p TypeByteSize is type size in
997 /// bytes.
998 ///
999 /// \returns true if they are independent.
1000 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1001                                           unsigned TypeByteSize) {
1002   assert(Stride > 1 && "The stride must be greater than 1");
1003   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1004   assert(Distance > 0 && "The distance must be non-zero");
1005
1006   // Skip if the distance is not multiple of type byte size.
1007   if (Distance % TypeByteSize)
1008     return false;
1009
1010   unsigned ScaledDist = Distance / TypeByteSize;
1011
1012   // No dependence if the scaled distance is not multiple of the stride.
1013   // E.g.
1014   //      for (i = 0; i < 1024 ; i += 4)
1015   //        A[i+2] = A[i] + 1;
1016   //
1017   // Two accesses in memory (scaled distance is 2, stride is 4):
1018   //     | A[0] |      |      |      | A[4] |      |      |      |
1019   //     |      |      | A[2] |      |      |      | A[6] |      |
1020   //
1021   // E.g.
1022   //      for (i = 0; i < 1024 ; i += 3)
1023   //        A[i+4] = A[i] + 1;
1024   //
1025   // Two accesses in memory (scaled distance is 4, stride is 3):
1026   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1027   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1028   return ScaledDist % Stride;
1029 }
1030
1031 MemoryDepChecker::Dependence::DepType
1032 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1033                               const MemAccessInfo &B, unsigned BIdx,
1034                               const ValueToValueMap &Strides) {
1035   assert (AIdx < BIdx && "Must pass arguments in program order");
1036
1037   Value *APtr = A.getPointer();
1038   Value *BPtr = B.getPointer();
1039   bool AIsWrite = A.getInt();
1040   bool BIsWrite = B.getInt();
1041
1042   // Two reads are independent.
1043   if (!AIsWrite && !BIsWrite)
1044     return Dependence::NoDep;
1045
1046   // We cannot check pointers in different address spaces.
1047   if (APtr->getType()->getPointerAddressSpace() !=
1048       BPtr->getType()->getPointerAddressSpace())
1049     return Dependence::Unknown;
1050
1051   const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr);
1052   const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr);
1053
1054   int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides);
1055   int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides);
1056
1057   const SCEV *Src = AScev;
1058   const SCEV *Sink = BScev;
1059
1060   // If the induction step is negative we have to invert source and sink of the
1061   // dependence.
1062   if (StrideAPtr < 0) {
1063     //Src = BScev;
1064     //Sink = AScev;
1065     std::swap(APtr, BPtr);
1066     std::swap(Src, Sink);
1067     std::swap(AIsWrite, BIsWrite);
1068     std::swap(AIdx, BIdx);
1069     std::swap(StrideAPtr, StrideBPtr);
1070   }
1071
1072   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1073
1074   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1075                << "(Induction step: " << StrideAPtr << ")\n");
1076   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1077                << *InstMap[BIdx] << ": " << *Dist << "\n");
1078
1079   // Need accesses with constant stride. We don't want to vectorize
1080   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1081   // the address space.
1082   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1083     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1084     return Dependence::Unknown;
1085   }
1086
1087   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1088   if (!C) {
1089     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1090     ShouldRetryWithRuntimeCheck = true;
1091     return Dependence::Unknown;
1092   }
1093
1094   Type *ATy = APtr->getType()->getPointerElementType();
1095   Type *BTy = BPtr->getType()->getPointerElementType();
1096   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1097   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1098
1099   // Negative distances are not plausible dependencies.
1100   const APInt &Val = C->getAPInt();
1101   if (Val.isNegative()) {
1102     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1103     if (IsTrueDataDependence &&
1104         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1105          ATy != BTy))
1106       return Dependence::ForwardButPreventsForwarding;
1107
1108     DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1109     return Dependence::Forward;
1110   }
1111
1112   // Write to the same location with the same size.
1113   // Could be improved to assert type sizes are the same (i32 == float, etc).
1114   if (Val == 0) {
1115     if (ATy == BTy)
1116       return Dependence::Forward;
1117     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1118     return Dependence::Unknown;
1119   }
1120
1121   assert(Val.isStrictlyPositive() && "Expect a positive value");
1122
1123   if (ATy != BTy) {
1124     DEBUG(dbgs() <<
1125           "LAA: ReadWrite-Write positive dependency with different types\n");
1126     return Dependence::Unknown;
1127   }
1128
1129   unsigned Distance = (unsigned) Val.getZExtValue();
1130
1131   unsigned Stride = std::abs(StrideAPtr);
1132   if (Stride > 1 &&
1133       areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1134     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1135     return Dependence::NoDep;
1136   }
1137
1138   // Bail out early if passed-in parameters make vectorization not feasible.
1139   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1140                            VectorizerParams::VectorizationFactor : 1);
1141   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1142                            VectorizerParams::VectorizationInterleave : 1);
1143   // The minimum number of iterations for a vectorized/unrolled version.
1144   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1145
1146   // It's not vectorizable if the distance is smaller than the minimum distance
1147   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1148   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1149   // TypeByteSize (No need to plus the last gap distance).
1150   //
1151   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1152   //      foo(int *A) {
1153   //        int *B = (int *)((char *)A + 14);
1154   //        for (i = 0 ; i < 1024 ; i += 2)
1155   //          B[i] = A[i] + 1;
1156   //      }
1157   //
1158   // Two accesses in memory (stride is 2):
1159   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1160   //                              | B[0] |      | B[2] |      | B[4] |
1161   //
1162   // Distance needs for vectorizing iterations except the last iteration:
1163   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1164   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1165   //
1166   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1167   // 12, which is less than distance.
1168   //
1169   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1170   // the minimum distance needed is 28, which is greater than distance. It is
1171   // not safe to do vectorization.
1172   unsigned MinDistanceNeeded =
1173       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1174   if (MinDistanceNeeded > Distance) {
1175     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1176                  << '\n');
1177     return Dependence::Backward;
1178   }
1179
1180   // Unsafe if the minimum distance needed is greater than max safe distance.
1181   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1182     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1183                  << MinDistanceNeeded << " size in bytes");
1184     return Dependence::Backward;
1185   }
1186
1187   // Positive distance bigger than max vectorization factor.
1188   // FIXME: Should use max factor instead of max distance in bytes, which could
1189   // not handle different types.
1190   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1191   //      void foo (int *A, char *B) {
1192   //        for (unsigned i = 0; i < 1024; i++) {
1193   //          A[i+2] = A[i] + 1;
1194   //          B[i+2] = B[i] + 1;
1195   //        }
1196   //      }
1197   //
1198   // This case is currently unsafe according to the max safe distance. If we
1199   // analyze the two accesses on array B, the max safe dependence distance
1200   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1201   // is 8, which is less than 2 and forbidden vectorization, But actually
1202   // both A and B could be vectorized by 2 iterations.
1203   MaxSafeDepDistBytes =
1204       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1205
1206   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1207   if (IsTrueDataDependence &&
1208       couldPreventStoreLoadForward(Distance, TypeByteSize))
1209     return Dependence::BackwardVectorizableButPreventsForwarding;
1210
1211   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1212                << " with max VF = "
1213                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1214
1215   return Dependence::BackwardVectorizable;
1216 }
1217
1218 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1219                                    MemAccessInfoSet &CheckDeps,
1220                                    const ValueToValueMap &Strides) {
1221
1222   MaxSafeDepDistBytes = -1U;
1223   while (!CheckDeps.empty()) {
1224     MemAccessInfo CurAccess = *CheckDeps.begin();
1225
1226     // Get the relevant memory access set.
1227     EquivalenceClasses<MemAccessInfo>::iterator I =
1228       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1229
1230     // Check accesses within this set.
1231     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1232     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1233
1234     // Check every access pair.
1235     while (AI != AE) {
1236       CheckDeps.erase(*AI);
1237       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1238       while (OI != AE) {
1239         // Check every accessing instruction pair in program order.
1240         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1241              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1242           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1243                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1244             auto A = std::make_pair(&*AI, *I1);
1245             auto B = std::make_pair(&*OI, *I2);
1246
1247             assert(*I1 != *I2);
1248             if (*I1 > *I2)
1249               std::swap(A, B);
1250
1251             Dependence::DepType Type =
1252                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1253             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1254
1255             // Gather dependences unless we accumulated MaxDependences
1256             // dependences.  In that case return as soon as we find the first
1257             // unsafe dependence.  This puts a limit on this quadratic
1258             // algorithm.
1259             if (RecordDependences) {
1260               if (Type != Dependence::NoDep)
1261                 Dependences.push_back(Dependence(A.second, B.second, Type));
1262
1263               if (Dependences.size() >= MaxDependences) {
1264                 RecordDependences = false;
1265                 Dependences.clear();
1266                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1267               }
1268             }
1269             if (!RecordDependences && !SafeForVectorization)
1270               return false;
1271           }
1272         ++OI;
1273       }
1274       AI++;
1275     }
1276   }
1277
1278   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1279   return SafeForVectorization;
1280 }
1281
1282 SmallVector<Instruction *, 4>
1283 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1284   MemAccessInfo Access(Ptr, isWrite);
1285   auto &IndexVector = Accesses.find(Access)->second;
1286
1287   SmallVector<Instruction *, 4> Insts;
1288   std::transform(IndexVector.begin(), IndexVector.end(),
1289                  std::back_inserter(Insts),
1290                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1291   return Insts;
1292 }
1293
1294 const char *MemoryDepChecker::Dependence::DepName[] = {
1295     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1296     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1297
1298 void MemoryDepChecker::Dependence::print(
1299     raw_ostream &OS, unsigned Depth,
1300     const SmallVectorImpl<Instruction *> &Instrs) const {
1301   OS.indent(Depth) << DepName[Type] << ":\n";
1302   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1303   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1304 }
1305
1306 bool LoopAccessInfo::canAnalyzeLoop() {
1307   // We need to have a loop header.
1308   DEBUG(dbgs() << "LAA: Found a loop: " <<
1309         TheLoop->getHeader()->getName() << '\n');
1310
1311     // We can only analyze innermost loops.
1312   if (!TheLoop->empty()) {
1313     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1314     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1315     return false;
1316   }
1317
1318   // We must have a single backedge.
1319   if (TheLoop->getNumBackEdges() != 1) {
1320     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1321     emitAnalysis(
1322         LoopAccessReport() <<
1323         "loop control flow is not understood by analyzer");
1324     return false;
1325   }
1326
1327   // We must have a single exiting block.
1328   if (!TheLoop->getExitingBlock()) {
1329     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1330     emitAnalysis(
1331         LoopAccessReport() <<
1332         "loop control flow is not understood by analyzer");
1333     return false;
1334   }
1335
1336   // We only handle bottom-tested loops, i.e. loop in which the condition is
1337   // checked at the end of each iteration. With that we can assume that all
1338   // instructions in the loop are executed the same number of times.
1339   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1340     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1341     emitAnalysis(
1342         LoopAccessReport() <<
1343         "loop control flow is not understood by analyzer");
1344     return false;
1345   }
1346
1347   // ScalarEvolution needs to be able to find the exit count.
1348   const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
1349   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1350     emitAnalysis(LoopAccessReport()
1351                  << "could not determine number of loop iterations");
1352     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1353     return false;
1354   }
1355
1356   return true;
1357 }
1358
1359 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1360
1361   typedef SmallVector<Value*, 16> ValueVector;
1362   typedef SmallPtrSet<Value*, 16> ValueSet;
1363
1364   // Holds the Load and Store *instructions*.
1365   ValueVector Loads;
1366   ValueVector Stores;
1367
1368   // Holds all the different accesses in the loop.
1369   unsigned NumReads = 0;
1370   unsigned NumReadWrites = 0;
1371
1372   PtrRtChecking.Pointers.clear();
1373   PtrRtChecking.Need = false;
1374
1375   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1376
1377   // For each block.
1378   for (Loop::block_iterator bb = TheLoop->block_begin(),
1379        be = TheLoop->block_end(); bb != be; ++bb) {
1380
1381     // Scan the BB and collect legal loads and stores.
1382     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1383          ++it) {
1384
1385       // If this is a load, save it. If this instruction can read from memory
1386       // but is not a load, then we quit. Notice that we don't handle function
1387       // calls that read or write.
1388       if (it->mayReadFromMemory()) {
1389         // Many math library functions read the rounding mode. We will only
1390         // vectorize a loop if it contains known function calls that don't set
1391         // the flag. Therefore, it is safe to ignore this read from memory.
1392         CallInst *Call = dyn_cast<CallInst>(it);
1393         if (Call && getIntrinsicIDForCall(Call, TLI))
1394           continue;
1395
1396         // If the function has an explicit vectorized counterpart, we can safely
1397         // assume that it can be vectorized.
1398         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1399             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1400           continue;
1401
1402         LoadInst *Ld = dyn_cast<LoadInst>(it);
1403         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1404           emitAnalysis(LoopAccessReport(Ld)
1405                        << "read with atomic ordering or volatile read");
1406           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1407           CanVecMem = false;
1408           return;
1409         }
1410         NumLoads++;
1411         Loads.push_back(Ld);
1412         DepChecker.addAccess(Ld);
1413         continue;
1414       }
1415
1416       // Save 'store' instructions. Abort if other instructions write to memory.
1417       if (it->mayWriteToMemory()) {
1418         StoreInst *St = dyn_cast<StoreInst>(it);
1419         if (!St) {
1420           emitAnalysis(LoopAccessReport(&*it) <<
1421                        "instruction cannot be vectorized");
1422           CanVecMem = false;
1423           return;
1424         }
1425         if (!St->isSimple() && !IsAnnotatedParallel) {
1426           emitAnalysis(LoopAccessReport(St)
1427                        << "write with atomic ordering or volatile write");
1428           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1429           CanVecMem = false;
1430           return;
1431         }
1432         NumStores++;
1433         Stores.push_back(St);
1434         DepChecker.addAccess(St);
1435       }
1436     } // Next instr.
1437   } // Next block.
1438
1439   // Now we have two lists that hold the loads and the stores.
1440   // Next, we find the pointers that they use.
1441
1442   // Check if we see any stores. If there are no stores, then we don't
1443   // care if the pointers are *restrict*.
1444   if (!Stores.size()) {
1445     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1446     CanVecMem = true;
1447     return;
1448   }
1449
1450   MemoryDepChecker::DepCandidates DependentAccesses;
1451   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1452                           AA, LI, DependentAccesses, PSE);
1453
1454   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1455   // multiple times on the same object. If the ptr is accessed twice, once
1456   // for read and once for write, it will only appear once (on the write
1457   // list). This is okay, since we are going to check for conflicts between
1458   // writes and between reads and writes, but not between reads and reads.
1459   ValueSet Seen;
1460
1461   ValueVector::iterator I, IE;
1462   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1463     StoreInst *ST = cast<StoreInst>(*I);
1464     Value* Ptr = ST->getPointerOperand();
1465     // Check for store to loop invariant address.
1466     StoreToLoopInvariantAddress |= isUniform(Ptr);
1467     // If we did *not* see this pointer before, insert it to  the read-write
1468     // list. At this phase it is only a 'write' list.
1469     if (Seen.insert(Ptr).second) {
1470       ++NumReadWrites;
1471
1472       MemoryLocation Loc = MemoryLocation::get(ST);
1473       // The TBAA metadata could have a control dependency on the predication
1474       // condition, so we cannot rely on it when determining whether or not we
1475       // need runtime pointer checks.
1476       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1477         Loc.AATags.TBAA = nullptr;
1478
1479       Accesses.addStore(Loc);
1480     }
1481   }
1482
1483   if (IsAnnotatedParallel) {
1484     DEBUG(dbgs()
1485           << "LAA: A loop annotated parallel, ignore memory dependency "
1486           << "checks.\n");
1487     CanVecMem = true;
1488     return;
1489   }
1490
1491   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1492     LoadInst *LD = cast<LoadInst>(*I);
1493     Value* Ptr = LD->getPointerOperand();
1494     // If we did *not* see this pointer before, insert it to the
1495     // read list. If we *did* see it before, then it is already in
1496     // the read-write list. This allows us to vectorize expressions
1497     // such as A[i] += x;  Because the address of A[i] is a read-write
1498     // pointer. This only works if the index of A[i] is consecutive.
1499     // If the address of i is unknown (for example A[B[i]]) then we may
1500     // read a few words, modify, and write a few words, and some of the
1501     // words may be written to the same address.
1502     bool IsReadOnlyPtr = false;
1503     if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) {
1504       ++NumReads;
1505       IsReadOnlyPtr = true;
1506     }
1507
1508     MemoryLocation Loc = MemoryLocation::get(LD);
1509     // The TBAA metadata could have a control dependency on the predication
1510     // condition, so we cannot rely on it when determining whether or not we
1511     // need runtime pointer checks.
1512     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1513       Loc.AATags.TBAA = nullptr;
1514
1515     Accesses.addLoad(Loc, IsReadOnlyPtr);
1516   }
1517
1518   // If we write (or read-write) to a single destination and there are no
1519   // other reads in this loop then is it safe to vectorize.
1520   if (NumReadWrites == 1 && NumReads == 0) {
1521     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1522     CanVecMem = true;
1523     return;
1524   }
1525
1526   // Build dependence sets and check whether we need a runtime pointer bounds
1527   // check.
1528   Accesses.buildDependenceSets();
1529
1530   // Find pointers with computable bounds. We are going to use this information
1531   // to place a runtime bound check.
1532   bool CanDoRTIfNeeded =
1533       Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1534   if (!CanDoRTIfNeeded) {
1535     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1536     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1537                  << "the array bounds.\n");
1538     CanVecMem = false;
1539     return;
1540   }
1541
1542   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1543
1544   CanVecMem = true;
1545   if (Accesses.isDependencyCheckNeeded()) {
1546     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1547     CanVecMem = DepChecker.areDepsSafe(
1548         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1549     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1550
1551     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1552       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1553
1554       // Clear the dependency checks. We assume they are not needed.
1555       Accesses.resetDepChecks(DepChecker);
1556
1557       PtrRtChecking.reset();
1558       PtrRtChecking.Need = true;
1559
1560       auto *SE = PSE.getSE();
1561       CanDoRTIfNeeded =
1562           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1563
1564       // Check that we found the bounds for the pointer.
1565       if (!CanDoRTIfNeeded) {
1566         emitAnalysis(LoopAccessReport()
1567                      << "cannot check memory dependencies at runtime");
1568         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1569         CanVecMem = false;
1570         return;
1571       }
1572
1573       CanVecMem = true;
1574     }
1575   }
1576
1577   if (CanVecMem)
1578     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1579                  << (PtrRtChecking.Need ? "" : " don't")
1580                  << " need runtime memory checks.\n");
1581   else {
1582     emitAnalysis(LoopAccessReport() <<
1583                  "unsafe dependent memory operations in loop");
1584     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1585   }
1586 }
1587
1588 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1589                                            DominatorTree *DT)  {
1590   assert(TheLoop->contains(BB) && "Unknown block used");
1591
1592   // Blocks that do not dominate the latch need predication.
1593   BasicBlock* Latch = TheLoop->getLoopLatch();
1594   return !DT->dominates(BB, Latch);
1595 }
1596
1597 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1598   assert(!Report && "Multiple reports generated");
1599   Report = Message;
1600 }
1601
1602 bool LoopAccessInfo::isUniform(Value *V) const {
1603   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1604 }
1605
1606 // FIXME: this function is currently a duplicate of the one in
1607 // LoopVectorize.cpp.
1608 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1609                                  Instruction *Loc) {
1610   if (FirstInst)
1611     return FirstInst;
1612   if (Instruction *I = dyn_cast<Instruction>(V))
1613     return I->getParent() == Loc->getParent() ? I : nullptr;
1614   return nullptr;
1615 }
1616
1617 namespace {
1618 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1619 /// need to use value-handles because SCEV expansion can invalidate previously
1620 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1621 /// a previous one.
1622 struct PointerBounds {
1623   TrackingVH<Value> Start;
1624   TrackingVH<Value> End;
1625 };
1626 } // end anonymous namespace
1627
1628 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1629 /// in \p TheLoop.  \return the values for the bounds.
1630 static PointerBounds
1631 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1632              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1633              const RuntimePointerChecking &PtrRtChecking) {
1634   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1635   const SCEV *Sc = SE->getSCEV(Ptr);
1636
1637   if (SE->isLoopInvariant(Sc, TheLoop)) {
1638     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1639                  << "\n");
1640     return {Ptr, Ptr};
1641   } else {
1642     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1643     LLVMContext &Ctx = Loc->getContext();
1644
1645     // Use this type for pointer arithmetic.
1646     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1647     Value *Start = nullptr, *End = nullptr;
1648
1649     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1650     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1651     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1652     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1653     return {Start, End};
1654   }
1655 }
1656
1657 /// \brief Turns a collection of checks into a collection of expanded upper and
1658 /// lower bounds for both pointers in the check.
1659 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1660     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1661     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1662     const RuntimePointerChecking &PtrRtChecking) {
1663   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1664
1665   // Here we're relying on the SCEV Expander's cache to only emit code for the
1666   // same bounds once.
1667   std::transform(
1668       PointerChecks.begin(), PointerChecks.end(),
1669       std::back_inserter(ChecksWithBounds),
1670       [&](const RuntimePointerChecking::PointerCheck &Check) {
1671         PointerBounds
1672           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1673           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1674         return std::make_pair(First, Second);
1675       });
1676
1677   return ChecksWithBounds;
1678 }
1679
1680 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1681     Instruction *Loc,
1682     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1683     const {
1684   auto *SE = PSE.getSE();
1685   SCEVExpander Exp(*SE, DL, "induction");
1686   auto ExpandedChecks =
1687       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1688
1689   LLVMContext &Ctx = Loc->getContext();
1690   Instruction *FirstInst = nullptr;
1691   IRBuilder<> ChkBuilder(Loc);
1692   // Our instructions might fold to a constant.
1693   Value *MemoryRuntimeCheck = nullptr;
1694
1695   for (const auto &Check : ExpandedChecks) {
1696     const PointerBounds &A = Check.first, &B = Check.second;
1697     // Check if two pointers (A and B) conflict where conflict is computed as:
1698     // start(A) <= end(B) && start(B) <= end(A)
1699     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1700     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1701
1702     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1703            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1704            "Trying to bounds check pointers with different address spaces");
1705
1706     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1707     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1708
1709     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1710     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1711     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1712     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1713
1714     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1715     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1716     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1717     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1718     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1719     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1720     if (MemoryRuntimeCheck) {
1721       IsConflict =
1722           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1723       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1724     }
1725     MemoryRuntimeCheck = IsConflict;
1726   }
1727
1728   if (!MemoryRuntimeCheck)
1729     return std::make_pair(nullptr, nullptr);
1730
1731   // We have to do this trickery because the IRBuilder might fold the check to a
1732   // constant expression in which case there is no Instruction anchored in a
1733   // the block.
1734   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1735                                                  ConstantInt::getTrue(Ctx));
1736   ChkBuilder.Insert(Check, "memcheck.conflict");
1737   FirstInst = getFirstInst(FirstInst, Check, Loc);
1738   return std::make_pair(FirstInst, Check);
1739 }
1740
1741 std::pair<Instruction *, Instruction *>
1742 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1743   if (!PtrRtChecking.Need)
1744     return std::make_pair(nullptr, nullptr);
1745
1746   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1747 }
1748
1749 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1750                                const DataLayout &DL,
1751                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1752                                DominatorTree *DT, LoopInfo *LI,
1753                                const ValueToValueMap &Strides)
1754     : PSE(*SE), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1755       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1756       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1757       StoreToLoopInvariantAddress(false) {
1758   if (canAnalyzeLoop())
1759     analyzeLoop(Strides);
1760 }
1761
1762 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1763   if (CanVecMem) {
1764     if (PtrRtChecking.Need)
1765       OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1766     else
1767       OS.indent(Depth) << "Memory dependences are safe\n";
1768   }
1769
1770   if (Report)
1771     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1772
1773   if (auto *Dependences = DepChecker.getDependences()) {
1774     OS.indent(Depth) << "Dependences:\n";
1775     for (auto &Dep : *Dependences) {
1776       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1777       OS << "\n";
1778     }
1779   } else
1780     OS.indent(Depth) << "Too many dependences, not recorded\n";
1781
1782   // List the pair of accesses need run-time checks to prove independence.
1783   PtrRtChecking.print(OS, Depth);
1784   OS << "\n";
1785
1786   OS.indent(Depth) << "Store to invariant address was "
1787                    << (StoreToLoopInvariantAddress ? "" : "not ")
1788                    << "found in loop.\n";
1789
1790   OS.indent(Depth) << "SCEV assumptions:\n";
1791   PSE.getUnionPredicate().print(OS, Depth);
1792 }
1793
1794 const LoopAccessInfo &
1795 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1796   auto &LAI = LoopAccessInfoMap[L];
1797
1798 #ifndef NDEBUG
1799   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1800          "Symbolic strides changed for loop");
1801 #endif
1802
1803   if (!LAI) {
1804     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1805     LAI =
1806         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1807 #ifndef NDEBUG
1808     LAI->NumSymbolicStrides = Strides.size();
1809 #endif
1810   }
1811   return *LAI.get();
1812 }
1813
1814 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1815   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1816
1817   ValueToValueMap NoSymbolicStrides;
1818
1819   for (Loop *TopLevelLoop : *LI)
1820     for (Loop *L : depth_first(TopLevelLoop)) {
1821       OS.indent(2) << L->getHeader()->getName() << ":\n";
1822       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1823       LAI.print(OS, 4);
1824     }
1825 }
1826
1827 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1828   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1829   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1830   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1831   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1832   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1833   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1834
1835   return false;
1836 }
1837
1838 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1839     AU.addRequired<ScalarEvolutionWrapperPass>();
1840     AU.addRequired<AAResultsWrapperPass>();
1841     AU.addRequired<DominatorTreeWrapperPass>();
1842     AU.addRequired<LoopInfoWrapperPass>();
1843
1844     AU.setPreservesAll();
1845 }
1846
1847 char LoopAccessAnalysis::ID = 0;
1848 static const char laa_name[] = "Loop Access Analysis";
1849 #define LAA_NAME "loop-accesses"
1850
1851 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1852 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1853 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1854 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1855 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1856 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1857
1858 namespace llvm {
1859   Pass *createLAAPass() {
1860     return new LoopAccessAnalysis();
1861   }
1862 }