Merging r258184:
[oota-llvm.git] / lib / Analysis / CostModel.cpp
1 //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the cost model analysis. It provides a very basic cost
11 // estimation for LLVM-IR. This analysis uses the services of the codegen
12 // to approximate the cost of any IR instruction when lowered to machine
13 // instructions. The cost results are unit-less and the cost number represents
14 // the throughput of the machine assuming that all loads hit the cache, all
15 // branches are predicted, etc. The cost numbers can be added in order to
16 // compare two or more transformation alternatives.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
32
33 #define CM_NAME "cost-model"
34 #define DEBUG_TYPE CM_NAME
35
36 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
37                                      cl::Hidden,
38                                      cl::desc("Recognize reduction patterns."));
39
40 namespace {
41   class CostModelAnalysis : public FunctionPass {
42
43   public:
44     static char ID; // Class identification, replacement for typeinfo
45     CostModelAnalysis() : FunctionPass(ID), F(nullptr), TTI(nullptr) {
46       initializeCostModelAnalysisPass(
47         *PassRegistry::getPassRegistry());
48     }
49
50     /// Returns the expected cost of the instruction.
51     /// Returns -1 if the cost is unknown.
52     /// Note, this method does not cache the cost calculation and it
53     /// can be expensive in some cases.
54     unsigned getInstructionCost(const Instruction *I) const;
55
56   private:
57     void getAnalysisUsage(AnalysisUsage &AU) const override;
58     bool runOnFunction(Function &F) override;
59     void print(raw_ostream &OS, const Module*) const override;
60
61     /// The function that we analyze.
62     Function *F;
63     /// Target information.
64     const TargetTransformInfo *TTI;
65   };
66 }  // End of anonymous namespace
67
68 // Register this pass.
69 char CostModelAnalysis::ID = 0;
70 static const char cm_name[] = "Cost Model Analysis";
71 INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
72 INITIALIZE_PASS_END  (CostModelAnalysis, CM_NAME, cm_name, false, true)
73
74 FunctionPass *llvm::createCostModelAnalysisPass() {
75   return new CostModelAnalysis();
76 }
77
78 void
79 CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.setPreservesAll();
81 }
82
83 bool
84 CostModelAnalysis::runOnFunction(Function &F) {
85  this->F = &F;
86  auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
87  TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr;
88
89  return false;
90 }
91
92 static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
93   for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
94     if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
95       return false;
96   return true;
97 }
98
99 static bool isAlternateVectorMask(SmallVectorImpl<int> &Mask) {
100   bool isAlternate = true;
101   unsigned MaskSize = Mask.size();
102
103   // Example: shufflevector A, B, <0,5,2,7>
104   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
105     if (Mask[i] < 0)
106       continue;
107     isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
108   }
109
110   if (isAlternate)
111     return true;
112
113   isAlternate = true;
114   // Example: shufflevector A, B, <4,1,6,3>
115   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
116     if (Mask[i] < 0)
117       continue;
118     isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
119   }
120
121   return isAlternate;
122 }
123
124 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
125   TargetTransformInfo::OperandValueKind OpInfo =
126     TargetTransformInfo::OK_AnyValue;
127
128   // Check for a splat of a constant or for a non uniform vector of constants.
129   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
130     OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
131     if (cast<Constant>(V)->getSplatValue() != nullptr)
132       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
133   }
134
135   return OpInfo;
136 }
137
138 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
139                                      unsigned Level) {
140   // We don't need a shuffle if we just want to have element 0 in position 0 of
141   // the vector.
142   if (!SI && Level == 0 && IsLeft)
143     return true;
144   else if (!SI)
145     return false;
146
147   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
148
149   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
150   // we look at the left or right side.
151   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
152     Mask[i] = val;
153
154   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
155   return Mask == ActualMask;
156 }
157
158 static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
159                                           unsigned Level, unsigned NumLevels) {
160   // Match one level of pairwise operations.
161   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
162   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
163   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
164   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
165   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
166   if (BinOp == nullptr)
167     return false;
168
169   assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
170
171   unsigned Opcode = BinOp->getOpcode();
172   Value *L = BinOp->getOperand(0);
173   Value *R = BinOp->getOperand(1);
174
175   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
176   if (!LS && Level)
177     return false;
178   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
179   if (!RS && Level)
180     return false;
181
182   // On level 0 we can omit one shufflevector instruction.
183   if (!Level && !RS && !LS)
184     return false;
185
186   // Shuffle inputs must match.
187   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
188   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
189   Value *NextLevelOp = nullptr;
190   if (NextLevelOpR && NextLevelOpL) {
191     // If we have two shuffles their operands must match.
192     if (NextLevelOpL != NextLevelOpR)
193       return false;
194
195     NextLevelOp = NextLevelOpL;
196   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
197     // On the first level we can omit the shufflevector <0, undef,...>. So the
198     // input to the other shufflevector <1, undef> must match with one of the
199     // inputs to the current binary operation.
200     // Example:
201     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
202     //  %BinOp        = fadd          %NextLevelOpL, %R
203     if (NextLevelOpL && NextLevelOpL != R)
204       return false;
205     else if (NextLevelOpR && NextLevelOpR != L)
206       return false;
207
208     NextLevelOp = NextLevelOpL ? R : L;
209   } else
210     return false;
211
212   // Check that the next levels binary operation exists and matches with the
213   // current one.
214   BinaryOperator *NextLevelBinOp = nullptr;
215   if (Level + 1 != NumLevels) {
216     if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
217       return false;
218     else if (NextLevelBinOp->getOpcode() != Opcode)
219       return false;
220   }
221
222   // Shuffle mask for pairwise operation must match.
223   if (matchPairwiseShuffleMask(LS, true, Level)) {
224     if (!matchPairwiseShuffleMask(RS, false, Level))
225       return false;
226   } else if (matchPairwiseShuffleMask(RS, true, Level)) {
227     if (!matchPairwiseShuffleMask(LS, false, Level))
228       return false;
229   } else
230     return false;
231
232   if (++Level == NumLevels)
233     return true;
234
235   // Match next level.
236   return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
237 }
238
239 static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
240                                    unsigned &Opcode, Type *&Ty) {
241   if (!EnableReduxCost)
242     return false;
243
244   // Need to extract the first element.
245   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
246   unsigned Idx = ~0u;
247   if (CI)
248     Idx = CI->getZExtValue();
249   if (Idx != 0)
250     return false;
251
252   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
253   if (!RdxStart)
254     return false;
255
256   Type *VecTy = ReduxRoot->getOperand(0)->getType();
257   unsigned NumVecElems = VecTy->getVectorNumElements();
258   if (!isPowerOf2_32(NumVecElems))
259     return false;
260
261   // We look for a sequence of shuffle,shuffle,add triples like the following
262   // that builds a pairwise reduction tree.
263   //
264   //  (X0, X1, X2, X3)
265   //   (X0 + X1, X2 + X3, undef, undef)
266   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
267   //
268   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
269   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
270   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
271   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
272   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
273   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
274   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
275   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
276   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
277   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
278   // %r = extractelement <4 x float> %bin.rdx8, i32 0
279   if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
280     return false;
281
282   Opcode = RdxStart->getOpcode();
283   Ty = VecTy;
284
285   return true;
286 }
287
288 static std::pair<Value *, ShuffleVectorInst *>
289 getShuffleAndOtherOprd(BinaryOperator *B) {
290
291   Value *L = B->getOperand(0);
292   Value *R = B->getOperand(1);
293   ShuffleVectorInst *S = nullptr;
294
295   if ((S = dyn_cast<ShuffleVectorInst>(L)))
296     return std::make_pair(R, S);
297
298   S = dyn_cast<ShuffleVectorInst>(R);
299   return std::make_pair(L, S);
300 }
301
302 static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
303                                           unsigned &Opcode, Type *&Ty) {
304   if (!EnableReduxCost)
305     return false;
306
307   // Need to extract the first element.
308   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
309   unsigned Idx = ~0u;
310   if (CI)
311     Idx = CI->getZExtValue();
312   if (Idx != 0)
313     return false;
314
315   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
316   if (!RdxStart)
317     return false;
318   unsigned RdxOpcode = RdxStart->getOpcode();
319
320   Type *VecTy = ReduxRoot->getOperand(0)->getType();
321   unsigned NumVecElems = VecTy->getVectorNumElements();
322   if (!isPowerOf2_32(NumVecElems))
323     return false;
324
325   // We look for a sequence of shuffles and adds like the following matching one
326   // fadd, shuffle vector pair at a time.
327   //
328   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
329   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
330   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
331   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
332   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
333   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
334   // %r = extractelement <4 x float> %bin.rdx8, i32 0
335
336   unsigned MaskStart = 1;
337   Value *RdxOp = RdxStart;
338   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
339   unsigned NumVecElemsRemain = NumVecElems;
340   while (NumVecElemsRemain - 1) {
341     // Check for the right reduction operation.
342     BinaryOperator *BinOp;
343     if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
344       return false;
345     if (BinOp->getOpcode() != RdxOpcode)
346       return false;
347
348     Value *NextRdxOp;
349     ShuffleVectorInst *Shuffle;
350     std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
351
352     // Check the current reduction operation and the shuffle use the same value.
353     if (Shuffle == nullptr)
354       return false;
355     if (Shuffle->getOperand(0) != NextRdxOp)
356       return false;
357
358     // Check that shuffle masks matches.
359     for (unsigned j = 0; j != MaskStart; ++j)
360       ShuffleMask[j] = MaskStart + j;
361     // Fill the rest of the mask with -1 for undef.
362     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
363
364     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
365     if (ShuffleMask != Mask)
366       return false;
367
368     RdxOp = NextRdxOp;
369     NumVecElemsRemain /= 2;
370     MaskStart *= 2;
371   }
372
373   Opcode = RdxOpcode;
374   Ty = VecTy;
375   return true;
376 }
377
378 unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
379   if (!TTI)
380     return -1;
381
382   switch (I->getOpcode()) {
383   case Instruction::GetElementPtr:
384     return TTI->getUserCost(I);
385
386   case Instruction::Ret:
387   case Instruction::PHI:
388   case Instruction::Br: {
389     return TTI->getCFInstrCost(I->getOpcode());
390   }
391   case Instruction::Add:
392   case Instruction::FAdd:
393   case Instruction::Sub:
394   case Instruction::FSub:
395   case Instruction::Mul:
396   case Instruction::FMul:
397   case Instruction::UDiv:
398   case Instruction::SDiv:
399   case Instruction::FDiv:
400   case Instruction::URem:
401   case Instruction::SRem:
402   case Instruction::FRem:
403   case Instruction::Shl:
404   case Instruction::LShr:
405   case Instruction::AShr:
406   case Instruction::And:
407   case Instruction::Or:
408   case Instruction::Xor: {
409     TargetTransformInfo::OperandValueKind Op1VK =
410       getOperandInfo(I->getOperand(0));
411     TargetTransformInfo::OperandValueKind Op2VK =
412       getOperandInfo(I->getOperand(1));
413     return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
414                                        Op2VK);
415   }
416   case Instruction::Select: {
417     const SelectInst *SI = cast<SelectInst>(I);
418     Type *CondTy = SI->getCondition()->getType();
419     return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
420   }
421   case Instruction::ICmp:
422   case Instruction::FCmp: {
423     Type *ValTy = I->getOperand(0)->getType();
424     return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
425   }
426   case Instruction::Store: {
427     const StoreInst *SI = cast<StoreInst>(I);
428     Type *ValTy = SI->getValueOperand()->getType();
429     return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
430                                  SI->getAlignment(),
431                                  SI->getPointerAddressSpace());
432   }
433   case Instruction::Load: {
434     const LoadInst *LI = cast<LoadInst>(I);
435     return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
436                                  LI->getAlignment(),
437                                  LI->getPointerAddressSpace());
438   }
439   case Instruction::ZExt:
440   case Instruction::SExt:
441   case Instruction::FPToUI:
442   case Instruction::FPToSI:
443   case Instruction::FPExt:
444   case Instruction::PtrToInt:
445   case Instruction::IntToPtr:
446   case Instruction::SIToFP:
447   case Instruction::UIToFP:
448   case Instruction::Trunc:
449   case Instruction::FPTrunc:
450   case Instruction::BitCast:
451   case Instruction::AddrSpaceCast: {
452     Type *SrcTy = I->getOperand(0)->getType();
453     return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
454   }
455   case Instruction::ExtractElement: {
456     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
457     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
458     unsigned Idx = -1;
459     if (CI)
460       Idx = CI->getZExtValue();
461
462     // Try to match a reduction sequence (series of shufflevector and vector
463     // adds followed by a extractelement).
464     unsigned ReduxOpCode;
465     Type *ReduxType;
466
467     if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
468       return TTI->getReductionCost(ReduxOpCode, ReduxType, false);
469     else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
470       return TTI->getReductionCost(ReduxOpCode, ReduxType, true);
471
472     return TTI->getVectorInstrCost(I->getOpcode(),
473                                    EEI->getOperand(0)->getType(), Idx);
474   }
475   case Instruction::InsertElement: {
476     const InsertElementInst * IE = cast<InsertElementInst>(I);
477     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
478     unsigned Idx = -1;
479     if (CI)
480       Idx = CI->getZExtValue();
481     return TTI->getVectorInstrCost(I->getOpcode(),
482                                    IE->getType(), Idx);
483   }
484   case Instruction::ShuffleVector: {
485     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
486     Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
487     unsigned NumVecElems = VecTypOp0->getVectorNumElements();
488     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
489
490     if (NumVecElems == Mask.size()) {
491       if (isReverseVectorMask(Mask))
492         return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
493                                    0, nullptr);
494       if (isAlternateVectorMask(Mask))
495         return TTI->getShuffleCost(TargetTransformInfo::SK_Alternate,
496                                    VecTypOp0, 0, nullptr);
497     }
498
499     return -1;
500   }
501   case Instruction::Call:
502     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
503       SmallVector<Value *, 4> Args;
504       for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
505         Args.push_back(II->getArgOperand(J));
506
507       return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
508                                         Args);
509     }
510     return -1;
511   default:
512     // We don't have any information on this instruction.
513     return -1;
514   }
515 }
516
517 void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
518   if (!F)
519     return;
520
521   for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
522     for (BasicBlock::iterator it = B->begin(), e = B->end(); it != e; ++it) {
523       Instruction *Inst = &*it;
524       unsigned Cost = getInstructionCost(Inst);
525       if (Cost != (unsigned)-1)
526         OS << "Cost Model: Found an estimated cost of " << Cost;
527       else
528         OS << "Cost Model: Unknown cost";
529
530       OS << " for instruction: "<< *Inst << "\n";
531     }
532   }
533 }