DataLayout is mandatory, update the API to reflect it with references.
[oota-llvm.git] / lib / Analysis / IVUsers.cpp
1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/IVUsers.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/LoopPass.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 #define DEBUG_TYPE "iv-users"
33
34 char IVUsers::ID = 0;
35 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
36                       "Induction Variable Users", false, true)
37 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
38 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
39 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
40 INITIALIZE_PASS_END(IVUsers, "iv-users",
41                       "Induction Variable Users", false, true)
42
43 Pass *llvm::createIVUsersPass() {
44   return new IVUsers();
45 }
46
47 /// isInteresting - Test whether the given expression is "interesting" when
48 /// used by the given expression, within the context of analyzing the
49 /// given loop.
50 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
51                           ScalarEvolution *SE, LoopInfo *LI) {
52   // An addrec is interesting if it's affine or if it has an interesting start.
53   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
54     // Keep things simple. Don't touch loop-variant strides unless they're
55     // only used outside the loop and we can simplify them.
56     if (AR->getLoop() == L)
57       return AR->isAffine() ||
58              (!L->contains(I) &&
59               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
60     // Otherwise recurse to see if the start value is interesting, and that
61     // the step value is not interesting, since we don't yet know how to
62     // do effective SCEV expansions for addrecs with interesting steps.
63     return isInteresting(AR->getStart(), I, L, SE, LI) &&
64           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
65   }
66
67   // An add is interesting if exactly one of its operands is interesting.
68   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
69     bool AnyInterestingYet = false;
70     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
71          OI != OE; ++OI)
72       if (isInteresting(*OI, I, L, SE, LI)) {
73         if (AnyInterestingYet)
74           return false;
75         AnyInterestingYet = true;
76       }
77     return AnyInterestingYet;
78   }
79
80   // Nothing else is interesting here.
81   return false;
82 }
83
84 /// Return true if all loop headers that dominate this block are in simplified
85 /// form.
86 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
87                                  const LoopInfo *LI,
88                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
89   Loop *NearestLoop = nullptr;
90   for (DomTreeNode *Rung = DT->getNode(BB);
91        Rung; Rung = Rung->getIDom()) {
92     BasicBlock *DomBB = Rung->getBlock();
93     Loop *DomLoop = LI->getLoopFor(DomBB);
94     if (DomLoop && DomLoop->getHeader() == DomBB) {
95       // If the domtree walk reaches a loop with no preheader, return false.
96       if (!DomLoop->isLoopSimplifyForm())
97         return false;
98       // If we have already checked this loop nest, stop checking.
99       if (SimpleLoopNests.count(DomLoop))
100         break;
101       // If we have not already checked this loop nest, remember the loop
102       // header nearest to BB. The nearest loop may not contain BB.
103       if (!NearestLoop)
104         NearestLoop = DomLoop;
105     }
106   }
107   if (NearestLoop)
108     SimpleLoopNests.insert(NearestLoop);
109   return true;
110 }
111
112 /// AddUsersImpl - Inspect the specified instruction.  If it is a
113 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
114 /// return true.  Otherwise, return false.
115 bool IVUsers::AddUsersImpl(Instruction *I,
116                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
117   const DataLayout &DL = I->getModule()->getDataLayout();
118
119   // Add this IV user to the Processed set before returning false to ensure that
120   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
121   if (!Processed.insert(I).second)
122     return true;    // Instruction already handled.
123
124   if (!SE->isSCEVable(I->getType()))
125     return false;   // Void and FP expressions cannot be reduced.
126
127   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
128   // pass to SCEVExpander. Expressions are not safe to expand if they represent
129   // operations that are not safe to speculate, namely integer division.
130   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
131     return false;
132
133   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
134   // Also avoid creating IVs of non-native types. For example, we don't want a
135   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
136   uint64_t Width = SE->getTypeSizeInBits(I->getType());
137   if (Width > 64 || !DL.isLegalInteger(Width))
138     return false;
139
140   // Get the symbolic expression for this instruction.
141   const SCEV *ISE = SE->getSCEV(I);
142
143   // If we've come to an uninteresting expression, stop the traversal and
144   // call this a user.
145   if (!isInteresting(ISE, I, L, SE, LI))
146     return false;
147
148   SmallPtrSet<Instruction *, 4> UniqueUsers;
149   for (Use &U : I->uses()) {
150     Instruction *User = cast<Instruction>(U.getUser());
151     if (!UniqueUsers.insert(User).second)
152       continue;
153
154     // Do not infinitely recurse on PHI nodes.
155     if (isa<PHINode>(User) && Processed.count(User))
156       continue;
157
158     // Only consider IVUsers that are dominated by simplified loop
159     // headers. Otherwise, SCEVExpander will crash.
160     BasicBlock *UseBB = User->getParent();
161     // A phi's use is live out of its predecessor block.
162     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
163       unsigned OperandNo = U.getOperandNo();
164       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
165       UseBB = PHI->getIncomingBlock(ValNo);
166     }
167     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
168       return false;
169
170     // Descend recursively, but not into PHI nodes outside the current loop.
171     // It's important to see the entire expression outside the loop to get
172     // choices that depend on addressing mode use right, although we won't
173     // consider references outside the loop in all cases.
174     // If User is already in Processed, we don't want to recurse into it again,
175     // but do want to record a second reference in the same instruction.
176     bool AddUserToIVUsers = false;
177     if (LI->getLoopFor(User->getParent()) != L) {
178       if (isa<PHINode>(User) || Processed.count(User) ||
179           !AddUsersImpl(User, SimpleLoopNests)) {
180         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
181                      << "   OF SCEV: " << *ISE << '\n');
182         AddUserToIVUsers = true;
183       }
184     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
185       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
186                    << "   OF SCEV: " << *ISE << '\n');
187       AddUserToIVUsers = true;
188     }
189
190     if (AddUserToIVUsers) {
191       // Okay, we found a user that we cannot reduce.
192       IVStrideUse &NewUse = AddUser(User, I);
193       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
194       // The regular return value here is discarded; instead of recording
195       // it, we just recompute it when we need it.
196       const SCEV *OriginalISE = ISE;
197       ISE = TransformForPostIncUse(NormalizeAutodetect,
198                                    ISE, User, I,
199                                    NewUse.PostIncLoops,
200                                    *SE, *DT);
201
202       // PostIncNormalization effectively simplifies the expression under
203       // pre-increment assumptions. Those assumptions (no wrapping) might not
204       // hold for the post-inc value. Catch such cases by making sure the
205       // transformation is invertible.
206       if (OriginalISE != ISE) {
207         const SCEV *DenormalizedISE =
208           TransformForPostIncUse(Denormalize, ISE, User, I,
209               NewUse.PostIncLoops, *SE, *DT);
210
211         // If we normalized the expression, but denormalization doesn't give the
212         // original one, discard this user.
213         if (OriginalISE != DenormalizedISE) {
214           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
215                        << *ISE << '\n');
216           IVUses.pop_back();
217           return false;
218         }
219       }
220       DEBUG(if (SE->getSCEV(I) != ISE)
221               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
222     }
223   }
224   return true;
225 }
226
227 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
228   // SCEVExpander can only handle users that are dominated by simplified loop
229   // entries. Keep track of all loops that are only dominated by other simple
230   // loops so we don't traverse the domtree for each user.
231   SmallPtrSet<Loop*,16> SimpleLoopNests;
232
233   return AddUsersImpl(I, SimpleLoopNests);
234 }
235
236 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
237   IVUses.push_back(new IVStrideUse(this, User, Operand));
238   return IVUses.back();
239 }
240
241 IVUsers::IVUsers()
242     : LoopPass(ID) {
243   initializeIVUsersPass(*PassRegistry::getPassRegistry());
244 }
245
246 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
247   AU.addRequired<LoopInfoWrapperPass>();
248   AU.addRequired<DominatorTreeWrapperPass>();
249   AU.addRequired<ScalarEvolution>();
250   AU.setPreservesAll();
251 }
252
253 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
254
255   L = l;
256   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
257   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
258   SE = &getAnalysis<ScalarEvolution>();
259
260   // Find all uses of induction variables in this loop, and categorize
261   // them by stride.  Start by finding all of the PHI nodes in the header for
262   // this loop.  If they are induction variables, inspect their uses.
263   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
264     (void)AddUsersIfInteresting(I);
265
266   return false;
267 }
268
269 void IVUsers::print(raw_ostream &OS, const Module *M) const {
270   OS << "IV Users for loop ";
271   L->getHeader()->printAsOperand(OS, false);
272   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
273     OS << " with backedge-taken count "
274        << *SE->getBackedgeTakenCount(L);
275   }
276   OS << ":\n";
277
278   for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
279        E = IVUses.end(); UI != E; ++UI) {
280     OS << "  ";
281     UI->getOperandValToReplace()->printAsOperand(OS, false);
282     OS << " = " << *getReplacementExpr(*UI);
283     for (PostIncLoopSet::const_iterator
284          I = UI->PostIncLoops.begin(),
285          E = UI->PostIncLoops.end(); I != E; ++I) {
286       OS << " (post-inc with loop ";
287       (*I)->getHeader()->printAsOperand(OS, false);
288       OS << ")";
289     }
290     OS << " in  ";
291     if (UI->getUser())
292       UI->getUser()->print(OS);
293     else
294       OS << "Printing <null> User";
295     OS << '\n';
296   }
297 }
298
299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
300 void IVUsers::dump() const {
301   print(dbgs());
302 }
303 #endif
304
305 void IVUsers::releaseMemory() {
306   Processed.clear();
307   IVUses.clear();
308 }
309
310 /// getReplacementExpr - Return a SCEV expression which computes the
311 /// value of the OperandValToReplace.
312 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
313   return SE->getSCEV(IU.getOperandValToReplace());
314 }
315
316 /// getExpr - Return the expression for the use.
317 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
318   return
319     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
320                            IU.getUser(), IU.getOperandValToReplace(),
321                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
322                            *SE, *DT);
323 }
324
325 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
326   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
327     if (AR->getLoop() == L)
328       return AR;
329     return findAddRecForLoop(AR->getStart(), L);
330   }
331
332   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
333     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
334          I != E; ++I)
335       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
336         return AR;
337     return nullptr;
338   }
339
340   return nullptr;
341 }
342
343 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
344   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
345     return AR->getStepRecurrence(*SE);
346   return nullptr;
347 }
348
349 void IVStrideUse::transformToPostInc(const Loop *L) {
350   PostIncLoops.insert(L);
351 }
352
353 void IVStrideUse::deleted() {
354   // Remove this user from the list.
355   Parent->Processed.erase(this->getUser());
356   Parent->IVUses.erase(this);
357   // this now dangles!
358 }