Fix pr25040 - Handle vectors of i1s in recently added implication code
[oota-llvm.git] / lib / Analysis / InstructionSimplify.cpp
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/VectorUtils.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GetElementPtrTypeIterator.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include <algorithm>
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39
40 #define DEBUG_TYPE "instsimplify"
41
42 enum { RecursionLimit = 3 };
43
44 STATISTIC(NumExpand,  "Number of expansions");
45 STATISTIC(NumReassoc, "Number of reassociations");
46
47 namespace {
48 struct Query {
49   const DataLayout &DL;
50   const TargetLibraryInfo *TLI;
51   const DominatorTree *DT;
52   AssumptionCache *AC;
53   const Instruction *CxtI;
54
55   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
56         const DominatorTree *dt, AssumptionCache *ac = nullptr,
57         const Instruction *cxti = nullptr)
58       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
59 };
60 } // end anonymous namespace
61
62 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
64                             unsigned);
65 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
66                               const Query &, unsigned);
67 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
68                               unsigned);
69 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
71 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
72
73 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
74 /// a vector with every element false, as appropriate for the type.
75 static Constant *getFalse(Type *Ty) {
76   assert(Ty->getScalarType()->isIntegerTy(1) &&
77          "Expected i1 type or a vector of i1!");
78   return Constant::getNullValue(Ty);
79 }
80
81 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
82 /// a vector with every element true, as appropriate for the type.
83 static Constant *getTrue(Type *Ty) {
84   assert(Ty->getScalarType()->isIntegerTy(1) &&
85          "Expected i1 type or a vector of i1!");
86   return Constant::getAllOnesValue(Ty);
87 }
88
89 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
90 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
91                           Value *RHS) {
92   CmpInst *Cmp = dyn_cast<CmpInst>(V);
93   if (!Cmp)
94     return false;
95   CmpInst::Predicate CPred = Cmp->getPredicate();
96   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
97   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
98     return true;
99   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
100     CRHS == LHS;
101 }
102
103 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
104 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
105   Instruction *I = dyn_cast<Instruction>(V);
106   if (!I)
107     // Arguments and constants dominate all instructions.
108     return true;
109
110   // If we are processing instructions (and/or basic blocks) that have not been
111   // fully added to a function, the parent nodes may still be null. Simply
112   // return the conservative answer in these cases.
113   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
114     return false;
115
116   // If we have a DominatorTree then do a precise test.
117   if (DT) {
118     if (!DT->isReachableFromEntry(P->getParent()))
119       return true;
120     if (!DT->isReachableFromEntry(I->getParent()))
121       return false;
122     return DT->dominates(I, P);
123   }
124
125   // Otherwise, if the instruction is in the entry block, and is not an invoke,
126   // and is not a catchpad, then it obviously dominates all phi nodes.
127   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
128       !isa<InvokeInst>(I) && !isa<CatchPadInst>(I))
129     return true;
130
131   return false;
132 }
133
134 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
135 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
136 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
137 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
138 /// Returns the simplified value, or null if no simplification was performed.
139 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
140                           unsigned OpcToExpand, const Query &Q,
141                           unsigned MaxRecurse) {
142   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
143   // Recursion is always used, so bail out at once if we already hit the limit.
144   if (!MaxRecurse--)
145     return nullptr;
146
147   // Check whether the expression has the form "(A op' B) op C".
148   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
149     if (Op0->getOpcode() == OpcodeToExpand) {
150       // It does!  Try turning it into "(A op C) op' (B op C)".
151       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
152       // Do "A op C" and "B op C" both simplify?
153       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
154         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
155           // They do! Return "L op' R" if it simplifies or is already available.
156           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
157           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
158                                      && L == B && R == A)) {
159             ++NumExpand;
160             return LHS;
161           }
162           // Otherwise return "L op' R" if it simplifies.
163           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
164             ++NumExpand;
165             return V;
166           }
167         }
168     }
169
170   // Check whether the expression has the form "A op (B op' C)".
171   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
172     if (Op1->getOpcode() == OpcodeToExpand) {
173       // It does!  Try turning it into "(A op B) op' (A op C)".
174       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
175       // Do "A op B" and "A op C" both simplify?
176       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
177         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
178           // They do! Return "L op' R" if it simplifies or is already available.
179           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
180           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
181                                      && L == C && R == B)) {
182             ++NumExpand;
183             return RHS;
184           }
185           // Otherwise return "L op' R" if it simplifies.
186           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
187             ++NumExpand;
188             return V;
189           }
190         }
191     }
192
193   return nullptr;
194 }
195
196 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
197 /// operations.  Returns the simpler value, or null if none was found.
198 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
199                                        const Query &Q, unsigned MaxRecurse) {
200   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
201   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
202
203   // Recursion is always used, so bail out at once if we already hit the limit.
204   if (!MaxRecurse--)
205     return nullptr;
206
207   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
208   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
209
210   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
211   if (Op0 && Op0->getOpcode() == Opcode) {
212     Value *A = Op0->getOperand(0);
213     Value *B = Op0->getOperand(1);
214     Value *C = RHS;
215
216     // Does "B op C" simplify?
217     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
218       // It does!  Return "A op V" if it simplifies or is already available.
219       // If V equals B then "A op V" is just the LHS.
220       if (V == B) return LHS;
221       // Otherwise return "A op V" if it simplifies.
222       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
223         ++NumReassoc;
224         return W;
225       }
226     }
227   }
228
229   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
230   if (Op1 && Op1->getOpcode() == Opcode) {
231     Value *A = LHS;
232     Value *B = Op1->getOperand(0);
233     Value *C = Op1->getOperand(1);
234
235     // Does "A op B" simplify?
236     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
237       // It does!  Return "V op C" if it simplifies or is already available.
238       // If V equals B then "V op C" is just the RHS.
239       if (V == B) return RHS;
240       // Otherwise return "V op C" if it simplifies.
241       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
242         ++NumReassoc;
243         return W;
244       }
245     }
246   }
247
248   // The remaining transforms require commutativity as well as associativity.
249   if (!Instruction::isCommutative(Opcode))
250     return nullptr;
251
252   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
253   if (Op0 && Op0->getOpcode() == Opcode) {
254     Value *A = Op0->getOperand(0);
255     Value *B = Op0->getOperand(1);
256     Value *C = RHS;
257
258     // Does "C op A" simplify?
259     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
260       // It does!  Return "V op B" if it simplifies or is already available.
261       // If V equals A then "V op B" is just the LHS.
262       if (V == A) return LHS;
263       // Otherwise return "V op B" if it simplifies.
264       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
265         ++NumReassoc;
266         return W;
267       }
268     }
269   }
270
271   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
272   if (Op1 && Op1->getOpcode() == Opcode) {
273     Value *A = LHS;
274     Value *B = Op1->getOperand(0);
275     Value *C = Op1->getOperand(1);
276
277     // Does "C op A" simplify?
278     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
279       // It does!  Return "B op V" if it simplifies or is already available.
280       // If V equals C then "B op V" is just the RHS.
281       if (V == C) return RHS;
282       // Otherwise return "B op V" if it simplifies.
283       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
284         ++NumReassoc;
285         return W;
286       }
287     }
288   }
289
290   return nullptr;
291 }
292
293 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
294 /// instruction as an operand, try to simplify the binop by seeing whether
295 /// evaluating it on both branches of the select results in the same value.
296 /// Returns the common value if so, otherwise returns null.
297 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
298                                     const Query &Q, unsigned MaxRecurse) {
299   // Recursion is always used, so bail out at once if we already hit the limit.
300   if (!MaxRecurse--)
301     return nullptr;
302
303   SelectInst *SI;
304   if (isa<SelectInst>(LHS)) {
305     SI = cast<SelectInst>(LHS);
306   } else {
307     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
308     SI = cast<SelectInst>(RHS);
309   }
310
311   // Evaluate the BinOp on the true and false branches of the select.
312   Value *TV;
313   Value *FV;
314   if (SI == LHS) {
315     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
316     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
317   } else {
318     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
319     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
320   }
321
322   // If they simplified to the same value, then return the common value.
323   // If they both failed to simplify then return null.
324   if (TV == FV)
325     return TV;
326
327   // If one branch simplified to undef, return the other one.
328   if (TV && isa<UndefValue>(TV))
329     return FV;
330   if (FV && isa<UndefValue>(FV))
331     return TV;
332
333   // If applying the operation did not change the true and false select values,
334   // then the result of the binop is the select itself.
335   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
336     return SI;
337
338   // If one branch simplified and the other did not, and the simplified
339   // value is equal to the unsimplified one, return the simplified value.
340   // For example, select (cond, X, X & Z) & Z -> X & Z.
341   if ((FV && !TV) || (TV && !FV)) {
342     // Check that the simplified value has the form "X op Y" where "op" is the
343     // same as the original operation.
344     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
345     if (Simplified && Simplified->getOpcode() == Opcode) {
346       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
347       // We already know that "op" is the same as for the simplified value.  See
348       // if the operands match too.  If so, return the simplified value.
349       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
350       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
351       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
352       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
353           Simplified->getOperand(1) == UnsimplifiedRHS)
354         return Simplified;
355       if (Simplified->isCommutative() &&
356           Simplified->getOperand(1) == UnsimplifiedLHS &&
357           Simplified->getOperand(0) == UnsimplifiedRHS)
358         return Simplified;
359     }
360   }
361
362   return nullptr;
363 }
364
365 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
366 /// try to simplify the comparison by seeing whether both branches of the select
367 /// result in the same value.  Returns the common value if so, otherwise returns
368 /// null.
369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
370                                   Value *RHS, const Query &Q,
371                                   unsigned MaxRecurse) {
372   // Recursion is always used, so bail out at once if we already hit the limit.
373   if (!MaxRecurse--)
374     return nullptr;
375
376   // Make sure the select is on the LHS.
377   if (!isa<SelectInst>(LHS)) {
378     std::swap(LHS, RHS);
379     Pred = CmpInst::getSwappedPredicate(Pred);
380   }
381   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
382   SelectInst *SI = cast<SelectInst>(LHS);
383   Value *Cond = SI->getCondition();
384   Value *TV = SI->getTrueValue();
385   Value *FV = SI->getFalseValue();
386
387   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
388   // Does "cmp TV, RHS" simplify?
389   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
390   if (TCmp == Cond) {
391     // It not only simplified, it simplified to the select condition.  Replace
392     // it with 'true'.
393     TCmp = getTrue(Cond->getType());
394   } else if (!TCmp) {
395     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
396     // condition then we can replace it with 'true'.  Otherwise give up.
397     if (!isSameCompare(Cond, Pred, TV, RHS))
398       return nullptr;
399     TCmp = getTrue(Cond->getType());
400   }
401
402   // Does "cmp FV, RHS" simplify?
403   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
404   if (FCmp == Cond) {
405     // It not only simplified, it simplified to the select condition.  Replace
406     // it with 'false'.
407     FCmp = getFalse(Cond->getType());
408   } else if (!FCmp) {
409     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
410     // condition then we can replace it with 'false'.  Otherwise give up.
411     if (!isSameCompare(Cond, Pred, FV, RHS))
412       return nullptr;
413     FCmp = getFalse(Cond->getType());
414   }
415
416   // If both sides simplified to the same value, then use it as the result of
417   // the original comparison.
418   if (TCmp == FCmp)
419     return TCmp;
420
421   // The remaining cases only make sense if the select condition has the same
422   // type as the result of the comparison, so bail out if this is not so.
423   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
424     return nullptr;
425   // If the false value simplified to false, then the result of the compare
426   // is equal to "Cond && TCmp".  This also catches the case when the false
427   // value simplified to false and the true value to true, returning "Cond".
428   if (match(FCmp, m_Zero()))
429     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
430       return V;
431   // If the true value simplified to true, then the result of the compare
432   // is equal to "Cond || FCmp".
433   if (match(TCmp, m_One()))
434     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
435       return V;
436   // Finally, if the false value simplified to true and the true value to
437   // false, then the result of the compare is equal to "!Cond".
438   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
439     if (Value *V =
440         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
441                         Q, MaxRecurse))
442       return V;
443
444   return nullptr;
445 }
446
447 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
448 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
449 /// it on the incoming phi values yields the same result for every value.  If so
450 /// returns the common value, otherwise returns null.
451 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
452                                  const Query &Q, unsigned MaxRecurse) {
453   // Recursion is always used, so bail out at once if we already hit the limit.
454   if (!MaxRecurse--)
455     return nullptr;
456
457   PHINode *PI;
458   if (isa<PHINode>(LHS)) {
459     PI = cast<PHINode>(LHS);
460     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
461     if (!ValueDominatesPHI(RHS, PI, Q.DT))
462       return nullptr;
463   } else {
464     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
465     PI = cast<PHINode>(RHS);
466     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
467     if (!ValueDominatesPHI(LHS, PI, Q.DT))
468       return nullptr;
469   }
470
471   // Evaluate the BinOp on the incoming phi values.
472   Value *CommonValue = nullptr;
473   for (Value *Incoming : PI->incoming_values()) {
474     // If the incoming value is the phi node itself, it can safely be skipped.
475     if (Incoming == PI) continue;
476     Value *V = PI == LHS ?
477       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
478       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
479     // If the operation failed to simplify, or simplified to a different value
480     // to previously, then give up.
481     if (!V || (CommonValue && V != CommonValue))
482       return nullptr;
483     CommonValue = V;
484   }
485
486   return CommonValue;
487 }
488
489 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
490 /// try to simplify the comparison by seeing whether comparing with all of the
491 /// incoming phi values yields the same result every time.  If so returns the
492 /// common result, otherwise returns null.
493 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
494                                const Query &Q, unsigned MaxRecurse) {
495   // Recursion is always used, so bail out at once if we already hit the limit.
496   if (!MaxRecurse--)
497     return nullptr;
498
499   // Make sure the phi is on the LHS.
500   if (!isa<PHINode>(LHS)) {
501     std::swap(LHS, RHS);
502     Pred = CmpInst::getSwappedPredicate(Pred);
503   }
504   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
505   PHINode *PI = cast<PHINode>(LHS);
506
507   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
508   if (!ValueDominatesPHI(RHS, PI, Q.DT))
509     return nullptr;
510
511   // Evaluate the BinOp on the incoming phi values.
512   Value *CommonValue = nullptr;
513   for (Value *Incoming : PI->incoming_values()) {
514     // If the incoming value is the phi node itself, it can safely be skipped.
515     if (Incoming == PI) continue;
516     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
517     // If the operation failed to simplify, or simplified to a different value
518     // to previously, then give up.
519     if (!V || (CommonValue && V != CommonValue))
520       return nullptr;
521     CommonValue = V;
522   }
523
524   return CommonValue;
525 }
526
527 /// SimplifyAddInst - Given operands for an Add, see if we can
528 /// fold the result.  If not, this returns null.
529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
530                               const Query &Q, unsigned MaxRecurse) {
531   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
532     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
533       Constant *Ops[] = { CLHS, CRHS };
534       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
535                                       Q.DL, Q.TLI);
536     }
537
538     // Canonicalize the constant to the RHS.
539     std::swap(Op0, Op1);
540   }
541
542   // X + undef -> undef
543   if (match(Op1, m_Undef()))
544     return Op1;
545
546   // X + 0 -> X
547   if (match(Op1, m_Zero()))
548     return Op0;
549
550   // X + (Y - X) -> Y
551   // (Y - X) + X -> Y
552   // Eg: X + -X -> 0
553   Value *Y = nullptr;
554   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
555       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
556     return Y;
557
558   // X + ~X -> -1   since   ~X = -X-1
559   if (match(Op0, m_Not(m_Specific(Op1))) ||
560       match(Op1, m_Not(m_Specific(Op0))))
561     return Constant::getAllOnesValue(Op0->getType());
562
563   /// i1 add -> xor.
564   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
565     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
566       return V;
567
568   // Try some generic simplifications for associative operations.
569   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
570                                           MaxRecurse))
571     return V;
572
573   // Threading Add over selects and phi nodes is pointless, so don't bother.
574   // Threading over the select in "A + select(cond, B, C)" means evaluating
575   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
576   // only if B and C are equal.  If B and C are equal then (since we assume
577   // that operands have already been simplified) "select(cond, B, C)" should
578   // have been simplified to the common value of B and C already.  Analysing
579   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
580   // for threading over phi nodes.
581
582   return nullptr;
583 }
584
585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
586                              const DataLayout &DL, const TargetLibraryInfo *TLI,
587                              const DominatorTree *DT, AssumptionCache *AC,
588                              const Instruction *CxtI) {
589   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
590                            RecursionLimit);
591 }
592
593 /// \brief Compute the base pointer and cumulative constant offsets for V.
594 ///
595 /// This strips all constant offsets off of V, leaving it the base pointer, and
596 /// accumulates the total constant offset applied in the returned constant. It
597 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
598 /// no constant offsets applied.
599 ///
600 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
601 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
602 /// folding.
603 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
604                                                 bool AllowNonInbounds = false) {
605   assert(V->getType()->getScalarType()->isPointerTy());
606
607   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
608   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
609
610   // Even though we don't look through PHI nodes, we could be called on an
611   // instruction in an unreachable block, which may be on a cycle.
612   SmallPtrSet<Value *, 4> Visited;
613   Visited.insert(V);
614   do {
615     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
616       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
617           !GEP->accumulateConstantOffset(DL, Offset))
618         break;
619       V = GEP->getPointerOperand();
620     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
621       V = cast<Operator>(V)->getOperand(0);
622     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
623       if (GA->mayBeOverridden())
624         break;
625       V = GA->getAliasee();
626     } else {
627       break;
628     }
629     assert(V->getType()->getScalarType()->isPointerTy() &&
630            "Unexpected operand type!");
631   } while (Visited.insert(V).second);
632
633   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
634   if (V->getType()->isVectorTy())
635     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
636                                     OffsetIntPtr);
637   return OffsetIntPtr;
638 }
639
640 /// \brief Compute the constant difference between two pointer values.
641 /// If the difference is not a constant, returns zero.
642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
643                                           Value *RHS) {
644   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
645   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
646
647   // If LHS and RHS are not related via constant offsets to the same base
648   // value, there is nothing we can do here.
649   if (LHS != RHS)
650     return nullptr;
651
652   // Otherwise, the difference of LHS - RHS can be computed as:
653   //    LHS - RHS
654   //  = (LHSOffset + Base) - (RHSOffset + Base)
655   //  = LHSOffset - RHSOffset
656   return ConstantExpr::getSub(LHSOffset, RHSOffset);
657 }
658
659 /// SimplifySubInst - Given operands for a Sub, see if we can
660 /// fold the result.  If not, this returns null.
661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
662                               const Query &Q, unsigned MaxRecurse) {
663   if (Constant *CLHS = dyn_cast<Constant>(Op0))
664     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
665       Constant *Ops[] = { CLHS, CRHS };
666       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
667                                       Ops, Q.DL, Q.TLI);
668     }
669
670   // X - undef -> undef
671   // undef - X -> undef
672   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
673     return UndefValue::get(Op0->getType());
674
675   // X - 0 -> X
676   if (match(Op1, m_Zero()))
677     return Op0;
678
679   // X - X -> 0
680   if (Op0 == Op1)
681     return Constant::getNullValue(Op0->getType());
682
683   // 0 - X -> 0 if the sub is NUW.
684   if (isNUW && match(Op0, m_Zero()))
685     return Op0;
686
687   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
688   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
689   Value *X = nullptr, *Y = nullptr, *Z = Op1;
690   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
691     // See if "V === Y - Z" simplifies.
692     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
693       // It does!  Now see if "X + V" simplifies.
694       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
695         // It does, we successfully reassociated!
696         ++NumReassoc;
697         return W;
698       }
699     // See if "V === X - Z" simplifies.
700     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
701       // It does!  Now see if "Y + V" simplifies.
702       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
703         // It does, we successfully reassociated!
704         ++NumReassoc;
705         return W;
706       }
707   }
708
709   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
710   // For example, X - (X + 1) -> -1
711   X = Op0;
712   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
713     // See if "V === X - Y" simplifies.
714     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
715       // It does!  Now see if "V - Z" simplifies.
716       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
717         // It does, we successfully reassociated!
718         ++NumReassoc;
719         return W;
720       }
721     // See if "V === X - Z" simplifies.
722     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
723       // It does!  Now see if "V - Y" simplifies.
724       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
725         // It does, we successfully reassociated!
726         ++NumReassoc;
727         return W;
728       }
729   }
730
731   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
732   // For example, X - (X - Y) -> Y.
733   Z = Op0;
734   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
735     // See if "V === Z - X" simplifies.
736     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
737       // It does!  Now see if "V + Y" simplifies.
738       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
739         // It does, we successfully reassociated!
740         ++NumReassoc;
741         return W;
742       }
743
744   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
745   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
746       match(Op1, m_Trunc(m_Value(Y))))
747     if (X->getType() == Y->getType())
748       // See if "V === X - Y" simplifies.
749       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
750         // It does!  Now see if "trunc V" simplifies.
751         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
752           // It does, return the simplified "trunc V".
753           return W;
754
755   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
756   if (match(Op0, m_PtrToInt(m_Value(X))) &&
757       match(Op1, m_PtrToInt(m_Value(Y))))
758     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
759       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
760
761   // i1 sub -> xor.
762   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
763     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
764       return V;
765
766   // Threading Sub over selects and phi nodes is pointless, so don't bother.
767   // Threading over the select in "A - select(cond, B, C)" means evaluating
768   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
769   // only if B and C are equal.  If B and C are equal then (since we assume
770   // that operands have already been simplified) "select(cond, B, C)" should
771   // have been simplified to the common value of B and C already.  Analysing
772   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
773   // for threading over phi nodes.
774
775   return nullptr;
776 }
777
778 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
779                              const DataLayout &DL, const TargetLibraryInfo *TLI,
780                              const DominatorTree *DT, AssumptionCache *AC,
781                              const Instruction *CxtI) {
782   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
783                            RecursionLimit);
784 }
785
786 /// Given operands for an FAdd, see if we can fold the result.  If not, this
787 /// returns null.
788 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
789                               const Query &Q, unsigned MaxRecurse) {
790   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
791     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
792       Constant *Ops[] = { CLHS, CRHS };
793       return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
794                                       Ops, Q.DL, Q.TLI);
795     }
796
797     // Canonicalize the constant to the RHS.
798     std::swap(Op0, Op1);
799   }
800
801   // fadd X, -0 ==> X
802   if (match(Op1, m_NegZero()))
803     return Op0;
804
805   // fadd X, 0 ==> X, when we know X is not -0
806   if (match(Op1, m_Zero()) &&
807       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
808     return Op0;
809
810   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
811   //   where nnan and ninf have to occur at least once somewhere in this
812   //   expression
813   Value *SubOp = nullptr;
814   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
815     SubOp = Op1;
816   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
817     SubOp = Op0;
818   if (SubOp) {
819     Instruction *FSub = cast<Instruction>(SubOp);
820     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
821         (FMF.noInfs() || FSub->hasNoInfs()))
822       return Constant::getNullValue(Op0->getType());
823   }
824
825   return nullptr;
826 }
827
828 /// Given operands for an FSub, see if we can fold the result.  If not, this
829 /// returns null.
830 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
831                               const Query &Q, unsigned MaxRecurse) {
832   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
833     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
834       Constant *Ops[] = { CLHS, CRHS };
835       return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
836                                       Ops, Q.DL, Q.TLI);
837     }
838   }
839
840   // fsub X, 0 ==> X
841   if (match(Op1, m_Zero()))
842     return Op0;
843
844   // fsub X, -0 ==> X, when we know X is not -0
845   if (match(Op1, m_NegZero()) &&
846       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
847     return Op0;
848
849   // fsub 0, (fsub -0.0, X) ==> X
850   Value *X;
851   if (match(Op0, m_AnyZero())) {
852     if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
853       return X;
854     if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
855       return X;
856   }
857
858   // fsub nnan x, x ==> 0.0
859   if (FMF.noNaNs() && Op0 == Op1)
860     return Constant::getNullValue(Op0->getType());
861
862   return nullptr;
863 }
864
865 /// Given the operands for an FMul, see if we can fold the result
866 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
867                                FastMathFlags FMF,
868                                const Query &Q,
869                                unsigned MaxRecurse) {
870  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
871     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
872       Constant *Ops[] = { CLHS, CRHS };
873       return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
874                                       Ops, Q.DL, Q.TLI);
875     }
876
877     // Canonicalize the constant to the RHS.
878     std::swap(Op0, Op1);
879  }
880
881  // fmul X, 1.0 ==> X
882  if (match(Op1, m_FPOne()))
883    return Op0;
884
885  // fmul nnan nsz X, 0 ==> 0
886  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
887    return Op1;
888
889  return nullptr;
890 }
891
892 /// SimplifyMulInst - Given operands for a Mul, see if we can
893 /// fold the result.  If not, this returns null.
894 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
895                               unsigned MaxRecurse) {
896   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
897     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
898       Constant *Ops[] = { CLHS, CRHS };
899       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
900                                       Ops, Q.DL, Q.TLI);
901     }
902
903     // Canonicalize the constant to the RHS.
904     std::swap(Op0, Op1);
905   }
906
907   // X * undef -> 0
908   if (match(Op1, m_Undef()))
909     return Constant::getNullValue(Op0->getType());
910
911   // X * 0 -> 0
912   if (match(Op1, m_Zero()))
913     return Op1;
914
915   // X * 1 -> X
916   if (match(Op1, m_One()))
917     return Op0;
918
919   // (X / Y) * Y -> X if the division is exact.
920   Value *X = nullptr;
921   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
922       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
923     return X;
924
925   // i1 mul -> and.
926   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
927     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
928       return V;
929
930   // Try some generic simplifications for associative operations.
931   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
932                                           MaxRecurse))
933     return V;
934
935   // Mul distributes over Add.  Try some generic simplifications based on this.
936   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
937                              Q, MaxRecurse))
938     return V;
939
940   // If the operation is with the result of a select instruction, check whether
941   // operating on either branch of the select always yields the same value.
942   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
943     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
944                                          MaxRecurse))
945       return V;
946
947   // If the operation is with the result of a phi instruction, check whether
948   // operating on all incoming values of the phi always yields the same value.
949   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
950     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
951                                       MaxRecurse))
952       return V;
953
954   return nullptr;
955 }
956
957 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
958                               const DataLayout &DL,
959                               const TargetLibraryInfo *TLI,
960                               const DominatorTree *DT, AssumptionCache *AC,
961                               const Instruction *CxtI) {
962   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
963                             RecursionLimit);
964 }
965
966 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
967                               const DataLayout &DL,
968                               const TargetLibraryInfo *TLI,
969                               const DominatorTree *DT, AssumptionCache *AC,
970                               const Instruction *CxtI) {
971   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
972                             RecursionLimit);
973 }
974
975 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
976                               const DataLayout &DL,
977                               const TargetLibraryInfo *TLI,
978                               const DominatorTree *DT, AssumptionCache *AC,
979                               const Instruction *CxtI) {
980   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
981                             RecursionLimit);
982 }
983
984 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
985                              const TargetLibraryInfo *TLI,
986                              const DominatorTree *DT, AssumptionCache *AC,
987                              const Instruction *CxtI) {
988   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
989                            RecursionLimit);
990 }
991
992 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
993 /// fold the result.  If not, this returns null.
994 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
995                           const Query &Q, unsigned MaxRecurse) {
996   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
997     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
998       Constant *Ops[] = { C0, C1 };
999       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
1000     }
1001   }
1002
1003   bool isSigned = Opcode == Instruction::SDiv;
1004
1005   // X / undef -> undef
1006   if (match(Op1, m_Undef()))
1007     return Op1;
1008
1009   // X / 0 -> undef, we don't need to preserve faults!
1010   if (match(Op1, m_Zero()))
1011     return UndefValue::get(Op1->getType());
1012
1013   // undef / X -> 0
1014   if (match(Op0, m_Undef()))
1015     return Constant::getNullValue(Op0->getType());
1016
1017   // 0 / X -> 0, we don't need to preserve faults!
1018   if (match(Op0, m_Zero()))
1019     return Op0;
1020
1021   // X / 1 -> X
1022   if (match(Op1, m_One()))
1023     return Op0;
1024
1025   if (Op0->getType()->isIntegerTy(1))
1026     // It can't be division by zero, hence it must be division by one.
1027     return Op0;
1028
1029   // X / X -> 1
1030   if (Op0 == Op1)
1031     return ConstantInt::get(Op0->getType(), 1);
1032
1033   // (X * Y) / Y -> X if the multiplication does not overflow.
1034   Value *X = nullptr, *Y = nullptr;
1035   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1036     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1037     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1038     // If the Mul knows it does not overflow, then we are good to go.
1039     if ((isSigned && Mul->hasNoSignedWrap()) ||
1040         (!isSigned && Mul->hasNoUnsignedWrap()))
1041       return X;
1042     // If X has the form X = A / Y then X * Y cannot overflow.
1043     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1044       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1045         return X;
1046   }
1047
1048   // (X rem Y) / Y -> 0
1049   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1050       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1051     return Constant::getNullValue(Op0->getType());
1052
1053   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1054   ConstantInt *C1, *C2;
1055   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1056       match(Op1, m_ConstantInt(C2))) {
1057     bool Overflow;
1058     C1->getValue().umul_ov(C2->getValue(), Overflow);
1059     if (Overflow)
1060       return Constant::getNullValue(Op0->getType());
1061   }
1062
1063   // If the operation is with the result of a select instruction, check whether
1064   // operating on either branch of the select always yields the same value.
1065   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1066     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1067       return V;
1068
1069   // If the operation is with the result of a phi instruction, check whether
1070   // operating on all incoming values of the phi always yields the same value.
1071   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1072     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1073       return V;
1074
1075   return nullptr;
1076 }
1077
1078 /// SimplifySDivInst - Given operands for an SDiv, see if we can
1079 /// fold the result.  If not, this returns null.
1080 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1081                                unsigned MaxRecurse) {
1082   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1083     return V;
1084
1085   return nullptr;
1086 }
1087
1088 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1089                               const TargetLibraryInfo *TLI,
1090                               const DominatorTree *DT, AssumptionCache *AC,
1091                               const Instruction *CxtI) {
1092   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1093                             RecursionLimit);
1094 }
1095
1096 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
1097 /// fold the result.  If not, this returns null.
1098 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1099                                unsigned MaxRecurse) {
1100   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1101     return V;
1102
1103   return nullptr;
1104 }
1105
1106 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1107                               const TargetLibraryInfo *TLI,
1108                               const DominatorTree *DT, AssumptionCache *AC,
1109                               const Instruction *CxtI) {
1110   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1111                             RecursionLimit);
1112 }
1113
1114 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1115                                const Query &Q, unsigned) {
1116   // undef / X -> undef    (the undef could be a snan).
1117   if (match(Op0, m_Undef()))
1118     return Op0;
1119
1120   // X / undef -> undef
1121   if (match(Op1, m_Undef()))
1122     return Op1;
1123
1124   // 0 / X -> 0
1125   // Requires that NaNs are off (X could be zero) and signed zeroes are
1126   // ignored (X could be positive or negative, so the output sign is unknown).
1127   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1128     return Op0;
1129
1130   if (FMF.noNaNs()) {
1131     // X / X -> 1.0 is legal when NaNs are ignored.
1132     if (Op0 == Op1)
1133       return ConstantFP::get(Op0->getType(), 1.0);
1134
1135     // -X /  X -> -1.0 and
1136     //  X / -X -> -1.0 are legal when NaNs are ignored.
1137     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1138     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1139          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1140         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1141          BinaryOperator::getFNegArgument(Op1) == Op0))
1142       return ConstantFP::get(Op0->getType(), -1.0);
1143   }
1144
1145   return nullptr;
1146 }
1147
1148 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1149                               const DataLayout &DL,
1150                               const TargetLibraryInfo *TLI,
1151                               const DominatorTree *DT, AssumptionCache *AC,
1152                               const Instruction *CxtI) {
1153   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1154                             RecursionLimit);
1155 }
1156
1157 /// SimplifyRem - Given operands for an SRem or URem, see if we can
1158 /// fold the result.  If not, this returns null.
1159 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1160                           const Query &Q, unsigned MaxRecurse) {
1161   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1162     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1163       Constant *Ops[] = { C0, C1 };
1164       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
1165     }
1166   }
1167
1168   // X % undef -> undef
1169   if (match(Op1, m_Undef()))
1170     return Op1;
1171
1172   // undef % X -> 0
1173   if (match(Op0, m_Undef()))
1174     return Constant::getNullValue(Op0->getType());
1175
1176   // 0 % X -> 0, we don't need to preserve faults!
1177   if (match(Op0, m_Zero()))
1178     return Op0;
1179
1180   // X % 0 -> undef, we don't need to preserve faults!
1181   if (match(Op1, m_Zero()))
1182     return UndefValue::get(Op0->getType());
1183
1184   // X % 1 -> 0
1185   if (match(Op1, m_One()))
1186     return Constant::getNullValue(Op0->getType());
1187
1188   if (Op0->getType()->isIntegerTy(1))
1189     // It can't be remainder by zero, hence it must be remainder by one.
1190     return Constant::getNullValue(Op0->getType());
1191
1192   // X % X -> 0
1193   if (Op0 == Op1)
1194     return Constant::getNullValue(Op0->getType());
1195
1196   // (X % Y) % Y -> X % Y
1197   if ((Opcode == Instruction::SRem &&
1198        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1199       (Opcode == Instruction::URem &&
1200        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1201     return Op0;
1202
1203   // If the operation is with the result of a select instruction, check whether
1204   // operating on either branch of the select always yields the same value.
1205   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1206     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1207       return V;
1208
1209   // If the operation is with the result of a phi instruction, check whether
1210   // operating on all incoming values of the phi always yields the same value.
1211   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1212     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1213       return V;
1214
1215   return nullptr;
1216 }
1217
1218 /// SimplifySRemInst - Given operands for an SRem, see if we can
1219 /// fold the result.  If not, this returns null.
1220 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1221                                unsigned MaxRecurse) {
1222   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1223     return V;
1224
1225   return nullptr;
1226 }
1227
1228 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1229                               const TargetLibraryInfo *TLI,
1230                               const DominatorTree *DT, AssumptionCache *AC,
1231                               const Instruction *CxtI) {
1232   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1233                             RecursionLimit);
1234 }
1235
1236 /// SimplifyURemInst - Given operands for a URem, see if we can
1237 /// fold the result.  If not, this returns null.
1238 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1239                                unsigned MaxRecurse) {
1240   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1241     return V;
1242
1243   return nullptr;
1244 }
1245
1246 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1247                               const TargetLibraryInfo *TLI,
1248                               const DominatorTree *DT, AssumptionCache *AC,
1249                               const Instruction *CxtI) {
1250   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1251                             RecursionLimit);
1252 }
1253
1254 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1255                                const Query &, unsigned) {
1256   // undef % X -> undef    (the undef could be a snan).
1257   if (match(Op0, m_Undef()))
1258     return Op0;
1259
1260   // X % undef -> undef
1261   if (match(Op1, m_Undef()))
1262     return Op1;
1263
1264   // 0 % X -> 0
1265   // Requires that NaNs are off (X could be zero) and signed zeroes are
1266   // ignored (X could be positive or negative, so the output sign is unknown).
1267   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1268     return Op0;
1269
1270   return nullptr;
1271 }
1272
1273 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1274                               const DataLayout &DL,
1275                               const TargetLibraryInfo *TLI,
1276                               const DominatorTree *DT, AssumptionCache *AC,
1277                               const Instruction *CxtI) {
1278   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1279                             RecursionLimit);
1280 }
1281
1282 /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
1283 static bool isUndefShift(Value *Amount) {
1284   Constant *C = dyn_cast<Constant>(Amount);
1285   if (!C)
1286     return false;
1287
1288   // X shift by undef -> undef because it may shift by the bitwidth.
1289   if (isa<UndefValue>(C))
1290     return true;
1291
1292   // Shifting by the bitwidth or more is undefined.
1293   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1294     if (CI->getValue().getLimitedValue() >=
1295         CI->getType()->getScalarSizeInBits())
1296       return true;
1297
1298   // If all lanes of a vector shift are undefined the whole shift is.
1299   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1300     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1301       if (!isUndefShift(C->getAggregateElement(I)))
1302         return false;
1303     return true;
1304   }
1305
1306   return false;
1307 }
1308
1309 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1310 /// fold the result.  If not, this returns null.
1311 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1312                             const Query &Q, unsigned MaxRecurse) {
1313   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1314     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1315       Constant *Ops[] = { C0, C1 };
1316       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
1317     }
1318   }
1319
1320   // 0 shift by X -> 0
1321   if (match(Op0, m_Zero()))
1322     return Op0;
1323
1324   // X shift by 0 -> X
1325   if (match(Op1, m_Zero()))
1326     return Op0;
1327
1328   // Fold undefined shifts.
1329   if (isUndefShift(Op1))
1330     return UndefValue::get(Op0->getType());
1331
1332   // If the operation is with the result of a select instruction, check whether
1333   // operating on either branch of the select always yields the same value.
1334   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1335     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1336       return V;
1337
1338   // If the operation is with the result of a phi instruction, check whether
1339   // operating on all incoming values of the phi always yields the same value.
1340   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1341     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1342       return V;
1343
1344   return nullptr;
1345 }
1346
1347 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1348 /// fold the result.  If not, this returns null.
1349 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1350                                  bool isExact, const Query &Q,
1351                                  unsigned MaxRecurse) {
1352   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1353     return V;
1354
1355   // X >> X -> 0
1356   if (Op0 == Op1)
1357     return Constant::getNullValue(Op0->getType());
1358
1359   // undef >> X -> 0
1360   // undef >> X -> undef (if it's exact)
1361   if (match(Op0, m_Undef()))
1362     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1363
1364   // The low bit cannot be shifted out of an exact shift if it is set.
1365   if (isExact) {
1366     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1367     APInt Op0KnownZero(BitWidth, 0);
1368     APInt Op0KnownOne(BitWidth, 0);
1369     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1370                      Q.CxtI, Q.DT);
1371     if (Op0KnownOne[0])
1372       return Op0;
1373   }
1374
1375   return nullptr;
1376 }
1377
1378 /// SimplifyShlInst - Given operands for an Shl, see if we can
1379 /// fold the result.  If not, this returns null.
1380 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                               const Query &Q, unsigned MaxRecurse) {
1382   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1383     return V;
1384
1385   // undef << X -> 0
1386   // undef << X -> undef if (if it's NSW/NUW)
1387   if (match(Op0, m_Undef()))
1388     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1389
1390   // (X >> A) << A -> X
1391   Value *X;
1392   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1393     return X;
1394   return nullptr;
1395 }
1396
1397 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1398                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1399                              const DominatorTree *DT, AssumptionCache *AC,
1400                              const Instruction *CxtI) {
1401   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1402                            RecursionLimit);
1403 }
1404
1405 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1406 /// fold the result.  If not, this returns null.
1407 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1408                                const Query &Q, unsigned MaxRecurse) {
1409   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1410                                     MaxRecurse))
1411       return V;
1412
1413   // (X << A) >> A -> X
1414   Value *X;
1415   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1416     return X;
1417
1418   return nullptr;
1419 }
1420
1421 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1422                               const DataLayout &DL,
1423                               const TargetLibraryInfo *TLI,
1424                               const DominatorTree *DT, AssumptionCache *AC,
1425                               const Instruction *CxtI) {
1426   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1427                             RecursionLimit);
1428 }
1429
1430 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1431 /// fold the result.  If not, this returns null.
1432 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1433                                const Query &Q, unsigned MaxRecurse) {
1434   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1435                                     MaxRecurse))
1436     return V;
1437
1438   // all ones >>a X -> all ones
1439   if (match(Op0, m_AllOnes()))
1440     return Op0;
1441
1442   // (X << A) >> A -> X
1443   Value *X;
1444   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1445     return X;
1446
1447   // Arithmetic shifting an all-sign-bit value is a no-op.
1448   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1449   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1450     return Op0;
1451
1452   return nullptr;
1453 }
1454
1455 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1456                               const DataLayout &DL,
1457                               const TargetLibraryInfo *TLI,
1458                               const DominatorTree *DT, AssumptionCache *AC,
1459                               const Instruction *CxtI) {
1460   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1461                             RecursionLimit);
1462 }
1463
1464 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1465                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1466   Value *X, *Y;
1467
1468   ICmpInst::Predicate EqPred;
1469   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1470       !ICmpInst::isEquality(EqPred))
1471     return nullptr;
1472
1473   ICmpInst::Predicate UnsignedPred;
1474   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1475       ICmpInst::isUnsigned(UnsignedPred))
1476     ;
1477   else if (match(UnsignedICmp,
1478                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1479            ICmpInst::isUnsigned(UnsignedPred))
1480     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1481   else
1482     return nullptr;
1483
1484   // X < Y && Y != 0  -->  X < Y
1485   // X < Y || Y != 0  -->  Y != 0
1486   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1487     return IsAnd ? UnsignedICmp : ZeroICmp;
1488
1489   // X >= Y || Y != 0  -->  true
1490   // X >= Y || Y == 0  -->  X >= Y
1491   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1492     if (EqPred == ICmpInst::ICMP_NE)
1493       return getTrue(UnsignedICmp->getType());
1494     return UnsignedICmp;
1495   }
1496
1497   // X < Y && Y == 0  -->  false
1498   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1499       IsAnd)
1500     return getFalse(UnsignedICmp->getType());
1501
1502   return nullptr;
1503 }
1504
1505 // Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
1506 // of possible values cannot be satisfied.
1507 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1508   ICmpInst::Predicate Pred0, Pred1;
1509   ConstantInt *CI1, *CI2;
1510   Value *V;
1511
1512   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1513     return X;
1514
1515   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1516                          m_ConstantInt(CI2))))
1517    return nullptr;
1518
1519   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1520     return nullptr;
1521
1522   Type *ITy = Op0->getType();
1523
1524   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1525   bool isNSW = AddInst->hasNoSignedWrap();
1526   bool isNUW = AddInst->hasNoUnsignedWrap();
1527
1528   const APInt &CI1V = CI1->getValue();
1529   const APInt &CI2V = CI2->getValue();
1530   const APInt Delta = CI2V - CI1V;
1531   if (CI1V.isStrictlyPositive()) {
1532     if (Delta == 2) {
1533       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1534         return getFalse(ITy);
1535       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1536         return getFalse(ITy);
1537     }
1538     if (Delta == 1) {
1539       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1540         return getFalse(ITy);
1541       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1542         return getFalse(ITy);
1543     }
1544   }
1545   if (CI1V.getBoolValue() && isNUW) {
1546     if (Delta == 2)
1547       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1548         return getFalse(ITy);
1549     if (Delta == 1)
1550       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1551         return getFalse(ITy);
1552   }
1553
1554   return nullptr;
1555 }
1556
1557 /// SimplifyAndInst - Given operands for an And, see if we can
1558 /// fold the result.  If not, this returns null.
1559 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1560                               unsigned MaxRecurse) {
1561   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1562     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1563       Constant *Ops[] = { CLHS, CRHS };
1564       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1565                                       Ops, Q.DL, Q.TLI);
1566     }
1567
1568     // Canonicalize the constant to the RHS.
1569     std::swap(Op0, Op1);
1570   }
1571
1572   // X & undef -> 0
1573   if (match(Op1, m_Undef()))
1574     return Constant::getNullValue(Op0->getType());
1575
1576   // X & X = X
1577   if (Op0 == Op1)
1578     return Op0;
1579
1580   // X & 0 = 0
1581   if (match(Op1, m_Zero()))
1582     return Op1;
1583
1584   // X & -1 = X
1585   if (match(Op1, m_AllOnes()))
1586     return Op0;
1587
1588   // A & ~A  =  ~A & A  =  0
1589   if (match(Op0, m_Not(m_Specific(Op1))) ||
1590       match(Op1, m_Not(m_Specific(Op0))))
1591     return Constant::getNullValue(Op0->getType());
1592
1593   // (A | ?) & A = A
1594   Value *A = nullptr, *B = nullptr;
1595   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1596       (A == Op1 || B == Op1))
1597     return Op1;
1598
1599   // A & (A | ?) = A
1600   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1601       (A == Op0 || B == Op0))
1602     return Op0;
1603
1604   // A & (-A) = A if A is a power of two or zero.
1605   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1606       match(Op1, m_Neg(m_Specific(Op0)))) {
1607     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1608                                Q.DT))
1609       return Op0;
1610     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1611                                Q.DT))
1612       return Op1;
1613   }
1614
1615   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1616     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1617       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1618         return V;
1619       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1620         return V;
1621     }
1622   }
1623
1624   // Try some generic simplifications for associative operations.
1625   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1626                                           MaxRecurse))
1627     return V;
1628
1629   // And distributes over Or.  Try some generic simplifications based on this.
1630   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1631                              Q, MaxRecurse))
1632     return V;
1633
1634   // And distributes over Xor.  Try some generic simplifications based on this.
1635   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1636                              Q, MaxRecurse))
1637     return V;
1638
1639   // If the operation is with the result of a select instruction, check whether
1640   // operating on either branch of the select always yields the same value.
1641   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1642     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1643                                          MaxRecurse))
1644       return V;
1645
1646   // If the operation is with the result of a phi instruction, check whether
1647   // operating on all incoming values of the phi always yields the same value.
1648   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1649     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1650                                       MaxRecurse))
1651       return V;
1652
1653   return nullptr;
1654 }
1655
1656 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1657                              const TargetLibraryInfo *TLI,
1658                              const DominatorTree *DT, AssumptionCache *AC,
1659                              const Instruction *CxtI) {
1660   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1661                            RecursionLimit);
1662 }
1663
1664 // Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
1665 // contains all possible values.
1666 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1667   ICmpInst::Predicate Pred0, Pred1;
1668   ConstantInt *CI1, *CI2;
1669   Value *V;
1670
1671   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1672     return X;
1673
1674   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1675                          m_ConstantInt(CI2))))
1676    return nullptr;
1677
1678   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1679     return nullptr;
1680
1681   Type *ITy = Op0->getType();
1682
1683   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1684   bool isNSW = AddInst->hasNoSignedWrap();
1685   bool isNUW = AddInst->hasNoUnsignedWrap();
1686
1687   const APInt &CI1V = CI1->getValue();
1688   const APInt &CI2V = CI2->getValue();
1689   const APInt Delta = CI2V - CI1V;
1690   if (CI1V.isStrictlyPositive()) {
1691     if (Delta == 2) {
1692       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1693         return getTrue(ITy);
1694       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1695         return getTrue(ITy);
1696     }
1697     if (Delta == 1) {
1698       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1699         return getTrue(ITy);
1700       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1701         return getTrue(ITy);
1702     }
1703   }
1704   if (CI1V.getBoolValue() && isNUW) {
1705     if (Delta == 2)
1706       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1707         return getTrue(ITy);
1708     if (Delta == 1)
1709       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1710         return getTrue(ITy);
1711   }
1712
1713   return nullptr;
1714 }
1715
1716 /// SimplifyOrInst - Given operands for an Or, see if we can
1717 /// fold the result.  If not, this returns null.
1718 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1719                              unsigned MaxRecurse) {
1720   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1721     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1722       Constant *Ops[] = { CLHS, CRHS };
1723       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1724                                       Ops, Q.DL, Q.TLI);
1725     }
1726
1727     // Canonicalize the constant to the RHS.
1728     std::swap(Op0, Op1);
1729   }
1730
1731   // X | undef -> -1
1732   if (match(Op1, m_Undef()))
1733     return Constant::getAllOnesValue(Op0->getType());
1734
1735   // X | X = X
1736   if (Op0 == Op1)
1737     return Op0;
1738
1739   // X | 0 = X
1740   if (match(Op1, m_Zero()))
1741     return Op0;
1742
1743   // X | -1 = -1
1744   if (match(Op1, m_AllOnes()))
1745     return Op1;
1746
1747   // A | ~A  =  ~A | A  =  -1
1748   if (match(Op0, m_Not(m_Specific(Op1))) ||
1749       match(Op1, m_Not(m_Specific(Op0))))
1750     return Constant::getAllOnesValue(Op0->getType());
1751
1752   // (A & ?) | A = A
1753   Value *A = nullptr, *B = nullptr;
1754   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1755       (A == Op1 || B == Op1))
1756     return Op1;
1757
1758   // A | (A & ?) = A
1759   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1760       (A == Op0 || B == Op0))
1761     return Op0;
1762
1763   // ~(A & ?) | A = -1
1764   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1765       (A == Op1 || B == Op1))
1766     return Constant::getAllOnesValue(Op1->getType());
1767
1768   // A | ~(A & ?) = -1
1769   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1770       (A == Op0 || B == Op0))
1771     return Constant::getAllOnesValue(Op0->getType());
1772
1773   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1774     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1775       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1776         return V;
1777       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1778         return V;
1779     }
1780   }
1781
1782   // Try some generic simplifications for associative operations.
1783   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1784                                           MaxRecurse))
1785     return V;
1786
1787   // Or distributes over And.  Try some generic simplifications based on this.
1788   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1789                              MaxRecurse))
1790     return V;
1791
1792   // If the operation is with the result of a select instruction, check whether
1793   // operating on either branch of the select always yields the same value.
1794   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1795     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1796                                          MaxRecurse))
1797       return V;
1798
1799   // (A & C)|(B & D)
1800   Value *C = nullptr, *D = nullptr;
1801   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1802       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1803     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1804     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1805     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1806       // (A & C1)|(B & C2)
1807       // If we have: ((V + N) & C1) | (V & C2)
1808       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1809       // replace with V+N.
1810       Value *V1, *V2;
1811       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1812           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1813         // Add commutes, try both ways.
1814         if (V1 == B &&
1815             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1816           return A;
1817         if (V2 == B &&
1818             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1819           return A;
1820       }
1821       // Or commutes, try both ways.
1822       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1823           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1824         // Add commutes, try both ways.
1825         if (V1 == A &&
1826             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1827           return B;
1828         if (V2 == A &&
1829             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1830           return B;
1831       }
1832     }
1833   }
1834
1835   // If the operation is with the result of a phi instruction, check whether
1836   // operating on all incoming values of the phi always yields the same value.
1837   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1838     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1839       return V;
1840
1841   return nullptr;
1842 }
1843
1844 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1845                             const TargetLibraryInfo *TLI,
1846                             const DominatorTree *DT, AssumptionCache *AC,
1847                             const Instruction *CxtI) {
1848   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1849                           RecursionLimit);
1850 }
1851
1852 /// SimplifyXorInst - Given operands for a Xor, see if we can
1853 /// fold the result.  If not, this returns null.
1854 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1855                               unsigned MaxRecurse) {
1856   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1857     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1858       Constant *Ops[] = { CLHS, CRHS };
1859       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1860                                       Ops, Q.DL, Q.TLI);
1861     }
1862
1863     // Canonicalize the constant to the RHS.
1864     std::swap(Op0, Op1);
1865   }
1866
1867   // A ^ undef -> undef
1868   if (match(Op1, m_Undef()))
1869     return Op1;
1870
1871   // A ^ 0 = A
1872   if (match(Op1, m_Zero()))
1873     return Op0;
1874
1875   // A ^ A = 0
1876   if (Op0 == Op1)
1877     return Constant::getNullValue(Op0->getType());
1878
1879   // A ^ ~A  =  ~A ^ A  =  -1
1880   if (match(Op0, m_Not(m_Specific(Op1))) ||
1881       match(Op1, m_Not(m_Specific(Op0))))
1882     return Constant::getAllOnesValue(Op0->getType());
1883
1884   // Try some generic simplifications for associative operations.
1885   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1886                                           MaxRecurse))
1887     return V;
1888
1889   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1890   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1891   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1892   // only if B and C are equal.  If B and C are equal then (since we assume
1893   // that operands have already been simplified) "select(cond, B, C)" should
1894   // have been simplified to the common value of B and C already.  Analysing
1895   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1896   // for threading over phi nodes.
1897
1898   return nullptr;
1899 }
1900
1901 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
1902                              const TargetLibraryInfo *TLI,
1903                              const DominatorTree *DT, AssumptionCache *AC,
1904                              const Instruction *CxtI) {
1905   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1906                            RecursionLimit);
1907 }
1908
1909 static Type *GetCompareTy(Value *Op) {
1910   return CmpInst::makeCmpResultType(Op->getType());
1911 }
1912
1913 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1914 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1915 /// otherwise return null.  Helper function for analyzing max/min idioms.
1916 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1917                                          Value *LHS, Value *RHS) {
1918   SelectInst *SI = dyn_cast<SelectInst>(V);
1919   if (!SI)
1920     return nullptr;
1921   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1922   if (!Cmp)
1923     return nullptr;
1924   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1925   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1926     return Cmp;
1927   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1928       LHS == CmpRHS && RHS == CmpLHS)
1929     return Cmp;
1930   return nullptr;
1931 }
1932
1933 // A significant optimization not implemented here is assuming that alloca
1934 // addresses are not equal to incoming argument values. They don't *alias*,
1935 // as we say, but that doesn't mean they aren't equal, so we take a
1936 // conservative approach.
1937 //
1938 // This is inspired in part by C++11 5.10p1:
1939 //   "Two pointers of the same type compare equal if and only if they are both
1940 //    null, both point to the same function, or both represent the same
1941 //    address."
1942 //
1943 // This is pretty permissive.
1944 //
1945 // It's also partly due to C11 6.5.9p6:
1946 //   "Two pointers compare equal if and only if both are null pointers, both are
1947 //    pointers to the same object (including a pointer to an object and a
1948 //    subobject at its beginning) or function, both are pointers to one past the
1949 //    last element of the same array object, or one is a pointer to one past the
1950 //    end of one array object and the other is a pointer to the start of a
1951 //    different array object that happens to immediately follow the first array
1952 //    object in the address space.)
1953 //
1954 // C11's version is more restrictive, however there's no reason why an argument
1955 // couldn't be a one-past-the-end value for a stack object in the caller and be
1956 // equal to the beginning of a stack object in the callee.
1957 //
1958 // If the C and C++ standards are ever made sufficiently restrictive in this
1959 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1960 // this optimization.
1961 static Constant *computePointerICmp(const DataLayout &DL,
1962                                     const TargetLibraryInfo *TLI,
1963                                     CmpInst::Predicate Pred, Value *LHS,
1964                                     Value *RHS) {
1965   // First, skip past any trivial no-ops.
1966   LHS = LHS->stripPointerCasts();
1967   RHS = RHS->stripPointerCasts();
1968
1969   // A non-null pointer is not equal to a null pointer.
1970   if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
1971       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1972     return ConstantInt::get(GetCompareTy(LHS),
1973                             !CmpInst::isTrueWhenEqual(Pred));
1974
1975   // We can only fold certain predicates on pointer comparisons.
1976   switch (Pred) {
1977   default:
1978     return nullptr;
1979
1980     // Equality comaprisons are easy to fold.
1981   case CmpInst::ICMP_EQ:
1982   case CmpInst::ICMP_NE:
1983     break;
1984
1985     // We can only handle unsigned relational comparisons because 'inbounds' on
1986     // a GEP only protects against unsigned wrapping.
1987   case CmpInst::ICMP_UGT:
1988   case CmpInst::ICMP_UGE:
1989   case CmpInst::ICMP_ULT:
1990   case CmpInst::ICMP_ULE:
1991     // However, we have to switch them to their signed variants to handle
1992     // negative indices from the base pointer.
1993     Pred = ICmpInst::getSignedPredicate(Pred);
1994     break;
1995   }
1996
1997   // Strip off any constant offsets so that we can reason about them.
1998   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1999   // here and compare base addresses like AliasAnalysis does, however there are
2000   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2001   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2002   // doesn't need to guarantee pointer inequality when it says NoAlias.
2003   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2004   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2005
2006   // If LHS and RHS are related via constant offsets to the same base
2007   // value, we can replace it with an icmp which just compares the offsets.
2008   if (LHS == RHS)
2009     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2010
2011   // Various optimizations for (in)equality comparisons.
2012   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2013     // Different non-empty allocations that exist at the same time have
2014     // different addresses (if the program can tell). Global variables always
2015     // exist, so they always exist during the lifetime of each other and all
2016     // allocas. Two different allocas usually have different addresses...
2017     //
2018     // However, if there's an @llvm.stackrestore dynamically in between two
2019     // allocas, they may have the same address. It's tempting to reduce the
2020     // scope of the problem by only looking at *static* allocas here. That would
2021     // cover the majority of allocas while significantly reducing the likelihood
2022     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2023     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2024     // an entry block. Also, if we have a block that's not attached to a
2025     // function, we can't tell if it's "static" under the current definition.
2026     // Theoretically, this problem could be fixed by creating a new kind of
2027     // instruction kind specifically for static allocas. Such a new instruction
2028     // could be required to be at the top of the entry block, thus preventing it
2029     // from being subject to a @llvm.stackrestore. Instcombine could even
2030     // convert regular allocas into these special allocas. It'd be nifty.
2031     // However, until then, this problem remains open.
2032     //
2033     // So, we'll assume that two non-empty allocas have different addresses
2034     // for now.
2035     //
2036     // With all that, if the offsets are within the bounds of their allocations
2037     // (and not one-past-the-end! so we can't use inbounds!), and their
2038     // allocations aren't the same, the pointers are not equal.
2039     //
2040     // Note that it's not necessary to check for LHS being a global variable
2041     // address, due to canonicalization and constant folding.
2042     if (isa<AllocaInst>(LHS) &&
2043         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2044       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2045       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2046       uint64_t LHSSize, RHSSize;
2047       if (LHSOffsetCI && RHSOffsetCI &&
2048           getObjectSize(LHS, LHSSize, DL, TLI) &&
2049           getObjectSize(RHS, RHSSize, DL, TLI)) {
2050         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2051         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2052         if (!LHSOffsetValue.isNegative() &&
2053             !RHSOffsetValue.isNegative() &&
2054             LHSOffsetValue.ult(LHSSize) &&
2055             RHSOffsetValue.ult(RHSSize)) {
2056           return ConstantInt::get(GetCompareTy(LHS),
2057                                   !CmpInst::isTrueWhenEqual(Pred));
2058         }
2059       }
2060
2061       // Repeat the above check but this time without depending on DataLayout
2062       // or being able to compute a precise size.
2063       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2064           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2065           LHSOffset->isNullValue() &&
2066           RHSOffset->isNullValue())
2067         return ConstantInt::get(GetCompareTy(LHS),
2068                                 !CmpInst::isTrueWhenEqual(Pred));
2069     }
2070
2071     // Even if an non-inbounds GEP occurs along the path we can still optimize
2072     // equality comparisons concerning the result. We avoid walking the whole
2073     // chain again by starting where the last calls to
2074     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2075     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2076     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2077     if (LHS == RHS)
2078       return ConstantExpr::getICmp(Pred,
2079                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2080                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2081
2082     // If one side of the equality comparison must come from a noalias call
2083     // (meaning a system memory allocation function), and the other side must
2084     // come from a pointer that cannot overlap with dynamically-allocated
2085     // memory within the lifetime of the current function (allocas, byval
2086     // arguments, globals), then determine the comparison result here.
2087     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2088     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2089     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2090
2091     // Is the set of underlying objects all noalias calls?
2092     auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
2093       return std::all_of(Objects.begin(), Objects.end(),
2094                          [](Value *V){ return isNoAliasCall(V); });
2095     };
2096
2097     // Is the set of underlying objects all things which must be disjoint from
2098     // noalias calls. For allocas, we consider only static ones (dynamic
2099     // allocas might be transformed into calls to malloc not simultaneously
2100     // live with the compared-to allocation). For globals, we exclude symbols
2101     // that might be resolve lazily to symbols in another dynamically-loaded
2102     // library (and, thus, could be malloc'ed by the implementation).
2103     auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
2104       return std::all_of(Objects.begin(), Objects.end(),
2105                          [](Value *V){
2106                            if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2107                              return AI->getParent() && AI->getParent()->getParent() &&
2108                                     AI->isStaticAlloca();
2109                            if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2110                              return (GV->hasLocalLinkage() ||
2111                                      GV->hasHiddenVisibility() ||
2112                                      GV->hasProtectedVisibility() ||
2113                                      GV->hasUnnamedAddr()) &&
2114                                     !GV->isThreadLocal();
2115                            if (const Argument *A = dyn_cast<Argument>(V))
2116                              return A->hasByValAttr();
2117                            return false;
2118                          });
2119     };
2120
2121     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2122         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2123         return ConstantInt::get(GetCompareTy(LHS),
2124                                 !CmpInst::isTrueWhenEqual(Pred));
2125   }
2126
2127   // Otherwise, fail.
2128   return nullptr;
2129 }
2130
2131 /// Return true if B is known to be implied by A.  A & B must be i1 (boolean)
2132 /// values or a vector of such values. Note that the truth table for
2133 /// implication is the same as <=u on i1 values (but not <=s!).  The truth
2134 /// table for both is: 
2135 ///    | T | F (B)
2136 ///  T | T | F
2137 ///  F | T | T
2138 /// (A)
2139 static bool implies(Value *A, Value *B) {
2140   assert(A->getType() == B->getType() && "mismatched type");
2141   Type *OpTy = A->getType();
2142   assert(OpTy->getScalarType()->isIntegerTy(1));
2143   
2144   // A ==> A by definition
2145   if (A == B) return true;
2146
2147   if (OpTy->isVectorTy())
2148     // TODO: extending the code below to handle vectors
2149     return false;
2150   assert(OpTy->isIntegerTy(1) && "implied by above");
2151
2152   ICmpInst::Predicate APred, BPred;
2153   Value *I;
2154   Value *L;
2155   ConstantInt *CI;
2156   // i +_{nsw} C_{>0} <s L ==> i <s L
2157   if (match(A, m_ICmp(APred,
2158                       m_NSWAdd(m_Value(I), m_ConstantInt(CI)),
2159                       m_Value(L))) &&
2160       APred == ICmpInst::ICMP_SLT &&
2161       !CI->isNegative() &&
2162       match(B, m_ICmp(BPred, m_Specific(I), m_Specific(L))) &&
2163       BPred == ICmpInst::ICMP_SLT)
2164     return true;
2165
2166   // i +_{nuw} C_{>0} <u L ==> i <u L
2167   if (match(A, m_ICmp(APred,
2168                       m_NUWAdd(m_Value(I), m_ConstantInt(CI)),
2169                       m_Value(L))) &&
2170       APred == ICmpInst::ICMP_ULT &&
2171       !CI->isNegative() &&
2172       match(B, m_ICmp(BPred, m_Specific(I), m_Specific(L))) &&
2173       BPred == ICmpInst::ICMP_ULT)
2174     return true;
2175
2176   return false;
2177 }
2178
2179 static ConstantRange GetConstantRangeFromMetadata(MDNode *Ranges, uint32_t BitWidth) {
2180   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2181   assert(NumRanges >= 1);
2182
2183   ConstantRange CR(BitWidth, false);
2184   for (unsigned i = 0; i < NumRanges; ++i) {
2185     auto *Low =
2186         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2187     auto *High =
2188         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2189
2190     // Union will merge two ranges to one and potentially introduce a range
2191     // not covered by the original two ranges. For example, [1, 5) and [8, 10)
2192     // will become [1, 10). In this case, we can not fold comparison between
2193     // constant 6 and a value of the above ranges. In practice, most values
2194     // have only one range, so it might not be worth handling this by
2195     // introducing additional complexity.
2196     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
2197   }
2198
2199   return CR;
2200 }
2201
2202 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
2203 /// fold the result.  If not, this returns null.
2204 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2205                                const Query &Q, unsigned MaxRecurse) {
2206   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2207   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2208
2209   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2210     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2211       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2212
2213     // If we have a constant, make sure it is on the RHS.
2214     std::swap(LHS, RHS);
2215     Pred = CmpInst::getSwappedPredicate(Pred);
2216   }
2217
2218   Type *ITy = GetCompareTy(LHS); // The return type.
2219   Type *OpTy = LHS->getType();   // The operand type.
2220
2221   // icmp X, X -> true/false
2222   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2223   // because X could be 0.
2224   if (LHS == RHS || isa<UndefValue>(RHS))
2225     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2226
2227   // Special case logic when the operands have i1 type.
2228   if (OpTy->getScalarType()->isIntegerTy(1)) {
2229     switch (Pred) {
2230     default: break;
2231     case ICmpInst::ICMP_EQ:
2232       // X == 1 -> X
2233       if (match(RHS, m_One()))
2234         return LHS;
2235       break;
2236     case ICmpInst::ICMP_NE:
2237       // X != 0 -> X
2238       if (match(RHS, m_Zero()))
2239         return LHS;
2240       break;
2241     case ICmpInst::ICMP_UGT:
2242       // X >u 0 -> X
2243       if (match(RHS, m_Zero()))
2244         return LHS;
2245       break;
2246     case ICmpInst::ICMP_UGE:
2247       // X >=u 1 -> X
2248       if (match(RHS, m_One()))
2249         return LHS;
2250       if (implies(RHS, LHS))
2251         return getTrue(ITy);
2252       break;
2253     case ICmpInst::ICMP_SLT:
2254       // X <s 0 -> X
2255       if (match(RHS, m_Zero()))
2256         return LHS;
2257       break;
2258     case ICmpInst::ICMP_SLE:
2259       // X <=s -1 -> X
2260       if (match(RHS, m_One()))
2261         return LHS;
2262       break;
2263     case ICmpInst::ICMP_ULE:
2264       if (implies(LHS, RHS))
2265         return getTrue(ITy);
2266       break;
2267     }
2268   }
2269
2270   // If we are comparing with zero then try hard since this is a common case.
2271   if (match(RHS, m_Zero())) {
2272     bool LHSKnownNonNegative, LHSKnownNegative;
2273     switch (Pred) {
2274     default: llvm_unreachable("Unknown ICmp predicate!");
2275     case ICmpInst::ICMP_ULT:
2276       return getFalse(ITy);
2277     case ICmpInst::ICMP_UGE:
2278       return getTrue(ITy);
2279     case ICmpInst::ICMP_EQ:
2280     case ICmpInst::ICMP_ULE:
2281       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2282         return getFalse(ITy);
2283       break;
2284     case ICmpInst::ICMP_NE:
2285     case ICmpInst::ICMP_UGT:
2286       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2287         return getTrue(ITy);
2288       break;
2289     case ICmpInst::ICMP_SLT:
2290       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2291                      Q.CxtI, Q.DT);
2292       if (LHSKnownNegative)
2293         return getTrue(ITy);
2294       if (LHSKnownNonNegative)
2295         return getFalse(ITy);
2296       break;
2297     case ICmpInst::ICMP_SLE:
2298       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2299                      Q.CxtI, Q.DT);
2300       if (LHSKnownNegative)
2301         return getTrue(ITy);
2302       if (LHSKnownNonNegative &&
2303           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2304         return getFalse(ITy);
2305       break;
2306     case ICmpInst::ICMP_SGE:
2307       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2308                      Q.CxtI, Q.DT);
2309       if (LHSKnownNegative)
2310         return getFalse(ITy);
2311       if (LHSKnownNonNegative)
2312         return getTrue(ITy);
2313       break;
2314     case ICmpInst::ICMP_SGT:
2315       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2316                      Q.CxtI, Q.DT);
2317       if (LHSKnownNegative)
2318         return getFalse(ITy);
2319       if (LHSKnownNonNegative &&
2320           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2321         return getTrue(ITy);
2322       break;
2323     }
2324   }
2325
2326   // See if we are doing a comparison with a constant integer.
2327   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2328     // Rule out tautological comparisons (eg., ult 0 or uge 0).
2329     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
2330     if (RHS_CR.isEmptySet())
2331       return ConstantInt::getFalse(CI->getContext());
2332     if (RHS_CR.isFullSet())
2333       return ConstantInt::getTrue(CI->getContext());
2334
2335     // Many binary operators with constant RHS have easy to compute constant
2336     // range.  Use them to check whether the comparison is a tautology.
2337     unsigned Width = CI->getBitWidth();
2338     APInt Lower = APInt(Width, 0);
2339     APInt Upper = APInt(Width, 0);
2340     ConstantInt *CI2;
2341     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
2342       // 'urem x, CI2' produces [0, CI2).
2343       Upper = CI2->getValue();
2344     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
2345       // 'srem x, CI2' produces (-|CI2|, |CI2|).
2346       Upper = CI2->getValue().abs();
2347       Lower = (-Upper) + 1;
2348     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
2349       // 'udiv CI2, x' produces [0, CI2].
2350       Upper = CI2->getValue() + 1;
2351     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
2352       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
2353       APInt NegOne = APInt::getAllOnesValue(Width);
2354       if (!CI2->isZero())
2355         Upper = NegOne.udiv(CI2->getValue()) + 1;
2356     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
2357       if (CI2->isMinSignedValue()) {
2358         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2359         Lower = CI2->getValue();
2360         Upper = Lower.lshr(1) + 1;
2361       } else {
2362         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
2363         Upper = CI2->getValue().abs() + 1;
2364         Lower = (-Upper) + 1;
2365       }
2366     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
2367       APInt IntMin = APInt::getSignedMinValue(Width);
2368       APInt IntMax = APInt::getSignedMaxValue(Width);
2369       APInt Val = CI2->getValue();
2370       if (Val.isAllOnesValue()) {
2371         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2372         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2373         Lower = IntMin + 1;
2374         Upper = IntMax + 1;
2375       } else if (Val.countLeadingZeros() < Width - 1) {
2376         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
2377         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2378         Lower = IntMin.sdiv(Val);
2379         Upper = IntMax.sdiv(Val);
2380         if (Lower.sgt(Upper))
2381           std::swap(Lower, Upper);
2382         Upper = Upper + 1;
2383         assert(Upper != Lower && "Upper part of range has wrapped!");
2384       }
2385     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
2386       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
2387       Lower = CI2->getValue();
2388       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2389     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
2390       if (CI2->isNegative()) {
2391         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
2392         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
2393         Lower = CI2->getValue().shl(ShiftAmount);
2394         Upper = CI2->getValue() + 1;
2395       } else {
2396         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
2397         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
2398         Lower = CI2->getValue();
2399         Upper = CI2->getValue().shl(ShiftAmount) + 1;
2400       }
2401     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
2402       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2403       APInt NegOne = APInt::getAllOnesValue(Width);
2404       if (CI2->getValue().ult(Width))
2405         Upper = NegOne.lshr(CI2->getValue()) + 1;
2406     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
2407       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
2408       unsigned ShiftAmount = Width - 1;
2409       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2410         ShiftAmount = CI2->getValue().countTrailingZeros();
2411       Lower = CI2->getValue().lshr(ShiftAmount);
2412       Upper = CI2->getValue() + 1;
2413     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2414       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2415       APInt IntMin = APInt::getSignedMinValue(Width);
2416       APInt IntMax = APInt::getSignedMaxValue(Width);
2417       if (CI2->getValue().ult(Width)) {
2418         Lower = IntMin.ashr(CI2->getValue());
2419         Upper = IntMax.ashr(CI2->getValue()) + 1;
2420       }
2421     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
2422       unsigned ShiftAmount = Width - 1;
2423       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2424         ShiftAmount = CI2->getValue().countTrailingZeros();
2425       if (CI2->isNegative()) {
2426         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
2427         Lower = CI2->getValue();
2428         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
2429       } else {
2430         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
2431         Lower = CI2->getValue().ashr(ShiftAmount);
2432         Upper = CI2->getValue() + 1;
2433       }
2434     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2435       // 'or x, CI2' produces [CI2, UINT_MAX].
2436       Lower = CI2->getValue();
2437     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2438       // 'and x, CI2' produces [0, CI2].
2439       Upper = CI2->getValue() + 1;
2440     } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) {
2441       // 'add nuw x, CI2' produces [CI2, UINT_MAX].
2442       Lower = CI2->getValue();
2443     }
2444
2445     ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper)
2446                                           : ConstantRange(Width, true);
2447
2448     if (auto *I = dyn_cast<Instruction>(LHS))
2449       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2450         LHS_CR = LHS_CR.intersectWith(GetConstantRangeFromMetadata(Ranges, Width));
2451
2452     if (!LHS_CR.isFullSet()) {
2453       if (RHS_CR.contains(LHS_CR))
2454         return ConstantInt::getTrue(RHS->getContext());
2455       if (RHS_CR.inverse().contains(LHS_CR))
2456         return ConstantInt::getFalse(RHS->getContext());
2457     }
2458   }
2459
2460   // If both operands have range metadata, use the metadata
2461   // to simplify the comparison.
2462   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2463     auto RHS_Instr = dyn_cast<Instruction>(RHS);
2464     auto LHS_Instr = dyn_cast<Instruction>(LHS);
2465
2466     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2467         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2468       uint32_t BitWidth = Q.DL.getTypeSizeInBits(RHS->getType());
2469
2470       auto RHS_CR = GetConstantRangeFromMetadata(
2471           RHS_Instr->getMetadata(LLVMContext::MD_range), BitWidth);
2472       auto LHS_CR = GetConstantRangeFromMetadata(
2473           LHS_Instr->getMetadata(LLVMContext::MD_range), BitWidth);
2474
2475       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2476       if (Satisfied_CR.contains(LHS_CR))
2477         return ConstantInt::getTrue(RHS->getContext());
2478
2479       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2480                 CmpInst::getInversePredicate(Pred), RHS_CR);
2481       if (InversedSatisfied_CR.contains(LHS_CR))
2482         return ConstantInt::getFalse(RHS->getContext());
2483     }
2484   }
2485
2486   // Compare of cast, for example (zext X) != 0 -> X != 0
2487   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2488     Instruction *LI = cast<CastInst>(LHS);
2489     Value *SrcOp = LI->getOperand(0);
2490     Type *SrcTy = SrcOp->getType();
2491     Type *DstTy = LI->getType();
2492
2493     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2494     // if the integer type is the same size as the pointer type.
2495     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2496         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2497       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2498         // Transfer the cast to the constant.
2499         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2500                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
2501                                         Q, MaxRecurse-1))
2502           return V;
2503       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2504         if (RI->getOperand(0)->getType() == SrcTy)
2505           // Compare without the cast.
2506           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2507                                           Q, MaxRecurse-1))
2508             return V;
2509       }
2510     }
2511
2512     if (isa<ZExtInst>(LHS)) {
2513       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2514       // same type.
2515       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2516         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2517           // Compare X and Y.  Note that signed predicates become unsigned.
2518           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2519                                           SrcOp, RI->getOperand(0), Q,
2520                                           MaxRecurse-1))
2521             return V;
2522       }
2523       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2524       // too.  If not, then try to deduce the result of the comparison.
2525       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2526         // Compute the constant that would happen if we truncated to SrcTy then
2527         // reextended to DstTy.
2528         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2529         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2530
2531         // If the re-extended constant didn't change then this is effectively
2532         // also a case of comparing two zero-extended values.
2533         if (RExt == CI && MaxRecurse)
2534           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2535                                         SrcOp, Trunc, Q, MaxRecurse-1))
2536             return V;
2537
2538         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2539         // there.  Use this to work out the result of the comparison.
2540         if (RExt != CI) {
2541           switch (Pred) {
2542           default: llvm_unreachable("Unknown ICmp predicate!");
2543           // LHS <u RHS.
2544           case ICmpInst::ICMP_EQ:
2545           case ICmpInst::ICMP_UGT:
2546           case ICmpInst::ICMP_UGE:
2547             return ConstantInt::getFalse(CI->getContext());
2548
2549           case ICmpInst::ICMP_NE:
2550           case ICmpInst::ICMP_ULT:
2551           case ICmpInst::ICMP_ULE:
2552             return ConstantInt::getTrue(CI->getContext());
2553
2554           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2555           // is non-negative then LHS <s RHS.
2556           case ICmpInst::ICMP_SGT:
2557           case ICmpInst::ICMP_SGE:
2558             return CI->getValue().isNegative() ?
2559               ConstantInt::getTrue(CI->getContext()) :
2560               ConstantInt::getFalse(CI->getContext());
2561
2562           case ICmpInst::ICMP_SLT:
2563           case ICmpInst::ICMP_SLE:
2564             return CI->getValue().isNegative() ?
2565               ConstantInt::getFalse(CI->getContext()) :
2566               ConstantInt::getTrue(CI->getContext());
2567           }
2568         }
2569       }
2570     }
2571
2572     if (isa<SExtInst>(LHS)) {
2573       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2574       // same type.
2575       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2576         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2577           // Compare X and Y.  Note that the predicate does not change.
2578           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2579                                           Q, MaxRecurse-1))
2580             return V;
2581       }
2582       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2583       // too.  If not, then try to deduce the result of the comparison.
2584       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2585         // Compute the constant that would happen if we truncated to SrcTy then
2586         // reextended to DstTy.
2587         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2588         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2589
2590         // If the re-extended constant didn't change then this is effectively
2591         // also a case of comparing two sign-extended values.
2592         if (RExt == CI && MaxRecurse)
2593           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2594             return V;
2595
2596         // Otherwise the upper bits of LHS are all equal, while RHS has varying
2597         // bits there.  Use this to work out the result of the comparison.
2598         if (RExt != CI) {
2599           switch (Pred) {
2600           default: llvm_unreachable("Unknown ICmp predicate!");
2601           case ICmpInst::ICMP_EQ:
2602             return ConstantInt::getFalse(CI->getContext());
2603           case ICmpInst::ICMP_NE:
2604             return ConstantInt::getTrue(CI->getContext());
2605
2606           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2607           // LHS >s RHS.
2608           case ICmpInst::ICMP_SGT:
2609           case ICmpInst::ICMP_SGE:
2610             return CI->getValue().isNegative() ?
2611               ConstantInt::getTrue(CI->getContext()) :
2612               ConstantInt::getFalse(CI->getContext());
2613           case ICmpInst::ICMP_SLT:
2614           case ICmpInst::ICMP_SLE:
2615             return CI->getValue().isNegative() ?
2616               ConstantInt::getFalse(CI->getContext()) :
2617               ConstantInt::getTrue(CI->getContext());
2618
2619           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2620           // LHS >u RHS.
2621           case ICmpInst::ICMP_UGT:
2622           case ICmpInst::ICMP_UGE:
2623             // Comparison is true iff the LHS <s 0.
2624             if (MaxRecurse)
2625               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2626                                               Constant::getNullValue(SrcTy),
2627                                               Q, MaxRecurse-1))
2628                 return V;
2629             break;
2630           case ICmpInst::ICMP_ULT:
2631           case ICmpInst::ICMP_ULE:
2632             // Comparison is true iff the LHS >=s 0.
2633             if (MaxRecurse)
2634               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2635                                               Constant::getNullValue(SrcTy),
2636                                               Q, MaxRecurse-1))
2637                 return V;
2638             break;
2639           }
2640         }
2641       }
2642     }
2643   }
2644
2645   // Special logic for binary operators.
2646   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2647   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2648   if (MaxRecurse && (LBO || RBO)) {
2649     // Analyze the case when either LHS or RHS is an add instruction.
2650     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2651     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2652     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2653     if (LBO && LBO->getOpcode() == Instruction::Add) {
2654       A = LBO->getOperand(0); B = LBO->getOperand(1);
2655       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2656         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2657         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2658     }
2659     if (RBO && RBO->getOpcode() == Instruction::Add) {
2660       C = RBO->getOperand(0); D = RBO->getOperand(1);
2661       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2662         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2663         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2664     }
2665
2666     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2667     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2668       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2669                                       Constant::getNullValue(RHS->getType()),
2670                                       Q, MaxRecurse-1))
2671         return V;
2672
2673     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2674     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2675       if (Value *V = SimplifyICmpInst(Pred,
2676                                       Constant::getNullValue(LHS->getType()),
2677                                       C == LHS ? D : C, Q, MaxRecurse-1))
2678         return V;
2679
2680     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2681     if (A && C && (A == C || A == D || B == C || B == D) &&
2682         NoLHSWrapProblem && NoRHSWrapProblem) {
2683       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2684       Value *Y, *Z;
2685       if (A == C) {
2686         // C + B == C + D  ->  B == D
2687         Y = B;
2688         Z = D;
2689       } else if (A == D) {
2690         // D + B == C + D  ->  B == C
2691         Y = B;
2692         Z = C;
2693       } else if (B == C) {
2694         // A + C == C + D  ->  A == D
2695         Y = A;
2696         Z = D;
2697       } else {
2698         assert(B == D);
2699         // A + D == C + D  ->  A == C
2700         Y = A;
2701         Z = C;
2702       }
2703       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2704         return V;
2705     }
2706   }
2707
2708   // icmp pred (or X, Y), X
2709   if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
2710                                     m_Or(m_Specific(RHS), m_Value())))) {
2711     if (Pred == ICmpInst::ICMP_ULT)
2712       return getFalse(ITy);
2713     if (Pred == ICmpInst::ICMP_UGE)
2714       return getTrue(ITy);
2715   }
2716   // icmp pred X, (or X, Y)
2717   if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
2718                                     m_Or(m_Specific(LHS), m_Value())))) {
2719     if (Pred == ICmpInst::ICMP_ULE)
2720       return getTrue(ITy);
2721     if (Pred == ICmpInst::ICMP_UGT)
2722       return getFalse(ITy);
2723   }
2724
2725   // icmp pred (and X, Y), X
2726   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2727                                     m_And(m_Specific(RHS), m_Value())))) {
2728     if (Pred == ICmpInst::ICMP_UGT)
2729       return getFalse(ITy);
2730     if (Pred == ICmpInst::ICMP_ULE)
2731       return getTrue(ITy);
2732   }
2733   // icmp pred X, (and X, Y)
2734   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2735                                     m_And(m_Specific(LHS), m_Value())))) {
2736     if (Pred == ICmpInst::ICMP_UGE)
2737       return getTrue(ITy);
2738     if (Pred == ICmpInst::ICMP_ULT)
2739       return getFalse(ITy);
2740   }
2741
2742   // 0 - (zext X) pred C
2743   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2744     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2745       if (RHSC->getValue().isStrictlyPositive()) {
2746         if (Pred == ICmpInst::ICMP_SLT)
2747           return ConstantInt::getTrue(RHSC->getContext());
2748         if (Pred == ICmpInst::ICMP_SGE)
2749           return ConstantInt::getFalse(RHSC->getContext());
2750         if (Pred == ICmpInst::ICMP_EQ)
2751           return ConstantInt::getFalse(RHSC->getContext());
2752         if (Pred == ICmpInst::ICMP_NE)
2753           return ConstantInt::getTrue(RHSC->getContext());
2754       }
2755       if (RHSC->getValue().isNonNegative()) {
2756         if (Pred == ICmpInst::ICMP_SLE)
2757           return ConstantInt::getTrue(RHSC->getContext());
2758         if (Pred == ICmpInst::ICMP_SGT)
2759           return ConstantInt::getFalse(RHSC->getContext());
2760       }
2761     }
2762   }
2763
2764   // icmp pred (urem X, Y), Y
2765   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2766     bool KnownNonNegative, KnownNegative;
2767     switch (Pred) {
2768     default:
2769       break;
2770     case ICmpInst::ICMP_SGT:
2771     case ICmpInst::ICMP_SGE:
2772       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2773                      Q.CxtI, Q.DT);
2774       if (!KnownNonNegative)
2775         break;
2776       // fall-through
2777     case ICmpInst::ICMP_EQ:
2778     case ICmpInst::ICMP_UGT:
2779     case ICmpInst::ICMP_UGE:
2780       return getFalse(ITy);
2781     case ICmpInst::ICMP_SLT:
2782     case ICmpInst::ICMP_SLE:
2783       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2784                      Q.CxtI, Q.DT);
2785       if (!KnownNonNegative)
2786         break;
2787       // fall-through
2788     case ICmpInst::ICMP_NE:
2789     case ICmpInst::ICMP_ULT:
2790     case ICmpInst::ICMP_ULE:
2791       return getTrue(ITy);
2792     }
2793   }
2794
2795   // icmp pred X, (urem Y, X)
2796   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2797     bool KnownNonNegative, KnownNegative;
2798     switch (Pred) {
2799     default:
2800       break;
2801     case ICmpInst::ICMP_SGT:
2802     case ICmpInst::ICMP_SGE:
2803       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2804                      Q.CxtI, Q.DT);
2805       if (!KnownNonNegative)
2806         break;
2807       // fall-through
2808     case ICmpInst::ICMP_NE:
2809     case ICmpInst::ICMP_UGT:
2810     case ICmpInst::ICMP_UGE:
2811       return getTrue(ITy);
2812     case ICmpInst::ICMP_SLT:
2813     case ICmpInst::ICMP_SLE:
2814       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2815                      Q.CxtI, Q.DT);
2816       if (!KnownNonNegative)
2817         break;
2818       // fall-through
2819     case ICmpInst::ICMP_EQ:
2820     case ICmpInst::ICMP_ULT:
2821     case ICmpInst::ICMP_ULE:
2822       return getFalse(ITy);
2823     }
2824   }
2825
2826   // x udiv y <=u x.
2827   if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2828     // icmp pred (X /u Y), X
2829     if (Pred == ICmpInst::ICMP_UGT)
2830       return getFalse(ITy);
2831     if (Pred == ICmpInst::ICMP_ULE)
2832       return getTrue(ITy);
2833   }
2834
2835   // handle:
2836   //   CI2 << X == CI
2837   //   CI2 << X != CI
2838   //
2839   //   where CI2 is a power of 2 and CI isn't
2840   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2841     const APInt *CI2Val, *CIVal = &CI->getValue();
2842     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2843         CI2Val->isPowerOf2()) {
2844       if (!CIVal->isPowerOf2()) {
2845         // CI2 << X can equal zero in some circumstances,
2846         // this simplification is unsafe if CI is zero.
2847         //
2848         // We know it is safe if:
2849         // - The shift is nsw, we can't shift out the one bit.
2850         // - The shift is nuw, we can't shift out the one bit.
2851         // - CI2 is one
2852         // - CI isn't zero
2853         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2854             *CI2Val == 1 || !CI->isZero()) {
2855           if (Pred == ICmpInst::ICMP_EQ)
2856             return ConstantInt::getFalse(RHS->getContext());
2857           if (Pred == ICmpInst::ICMP_NE)
2858             return ConstantInt::getTrue(RHS->getContext());
2859         }
2860       }
2861       if (CIVal->isSignBit() && *CI2Val == 1) {
2862         if (Pred == ICmpInst::ICMP_UGT)
2863           return ConstantInt::getFalse(RHS->getContext());
2864         if (Pred == ICmpInst::ICMP_ULE)
2865           return ConstantInt::getTrue(RHS->getContext());
2866       }
2867     }
2868   }
2869
2870   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2871       LBO->getOperand(1) == RBO->getOperand(1)) {
2872     switch (LBO->getOpcode()) {
2873     default: break;
2874     case Instruction::UDiv:
2875     case Instruction::LShr:
2876       if (ICmpInst::isSigned(Pred))
2877         break;
2878       // fall-through
2879     case Instruction::SDiv:
2880     case Instruction::AShr:
2881       if (!LBO->isExact() || !RBO->isExact())
2882         break;
2883       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2884                                       RBO->getOperand(0), Q, MaxRecurse-1))
2885         return V;
2886       break;
2887     case Instruction::Shl: {
2888       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2889       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2890       if (!NUW && !NSW)
2891         break;
2892       if (!NSW && ICmpInst::isSigned(Pred))
2893         break;
2894       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2895                                       RBO->getOperand(0), Q, MaxRecurse-1))
2896         return V;
2897       break;
2898     }
2899     }
2900   }
2901
2902   // Simplify comparisons involving max/min.
2903   Value *A, *B;
2904   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2905   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2906
2907   // Signed variants on "max(a,b)>=a -> true".
2908   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2909     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2910     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2911     // We analyze this as smax(A, B) pred A.
2912     P = Pred;
2913   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2914              (A == LHS || B == LHS)) {
2915     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2916     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2917     // We analyze this as smax(A, B) swapped-pred A.
2918     P = CmpInst::getSwappedPredicate(Pred);
2919   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2920              (A == RHS || B == RHS)) {
2921     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2922     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2923     // We analyze this as smax(-A, -B) swapped-pred -A.
2924     // Note that we do not need to actually form -A or -B thanks to EqP.
2925     P = CmpInst::getSwappedPredicate(Pred);
2926   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2927              (A == LHS || B == LHS)) {
2928     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2929     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2930     // We analyze this as smax(-A, -B) pred -A.
2931     // Note that we do not need to actually form -A or -B thanks to EqP.
2932     P = Pred;
2933   }
2934   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2935     // Cases correspond to "max(A, B) p A".
2936     switch (P) {
2937     default:
2938       break;
2939     case CmpInst::ICMP_EQ:
2940     case CmpInst::ICMP_SLE:
2941       // Equivalent to "A EqP B".  This may be the same as the condition tested
2942       // in the max/min; if so, we can just return that.
2943       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2944         return V;
2945       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2946         return V;
2947       // Otherwise, see if "A EqP B" simplifies.
2948       if (MaxRecurse)
2949         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2950           return V;
2951       break;
2952     case CmpInst::ICMP_NE:
2953     case CmpInst::ICMP_SGT: {
2954       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2955       // Equivalent to "A InvEqP B".  This may be the same as the condition
2956       // tested in the max/min; if so, we can just return that.
2957       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2958         return V;
2959       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2960         return V;
2961       // Otherwise, see if "A InvEqP B" simplifies.
2962       if (MaxRecurse)
2963         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2964           return V;
2965       break;
2966     }
2967     case CmpInst::ICMP_SGE:
2968       // Always true.
2969       return getTrue(ITy);
2970     case CmpInst::ICMP_SLT:
2971       // Always false.
2972       return getFalse(ITy);
2973     }
2974   }
2975
2976   // Unsigned variants on "max(a,b)>=a -> true".
2977   P = CmpInst::BAD_ICMP_PREDICATE;
2978   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2979     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2980     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2981     // We analyze this as umax(A, B) pred A.
2982     P = Pred;
2983   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2984              (A == LHS || B == LHS)) {
2985     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2986     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2987     // We analyze this as umax(A, B) swapped-pred A.
2988     P = CmpInst::getSwappedPredicate(Pred);
2989   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2990              (A == RHS || B == RHS)) {
2991     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2992     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2993     // We analyze this as umax(-A, -B) swapped-pred -A.
2994     // Note that we do not need to actually form -A or -B thanks to EqP.
2995     P = CmpInst::getSwappedPredicate(Pred);
2996   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2997              (A == LHS || B == LHS)) {
2998     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2999     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3000     // We analyze this as umax(-A, -B) pred -A.
3001     // Note that we do not need to actually form -A or -B thanks to EqP.
3002     P = Pred;
3003   }
3004   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3005     // Cases correspond to "max(A, B) p A".
3006     switch (P) {
3007     default:
3008       break;
3009     case CmpInst::ICMP_EQ:
3010     case CmpInst::ICMP_ULE:
3011       // Equivalent to "A EqP B".  This may be the same as the condition tested
3012       // in the max/min; if so, we can just return that.
3013       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3014         return V;
3015       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3016         return V;
3017       // Otherwise, see if "A EqP B" simplifies.
3018       if (MaxRecurse)
3019         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
3020           return V;
3021       break;
3022     case CmpInst::ICMP_NE:
3023     case CmpInst::ICMP_UGT: {
3024       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3025       // Equivalent to "A InvEqP B".  This may be the same as the condition
3026       // tested in the max/min; if so, we can just return that.
3027       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3028         return V;
3029       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3030         return V;
3031       // Otherwise, see if "A InvEqP B" simplifies.
3032       if (MaxRecurse)
3033         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
3034           return V;
3035       break;
3036     }
3037     case CmpInst::ICMP_UGE:
3038       // Always true.
3039       return getTrue(ITy);
3040     case CmpInst::ICMP_ULT:
3041       // Always false.
3042       return getFalse(ITy);
3043     }
3044   }
3045
3046   // Variants on "max(x,y) >= min(x,z)".
3047   Value *C, *D;
3048   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3049       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3050       (A == C || A == D || B == C || B == D)) {
3051     // max(x, ?) pred min(x, ?).
3052     if (Pred == CmpInst::ICMP_SGE)
3053       // Always true.
3054       return getTrue(ITy);
3055     if (Pred == CmpInst::ICMP_SLT)
3056       // Always false.
3057       return getFalse(ITy);
3058   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3059              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3060              (A == C || A == D || B == C || B == D)) {
3061     // min(x, ?) pred max(x, ?).
3062     if (Pred == CmpInst::ICMP_SLE)
3063       // Always true.
3064       return getTrue(ITy);
3065     if (Pred == CmpInst::ICMP_SGT)
3066       // Always false.
3067       return getFalse(ITy);
3068   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3069              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3070              (A == C || A == D || B == C || B == D)) {
3071     // max(x, ?) pred min(x, ?).
3072     if (Pred == CmpInst::ICMP_UGE)
3073       // Always true.
3074       return getTrue(ITy);
3075     if (Pred == CmpInst::ICMP_ULT)
3076       // Always false.
3077       return getFalse(ITy);
3078   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3079              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3080              (A == C || A == D || B == C || B == D)) {
3081     // min(x, ?) pred max(x, ?).
3082     if (Pred == CmpInst::ICMP_ULE)
3083       // Always true.
3084       return getTrue(ITy);
3085     if (Pred == CmpInst::ICMP_UGT)
3086       // Always false.
3087       return getFalse(ITy);
3088   }
3089
3090   // Simplify comparisons of related pointers using a powerful, recursive
3091   // GEP-walk when we have target data available..
3092   if (LHS->getType()->isPointerTy())
3093     if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
3094       return C;
3095
3096   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3097     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3098       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3099           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3100           (ICmpInst::isEquality(Pred) ||
3101            (GLHS->isInBounds() && GRHS->isInBounds() &&
3102             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3103         // The bases are equal and the indices are constant.  Build a constant
3104         // expression GEP with the same indices and a null base pointer to see
3105         // what constant folding can make out of it.
3106         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3107         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3108         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3109             GLHS->getSourceElementType(), Null, IndicesLHS);
3110
3111         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3112         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3113             GLHS->getSourceElementType(), Null, IndicesRHS);
3114         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3115       }
3116     }
3117   }
3118
3119   // If a bit is known to be zero for A and known to be one for B,
3120   // then A and B cannot be equal.
3121   if (ICmpInst::isEquality(Pred)) {
3122     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3123       uint32_t BitWidth = CI->getBitWidth();
3124       APInt LHSKnownZero(BitWidth, 0);
3125       APInt LHSKnownOne(BitWidth, 0);
3126       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3127                        Q.CxtI, Q.DT);
3128       const APInt &RHSVal = CI->getValue();
3129       if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
3130         return Pred == ICmpInst::ICMP_EQ
3131                    ? ConstantInt::getFalse(CI->getContext())
3132                    : ConstantInt::getTrue(CI->getContext());
3133     }
3134   }
3135
3136   // If the comparison is with the result of a select instruction, check whether
3137   // comparing with either branch of the select always yields the same value.
3138   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3139     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3140       return V;
3141
3142   // If the comparison is with the result of a phi instruction, check whether
3143   // doing the compare with each incoming phi value yields a common result.
3144   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3145     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3146       return V;
3147
3148   return nullptr;
3149 }
3150
3151 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3152                               const DataLayout &DL,
3153                               const TargetLibraryInfo *TLI,
3154                               const DominatorTree *DT, AssumptionCache *AC,
3155                               Instruction *CxtI) {
3156   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3157                             RecursionLimit);
3158 }
3159
3160 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
3161 /// fold the result.  If not, this returns null.
3162 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3163                                FastMathFlags FMF, const Query &Q,
3164                                unsigned MaxRecurse) {
3165   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3166   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3167
3168   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3169     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3170       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3171
3172     // If we have a constant, make sure it is on the RHS.
3173     std::swap(LHS, RHS);
3174     Pred = CmpInst::getSwappedPredicate(Pred);
3175   }
3176
3177   // Fold trivial predicates.
3178   if (Pred == FCmpInst::FCMP_FALSE)
3179     return ConstantInt::get(GetCompareTy(LHS), 0);
3180   if (Pred == FCmpInst::FCMP_TRUE)
3181     return ConstantInt::get(GetCompareTy(LHS), 1);
3182
3183   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3184   if (FMF.noNaNs()) {
3185     if (Pred == FCmpInst::FCMP_UNO)
3186       return ConstantInt::get(GetCompareTy(LHS), 0);
3187     if (Pred == FCmpInst::FCMP_ORD)
3188       return ConstantInt::get(GetCompareTy(LHS), 1);
3189   }
3190
3191   // fcmp pred x, undef  and  fcmp pred undef, x
3192   // fold to true if unordered, false if ordered
3193   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3194     // Choosing NaN for the undef will always make unordered comparison succeed
3195     // and ordered comparison fail.
3196     return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
3197   }
3198
3199   // fcmp x,x -> true/false.  Not all compares are foldable.
3200   if (LHS == RHS) {
3201     if (CmpInst::isTrueWhenEqual(Pred))
3202       return ConstantInt::get(GetCompareTy(LHS), 1);
3203     if (CmpInst::isFalseWhenEqual(Pred))
3204       return ConstantInt::get(GetCompareTy(LHS), 0);
3205   }
3206
3207   // Handle fcmp with constant RHS
3208   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
3209     // If the constant is a nan, see if we can fold the comparison based on it.
3210     if (CFP->getValueAPF().isNaN()) {
3211       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3212         return ConstantInt::getFalse(CFP->getContext());
3213       assert(FCmpInst::isUnordered(Pred) &&
3214              "Comparison must be either ordered or unordered!");
3215       // True if unordered.
3216       return ConstantInt::getTrue(CFP->getContext());
3217     }
3218     // Check whether the constant is an infinity.
3219     if (CFP->getValueAPF().isInfinity()) {
3220       if (CFP->getValueAPF().isNegative()) {
3221         switch (Pred) {
3222         case FCmpInst::FCMP_OLT:
3223           // No value is ordered and less than negative infinity.
3224           return ConstantInt::getFalse(CFP->getContext());
3225         case FCmpInst::FCMP_UGE:
3226           // All values are unordered with or at least negative infinity.
3227           return ConstantInt::getTrue(CFP->getContext());
3228         default:
3229           break;
3230         }
3231       } else {
3232         switch (Pred) {
3233         case FCmpInst::FCMP_OGT:
3234           // No value is ordered and greater than infinity.
3235           return ConstantInt::getFalse(CFP->getContext());
3236         case FCmpInst::FCMP_ULE:
3237           // All values are unordered with and at most infinity.
3238           return ConstantInt::getTrue(CFP->getContext());
3239         default:
3240           break;
3241         }
3242       }
3243     }
3244     if (CFP->getValueAPF().isZero()) {
3245       switch (Pred) {
3246       case FCmpInst::FCMP_UGE:
3247         if (CannotBeOrderedLessThanZero(LHS))
3248           return ConstantInt::getTrue(CFP->getContext());
3249         break;
3250       case FCmpInst::FCMP_OLT:
3251         // X < 0
3252         if (CannotBeOrderedLessThanZero(LHS))
3253           return ConstantInt::getFalse(CFP->getContext());
3254         break;
3255       default:
3256         break;
3257       }
3258     }
3259   }
3260
3261   // If the comparison is with the result of a select instruction, check whether
3262   // comparing with either branch of the select always yields the same value.
3263   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3264     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3265       return V;
3266
3267   // If the comparison is with the result of a phi instruction, check whether
3268   // doing the compare with each incoming phi value yields a common result.
3269   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3270     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3271       return V;
3272
3273   return nullptr;
3274 }
3275
3276 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3277                               FastMathFlags FMF, const DataLayout &DL,
3278                               const TargetLibraryInfo *TLI,
3279                               const DominatorTree *DT, AssumptionCache *AC,
3280                               const Instruction *CxtI) {
3281   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3282                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3283 }
3284
3285 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
3286 /// replaced with RepOp.
3287 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3288                                            const Query &Q,
3289                                            unsigned MaxRecurse) {
3290   // Trivial replacement.
3291   if (V == Op)
3292     return RepOp;
3293
3294   auto *I = dyn_cast<Instruction>(V);
3295   if (!I)
3296     return nullptr;
3297
3298   // If this is a binary operator, try to simplify it with the replaced op.
3299   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3300     // Consider:
3301     //   %cmp = icmp eq i32 %x, 2147483647
3302     //   %add = add nsw i32 %x, 1
3303     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3304     //
3305     // We can't replace %sel with %add unless we strip away the flags.
3306     if (isa<OverflowingBinaryOperator>(B))
3307       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3308         return nullptr;
3309     if (isa<PossiblyExactOperator>(B))
3310       if (B->isExact())
3311         return nullptr;
3312
3313     if (MaxRecurse) {
3314       if (B->getOperand(0) == Op)
3315         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3316                              MaxRecurse - 1);
3317       if (B->getOperand(1) == Op)
3318         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3319                              MaxRecurse - 1);
3320     }
3321   }
3322
3323   // Same for CmpInsts.
3324   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3325     if (MaxRecurse) {
3326       if (C->getOperand(0) == Op)
3327         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3328                                MaxRecurse - 1);
3329       if (C->getOperand(1) == Op)
3330         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3331                                MaxRecurse - 1);
3332     }
3333   }
3334
3335   // TODO: We could hand off more cases to instsimplify here.
3336
3337   // If all operands are constant after substituting Op for RepOp then we can
3338   // constant fold the instruction.
3339   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3340     // Build a list of all constant operands.
3341     SmallVector<Constant *, 8> ConstOps;
3342     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3343       if (I->getOperand(i) == Op)
3344         ConstOps.push_back(CRepOp);
3345       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3346         ConstOps.push_back(COp);
3347       else
3348         break;
3349     }
3350
3351     // All operands were constants, fold it.
3352     if (ConstOps.size() == I->getNumOperands()) {
3353       if (CmpInst *C = dyn_cast<CmpInst>(I))
3354         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3355                                                ConstOps[1], Q.DL, Q.TLI);
3356
3357       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3358         if (!LI->isVolatile())
3359           return ConstantFoldLoadFromConstPtr(ConstOps[0], Q.DL);
3360
3361       return ConstantFoldInstOperands(I->getOpcode(), I->getType(), ConstOps,
3362                                       Q.DL, Q.TLI);
3363     }
3364   }
3365
3366   return nullptr;
3367 }
3368
3369 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
3370 /// the result.  If not, this returns null.
3371 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3372                                  Value *FalseVal, const Query &Q,
3373                                  unsigned MaxRecurse) {
3374   // select true, X, Y  -> X
3375   // select false, X, Y -> Y
3376   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3377     if (CB->isAllOnesValue())
3378       return TrueVal;
3379     if (CB->isNullValue())
3380       return FalseVal;
3381   }
3382
3383   // select C, X, X -> X
3384   if (TrueVal == FalseVal)
3385     return TrueVal;
3386
3387   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3388     if (isa<Constant>(TrueVal))
3389       return TrueVal;
3390     return FalseVal;
3391   }
3392   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3393     return FalseVal;
3394   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3395     return TrueVal;
3396
3397   if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
3398     unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType());
3399     ICmpInst::Predicate Pred = ICI->getPredicate();
3400     Value *CmpLHS = ICI->getOperand(0);
3401     Value *CmpRHS = ICI->getOperand(1);
3402     APInt MinSignedValue = APInt::getSignBit(BitWidth);
3403     Value *X;
3404     const APInt *Y;
3405     bool TrueWhenUnset;
3406     bool IsBitTest = false;
3407     if (ICmpInst::isEquality(Pred) &&
3408         match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) &&
3409         match(CmpRHS, m_Zero())) {
3410       IsBitTest = true;
3411       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
3412     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3413       X = CmpLHS;
3414       Y = &MinSignedValue;
3415       IsBitTest = true;
3416       TrueWhenUnset = false;
3417     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3418       X = CmpLHS;
3419       Y = &MinSignedValue;
3420       IsBitTest = true;
3421       TrueWhenUnset = true;
3422     }
3423     if (IsBitTest) {
3424       const APInt *C;
3425       // (X & Y) == 0 ? X & ~Y : X  --> X
3426       // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3427       if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3428           *Y == ~*C)
3429         return TrueWhenUnset ? FalseVal : TrueVal;
3430       // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3431       // (X & Y) != 0 ? X : X & ~Y  --> X
3432       if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3433           *Y == ~*C)
3434         return TrueWhenUnset ? FalseVal : TrueVal;
3435
3436       if (Y->isPowerOf2()) {
3437         // (X & Y) == 0 ? X | Y : X  --> X | Y
3438         // (X & Y) != 0 ? X | Y : X  --> X
3439         if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3440             *Y == *C)
3441           return TrueWhenUnset ? TrueVal : FalseVal;
3442         // (X & Y) == 0 ? X : X | Y  --> X
3443         // (X & Y) != 0 ? X : X | Y  --> X | Y
3444         if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3445             *Y == *C)
3446           return TrueWhenUnset ? TrueVal : FalseVal;
3447       }
3448     }
3449     if (ICI->hasOneUse()) {
3450       const APInt *C;
3451       if (match(CmpRHS, m_APInt(C))) {
3452         // X < MIN ? T : F  -->  F
3453         if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3454           return FalseVal;
3455         // X < MIN ? T : F  -->  F
3456         if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3457           return FalseVal;
3458         // X > MAX ? T : F  -->  F
3459         if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3460           return FalseVal;
3461         // X > MAX ? T : F  -->  F
3462         if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3463           return FalseVal;
3464       }
3465     }
3466
3467     // If we have an equality comparison then we know the value in one of the
3468     // arms of the select. See if substituting this value into the arm and
3469     // simplifying the result yields the same value as the other arm.
3470     if (Pred == ICmpInst::ICMP_EQ) {
3471       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3472               TrueVal ||
3473           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3474               TrueVal)
3475         return FalseVal;
3476       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3477               FalseVal ||
3478           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3479               FalseVal)
3480         return FalseVal;
3481     } else if (Pred == ICmpInst::ICMP_NE) {
3482       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3483               FalseVal ||
3484           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3485               FalseVal)
3486         return TrueVal;
3487       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3488               TrueVal ||
3489           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3490               TrueVal)
3491         return TrueVal;
3492     }
3493   }
3494
3495   return nullptr;
3496 }
3497
3498 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3499                                 const DataLayout &DL,
3500                                 const TargetLibraryInfo *TLI,
3501                                 const DominatorTree *DT, AssumptionCache *AC,
3502                                 const Instruction *CxtI) {
3503   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3504                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3505 }
3506
3507 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
3508 /// fold the result.  If not, this returns null.
3509 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3510                               const Query &Q, unsigned) {
3511   // The type of the GEP pointer operand.
3512   unsigned AS =
3513       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3514
3515   // getelementptr P -> P.
3516   if (Ops.size() == 1)
3517     return Ops[0];
3518
3519   // Compute the (pointer) type returned by the GEP instruction.
3520   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3521   Type *GEPTy = PointerType::get(LastType, AS);
3522   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3523     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3524
3525   if (isa<UndefValue>(Ops[0]))
3526     return UndefValue::get(GEPTy);
3527
3528   if (Ops.size() == 2) {
3529     // getelementptr P, 0 -> P.
3530     if (match(Ops[1], m_Zero()))
3531       return Ops[0];
3532
3533     Type *Ty = SrcTy;
3534     if (Ty->isSized()) {
3535       Value *P;
3536       uint64_t C;
3537       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3538       // getelementptr P, N -> P if P points to a type of zero size.
3539       if (TyAllocSize == 0)
3540         return Ops[0];
3541
3542       // The following transforms are only safe if the ptrtoint cast
3543       // doesn't truncate the pointers.
3544       if (Ops[1]->getType()->getScalarSizeInBits() ==
3545           Q.DL.getPointerSizeInBits(AS)) {
3546         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3547           if (match(P, m_Zero()))
3548             return Constant::getNullValue(GEPTy);
3549           Value *Temp;
3550           if (match(P, m_PtrToInt(m_Value(Temp))))
3551             if (Temp->getType() == GEPTy)
3552               return Temp;
3553           return nullptr;
3554         };
3555
3556         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3557         if (TyAllocSize == 1 &&
3558             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3559           if (Value *R = PtrToIntOrZero(P))
3560             return R;
3561
3562         // getelementptr V, (ashr (sub P, V), C) -> Q
3563         // if P points to a type of size 1 << C.
3564         if (match(Ops[1],
3565                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3566                          m_ConstantInt(C))) &&
3567             TyAllocSize == 1ULL << C)
3568           if (Value *R = PtrToIntOrZero(P))
3569             return R;
3570
3571         // getelementptr V, (sdiv (sub P, V), C) -> Q
3572         // if P points to a type of size C.
3573         if (match(Ops[1],
3574                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3575                          m_SpecificInt(TyAllocSize))))
3576           if (Value *R = PtrToIntOrZero(P))
3577             return R;
3578       }
3579     }
3580   }
3581
3582   // Check to see if this is constant foldable.
3583   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3584     if (!isa<Constant>(Ops[i]))
3585       return nullptr;
3586
3587   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3588                                         Ops.slice(1));
3589 }
3590
3591 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout &DL,
3592                              const TargetLibraryInfo *TLI,
3593                              const DominatorTree *DT, AssumptionCache *AC,
3594                              const Instruction *CxtI) {
3595   return ::SimplifyGEPInst(
3596       cast<PointerType>(Ops[0]->getType()->getScalarType())->getElementType(),
3597       Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3598 }
3599
3600 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
3601 /// can fold the result.  If not, this returns null.
3602 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3603                                       ArrayRef<unsigned> Idxs, const Query &Q,
3604                                       unsigned) {
3605   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3606     if (Constant *CVal = dyn_cast<Constant>(Val))
3607       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3608
3609   // insertvalue x, undef, n -> x
3610   if (match(Val, m_Undef()))
3611     return Agg;
3612
3613   // insertvalue x, (extractvalue y, n), n
3614   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3615     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3616         EV->getIndices() == Idxs) {
3617       // insertvalue undef, (extractvalue y, n), n -> y
3618       if (match(Agg, m_Undef()))
3619         return EV->getAggregateOperand();
3620
3621       // insertvalue y, (extractvalue y, n), n -> y
3622       if (Agg == EV->getAggregateOperand())
3623         return Agg;
3624     }
3625
3626   return nullptr;
3627 }
3628
3629 Value *llvm::SimplifyInsertValueInst(
3630     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3631     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3632     const Instruction *CxtI) {
3633   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3634                                    RecursionLimit);
3635 }
3636
3637 /// SimplifyExtractValueInst - Given operands for an ExtractValueInst, see if we
3638 /// can fold the result.  If not, this returns null.
3639 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3640                                        const Query &, unsigned) {
3641   if (auto *CAgg = dyn_cast<Constant>(Agg))
3642     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3643
3644   // extractvalue x, (insertvalue y, elt, n), n -> elt
3645   unsigned NumIdxs = Idxs.size();
3646   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3647        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3648     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3649     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3650     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3651     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3652         Idxs.slice(0, NumCommonIdxs)) {
3653       if (NumIdxs == NumInsertValueIdxs)
3654         return IVI->getInsertedValueOperand();
3655       break;
3656     }
3657   }
3658
3659   return nullptr;
3660 }
3661
3662 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3663                                       const DataLayout &DL,
3664                                       const TargetLibraryInfo *TLI,
3665                                       const DominatorTree *DT,
3666                                       AssumptionCache *AC,
3667                                       const Instruction *CxtI) {
3668   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3669                                     RecursionLimit);
3670 }
3671
3672 /// SimplifyExtractElementInst - Given operands for an ExtractElementInst, see if we
3673 /// can fold the result.  If not, this returns null.
3674 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3675                                          unsigned) {
3676   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3677     if (auto *CIdx = dyn_cast<Constant>(Idx))
3678       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3679
3680     // The index is not relevant if our vector is a splat.
3681     if (auto *Splat = CVec->getSplatValue())
3682       return Splat;
3683
3684     if (isa<UndefValue>(Vec))
3685       return UndefValue::get(Vec->getType()->getVectorElementType());
3686   }
3687
3688   // If extracting a specified index from the vector, see if we can recursively
3689   // find a previously computed scalar that was inserted into the vector.
3690   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3691     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3692       return Elt;
3693
3694   return nullptr;
3695 }
3696
3697 Value *llvm::SimplifyExtractElementInst(
3698     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
3699     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
3700   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
3701                                       RecursionLimit);
3702 }
3703
3704 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
3705 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
3706   // If all of the PHI's incoming values are the same then replace the PHI node
3707   // with the common value.
3708   Value *CommonValue = nullptr;
3709   bool HasUndefInput = false;
3710   for (Value *Incoming : PN->incoming_values()) {
3711     // If the incoming value is the phi node itself, it can safely be skipped.
3712     if (Incoming == PN) continue;
3713     if (isa<UndefValue>(Incoming)) {
3714       // Remember that we saw an undef value, but otherwise ignore them.
3715       HasUndefInput = true;
3716       continue;
3717     }
3718     if (CommonValue && Incoming != CommonValue)
3719       return nullptr;  // Not the same, bail out.
3720     CommonValue = Incoming;
3721   }
3722
3723   // If CommonValue is null then all of the incoming values were either undef or
3724   // equal to the phi node itself.
3725   if (!CommonValue)
3726     return UndefValue::get(PN->getType());
3727
3728   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3729   // instruction, we cannot return X as the result of the PHI node unless it
3730   // dominates the PHI block.
3731   if (HasUndefInput)
3732     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3733
3734   return CommonValue;
3735 }
3736
3737 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
3738   if (Constant *C = dyn_cast<Constant>(Op))
3739     return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
3740
3741   return nullptr;
3742 }
3743
3744 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL,
3745                                const TargetLibraryInfo *TLI,
3746                                const DominatorTree *DT, AssumptionCache *AC,
3747                                const Instruction *CxtI) {
3748   return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
3749                              RecursionLimit);
3750 }
3751
3752 //=== Helper functions for higher up the class hierarchy.
3753
3754 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
3755 /// fold the result.  If not, this returns null.
3756 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3757                             const Query &Q, unsigned MaxRecurse) {
3758   switch (Opcode) {
3759   case Instruction::Add:
3760     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3761                            Q, MaxRecurse);
3762   case Instruction::FAdd:
3763     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3764
3765   case Instruction::Sub:
3766     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3767                            Q, MaxRecurse);
3768   case Instruction::FSub:
3769     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3770
3771   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
3772   case Instruction::FMul:
3773     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3774   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
3775   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
3776   case Instruction::FDiv:
3777       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3778   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
3779   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
3780   case Instruction::FRem:
3781       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3782   case Instruction::Shl:
3783     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3784                            Q, MaxRecurse);
3785   case Instruction::LShr:
3786     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3787   case Instruction::AShr:
3788     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3789   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
3790   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
3791   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
3792   default:
3793     if (Constant *CLHS = dyn_cast<Constant>(LHS))
3794       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
3795         Constant *COps[] = {CLHS, CRHS};
3796         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
3797                                         Q.TLI);
3798       }
3799
3800     // If the operation is associative, try some generic simplifications.
3801     if (Instruction::isAssociative(Opcode))
3802       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
3803         return V;
3804
3805     // If the operation is with the result of a select instruction check whether
3806     // operating on either branch of the select always yields the same value.
3807     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3808       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
3809         return V;
3810
3811     // If the operation is with the result of a phi instruction, check whether
3812     // operating on all incoming values of the phi always yields the same value.
3813     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3814       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
3815         return V;
3816
3817     return nullptr;
3818   }
3819 }
3820
3821 /// SimplifyFPBinOp - Given operands for a BinaryOperator, see if we can
3822 /// fold the result.  If not, this returns null.
3823 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
3824 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
3825 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3826                               const FastMathFlags &FMF, const Query &Q,
3827                               unsigned MaxRecurse) {
3828   switch (Opcode) {
3829   case Instruction::FAdd:
3830     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
3831   case Instruction::FSub:
3832     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
3833   case Instruction::FMul:
3834     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
3835   default:
3836     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
3837   }
3838 }
3839
3840 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3841                            const DataLayout &DL, const TargetLibraryInfo *TLI,
3842                            const DominatorTree *DT, AssumptionCache *AC,
3843                            const Instruction *CxtI) {
3844   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3845                          RecursionLimit);
3846 }
3847
3848 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3849                              const FastMathFlags &FMF, const DataLayout &DL,
3850                              const TargetLibraryInfo *TLI,
3851                              const DominatorTree *DT, AssumptionCache *AC,
3852                              const Instruction *CxtI) {
3853   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
3854                            RecursionLimit);
3855 }
3856
3857 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
3858 /// fold the result.
3859 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3860                               const Query &Q, unsigned MaxRecurse) {
3861   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
3862     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
3863   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3864 }
3865
3866 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3867                              const DataLayout &DL, const TargetLibraryInfo *TLI,
3868                              const DominatorTree *DT, AssumptionCache *AC,
3869                              const Instruction *CxtI) {
3870   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3871                            RecursionLimit);
3872 }
3873
3874 static bool IsIdempotent(Intrinsic::ID ID) {
3875   switch (ID) {
3876   default: return false;
3877
3878   // Unary idempotent: f(f(x)) = f(x)
3879   case Intrinsic::fabs:
3880   case Intrinsic::floor:
3881   case Intrinsic::ceil:
3882   case Intrinsic::trunc:
3883   case Intrinsic::rint:
3884   case Intrinsic::nearbyint:
3885   case Intrinsic::round:
3886     return true;
3887   }
3888 }
3889
3890 template <typename IterTy>
3891 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
3892                                 const Query &Q, unsigned MaxRecurse) {
3893   Intrinsic::ID IID = F->getIntrinsicID();
3894   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
3895   Type *ReturnType = F->getReturnType();
3896
3897   // Binary Ops
3898   if (NumOperands == 2) {
3899     Value *LHS = *ArgBegin;
3900     Value *RHS = *(ArgBegin + 1);
3901     if (IID == Intrinsic::usub_with_overflow ||
3902         IID == Intrinsic::ssub_with_overflow) {
3903       // X - X -> { 0, false }
3904       if (LHS == RHS)
3905         return Constant::getNullValue(ReturnType);
3906
3907       // X - undef -> undef
3908       // undef - X -> undef
3909       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
3910         return UndefValue::get(ReturnType);
3911     }
3912
3913     if (IID == Intrinsic::uadd_with_overflow ||
3914         IID == Intrinsic::sadd_with_overflow) {
3915       // X + undef -> undef
3916       if (isa<UndefValue>(RHS))
3917         return UndefValue::get(ReturnType);
3918     }
3919
3920     if (IID == Intrinsic::umul_with_overflow ||
3921         IID == Intrinsic::smul_with_overflow) {
3922       // X * 0 -> { 0, false }
3923       if (match(RHS, m_Zero()))
3924         return Constant::getNullValue(ReturnType);
3925
3926       // X * undef -> { 0, false }
3927       if (match(RHS, m_Undef()))
3928         return Constant::getNullValue(ReturnType);
3929     }
3930   }
3931
3932   // Perform idempotent optimizations
3933   if (!IsIdempotent(IID))
3934     return nullptr;
3935
3936   // Unary Ops
3937   if (NumOperands == 1)
3938     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
3939       if (II->getIntrinsicID() == IID)
3940         return II;
3941
3942   return nullptr;
3943 }
3944
3945 template <typename IterTy>
3946 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
3947                            const Query &Q, unsigned MaxRecurse) {
3948   Type *Ty = V->getType();
3949   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
3950     Ty = PTy->getElementType();
3951   FunctionType *FTy = cast<FunctionType>(Ty);
3952
3953   // call undef -> undef
3954   if (isa<UndefValue>(V))
3955     return UndefValue::get(FTy->getReturnType());
3956
3957   Function *F = dyn_cast<Function>(V);
3958   if (!F)
3959     return nullptr;
3960
3961   if (F->isIntrinsic())
3962     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
3963       return Ret;
3964
3965   if (!canConstantFoldCallTo(F))
3966     return nullptr;
3967
3968   SmallVector<Constant *, 4> ConstantArgs;
3969   ConstantArgs.reserve(ArgEnd - ArgBegin);
3970   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
3971     Constant *C = dyn_cast<Constant>(*I);
3972     if (!C)
3973       return nullptr;
3974     ConstantArgs.push_back(C);
3975   }
3976
3977   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
3978 }
3979
3980 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
3981                           User::op_iterator ArgEnd, const DataLayout &DL,
3982                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
3983                           AssumptionCache *AC, const Instruction *CxtI) {
3984   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
3985                         RecursionLimit);
3986 }
3987
3988 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
3989                           const DataLayout &DL, const TargetLibraryInfo *TLI,
3990                           const DominatorTree *DT, AssumptionCache *AC,
3991                           const Instruction *CxtI) {
3992   return ::SimplifyCall(V, Args.begin(), Args.end(),
3993                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3994 }
3995
3996 /// SimplifyInstruction - See if we can compute a simplified version of this
3997 /// instruction.  If not, this returns null.
3998 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
3999                                  const TargetLibraryInfo *TLI,
4000                                  const DominatorTree *DT, AssumptionCache *AC) {
4001   Value *Result;
4002
4003   switch (I->getOpcode()) {
4004   default:
4005     Result = ConstantFoldInstruction(I, DL, TLI);
4006     break;
4007   case Instruction::FAdd:
4008     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4009                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4010     break;
4011   case Instruction::Add:
4012     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4013                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4014                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4015                              TLI, DT, AC, I);
4016     break;
4017   case Instruction::FSub:
4018     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4019                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4020     break;
4021   case Instruction::Sub:
4022     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4023                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4024                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4025                              TLI, DT, AC, I);
4026     break;
4027   case Instruction::FMul:
4028     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4029                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4030     break;
4031   case Instruction::Mul:
4032     Result =
4033         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4034     break;
4035   case Instruction::SDiv:
4036     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4037                               AC, I);
4038     break;
4039   case Instruction::UDiv:
4040     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4041                               AC, I);
4042     break;
4043   case Instruction::FDiv:
4044     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4045                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4046     break;
4047   case Instruction::SRem:
4048     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4049                               AC, I);
4050     break;
4051   case Instruction::URem:
4052     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4053                               AC, I);
4054     break;
4055   case Instruction::FRem:
4056     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4057                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4058     break;
4059   case Instruction::Shl:
4060     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4061                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4062                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4063                              TLI, DT, AC, I);
4064     break;
4065   case Instruction::LShr:
4066     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4067                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4068                               AC, I);
4069     break;
4070   case Instruction::AShr:
4071     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4072                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4073                               AC, I);
4074     break;
4075   case Instruction::And:
4076     Result =
4077         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4078     break;
4079   case Instruction::Or:
4080     Result =
4081         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4082     break;
4083   case Instruction::Xor:
4084     Result =
4085         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4086     break;
4087   case Instruction::ICmp:
4088     Result =
4089         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4090                          I->getOperand(1), DL, TLI, DT, AC, I);
4091     break;
4092   case Instruction::FCmp:
4093     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4094                               I->getOperand(0), I->getOperand(1),
4095                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4096     break;
4097   case Instruction::Select:
4098     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4099                                 I->getOperand(2), DL, TLI, DT, AC, I);
4100     break;
4101   case Instruction::GetElementPtr: {
4102     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4103     Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
4104     break;
4105   }
4106   case Instruction::InsertValue: {
4107     InsertValueInst *IV = cast<InsertValueInst>(I);
4108     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4109                                      IV->getInsertedValueOperand(),
4110                                      IV->getIndices(), DL, TLI, DT, AC, I);
4111     break;
4112   }
4113   case Instruction::ExtractValue: {
4114     auto *EVI = cast<ExtractValueInst>(I);
4115     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4116                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4117     break;
4118   }
4119   case Instruction::ExtractElement: {
4120     auto *EEI = cast<ExtractElementInst>(I);
4121     Result = SimplifyExtractElementInst(
4122         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4123     break;
4124   }
4125   case Instruction::PHI:
4126     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4127     break;
4128   case Instruction::Call: {
4129     CallSite CS(cast<CallInst>(I));
4130     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4131                           TLI, DT, AC, I);
4132     break;
4133   }
4134   case Instruction::Trunc:
4135     Result =
4136         SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
4137     break;
4138   }
4139
4140   /// If called on unreachable code, the above logic may report that the
4141   /// instruction simplified to itself.  Make life easier for users by
4142   /// detecting that case here, returning a safe value instead.
4143   return Result == I ? UndefValue::get(I->getType()) : Result;
4144 }
4145
4146 /// \brief Implementation of recursive simplification through an instructions
4147 /// uses.
4148 ///
4149 /// This is the common implementation of the recursive simplification routines.
4150 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4151 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4152 /// instructions to process and attempt to simplify it using
4153 /// InstructionSimplify.
4154 ///
4155 /// This routine returns 'true' only when *it* simplifies something. The passed
4156 /// in simplified value does not count toward this.
4157 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4158                                               const TargetLibraryInfo *TLI,
4159                                               const DominatorTree *DT,
4160                                               AssumptionCache *AC) {
4161   bool Simplified = false;
4162   SmallSetVector<Instruction *, 8> Worklist;
4163   const DataLayout &DL = I->getModule()->getDataLayout();
4164
4165   // If we have an explicit value to collapse to, do that round of the
4166   // simplification loop by hand initially.
4167   if (SimpleV) {
4168     for (User *U : I->users())
4169       if (U != I)
4170         Worklist.insert(cast<Instruction>(U));
4171
4172     // Replace the instruction with its simplified value.
4173     I->replaceAllUsesWith(SimpleV);
4174
4175     // Gracefully handle edge cases where the instruction is not wired into any
4176     // parent block.
4177     if (I->getParent())
4178       I->eraseFromParent();
4179   } else {
4180     Worklist.insert(I);
4181   }
4182
4183   // Note that we must test the size on each iteration, the worklist can grow.
4184   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4185     I = Worklist[Idx];
4186
4187     // See if this instruction simplifies.
4188     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4189     if (!SimpleV)
4190       continue;
4191
4192     Simplified = true;
4193
4194     // Stash away all the uses of the old instruction so we can check them for
4195     // recursive simplifications after a RAUW. This is cheaper than checking all
4196     // uses of To on the recursive step in most cases.
4197     for (User *U : I->users())
4198       Worklist.insert(cast<Instruction>(U));
4199
4200     // Replace the instruction with its simplified value.
4201     I->replaceAllUsesWith(SimpleV);
4202
4203     // Gracefully handle edge cases where the instruction is not wired into any
4204     // parent block.
4205     if (I->getParent())
4206       I->eraseFromParent();
4207   }
4208   return Simplified;
4209 }
4210
4211 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4212                                           const TargetLibraryInfo *TLI,
4213                                           const DominatorTree *DT,
4214                                           AssumptionCache *AC) {
4215   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4216 }
4217
4218 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4219                                          const TargetLibraryInfo *TLI,
4220                                          const DominatorTree *DT,
4221                                          AssumptionCache *AC) {
4222   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4223   assert(SimpleV && "Must provide a simplified value.");
4224   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4225 }