Remove old fenv.h workaround for a historic clang driver bug
[oota-llvm.git] / lib / Analysis / ConstantFolding.cpp
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/config.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetLibraryInfo.h"
37 #include <cerrno>
38 #include <cmath>
39
40 #ifdef HAVE_FENV_H
41 #include <fenv.h>
42 #endif
43
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // Constant Folding internal helper functions
48 //===----------------------------------------------------------------------===//
49
50 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
51 /// DataLayout.  This always returns a non-null constant, but it may be a
52 /// ConstantExpr if unfoldable.
53 static Constant *FoldBitCast(Constant *C, Type *DestTy,
54                              const DataLayout &TD) {
55   // Catch the obvious splat cases.
56   if (C->isNullValue() && !DestTy->isX86_MMXTy())
57     return Constant::getNullValue(DestTy);
58   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
59     return Constant::getAllOnesValue(DestTy);
60
61   // Handle a vector->integer cast.
62   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63     VectorType *VTy = dyn_cast<VectorType>(C->getType());
64     if (!VTy)
65       return ConstantExpr::getBitCast(C, DestTy);
66
67     unsigned NumSrcElts = VTy->getNumElements();
68     Type *SrcEltTy = VTy->getElementType();
69
70     // If the vector is a vector of floating point, convert it to vector of int
71     // to simplify things.
72     if (SrcEltTy->isFloatingPointTy()) {
73       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74       Type *SrcIVTy =
75         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76       // Ask IR to do the conversion now that #elts line up.
77       C = ConstantExpr::getBitCast(C, SrcIVTy);
78     }
79
80     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81     if (!CDV)
82       return ConstantExpr::getBitCast(C, DestTy);
83
84     // Now that we know that the input value is a vector of integers, just shift
85     // and insert them into our result.
86     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
87     APInt Result(IT->getBitWidth(), 0);
88     for (unsigned i = 0; i != NumSrcElts; ++i) {
89       Result <<= BitShift;
90       if (TD.isLittleEndian())
91         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92       else
93         Result |= CDV->getElementAsInteger(i);
94     }
95
96     return ConstantInt::get(IT, Result);
97   }
98
99   // The code below only handles casts to vectors currently.
100   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101   if (!DestVTy)
102     return ConstantExpr::getBitCast(C, DestTy);
103
104   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105   // vector so the code below can handle it uniformly.
106   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107     Constant *Ops = C; // don't take the address of C!
108     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
109   }
110
111   // If this is a bitcast from constant vector -> vector, fold it.
112   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113     return ConstantExpr::getBitCast(C, DestTy);
114
115   // If the element types match, IR can fold it.
116   unsigned NumDstElt = DestVTy->getNumElements();
117   unsigned NumSrcElt = C->getType()->getVectorNumElements();
118   if (NumDstElt == NumSrcElt)
119     return ConstantExpr::getBitCast(C, DestTy);
120
121   Type *SrcEltTy = C->getType()->getVectorElementType();
122   Type *DstEltTy = DestVTy->getElementType();
123
124   // Otherwise, we're changing the number of elements in a vector, which
125   // requires endianness information to do the right thing.  For example,
126   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127   // folds to (little endian):
128   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129   // and to (big endian):
130   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131
132   // First thing is first.  We only want to think about integer here, so if
133   // we have something in FP form, recast it as integer.
134   if (DstEltTy->isFloatingPointTy()) {
135     // Fold to an vector of integers with same size as our FP type.
136     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137     Type *DestIVTy =
138       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139     // Recursively handle this integer conversion, if possible.
140     C = FoldBitCast(C, DestIVTy, TD);
141
142     // Finally, IR can handle this now that #elts line up.
143     return ConstantExpr::getBitCast(C, DestTy);
144   }
145
146   // Okay, we know the destination is integer, if the input is FP, convert
147   // it to integer first.
148   if (SrcEltTy->isFloatingPointTy()) {
149     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150     Type *SrcIVTy =
151       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152     // Ask IR to do the conversion now that #elts line up.
153     C = ConstantExpr::getBitCast(C, SrcIVTy);
154     // If IR wasn't able to fold it, bail out.
155     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
156         !isa<ConstantDataVector>(C))
157       return C;
158   }
159
160   // Now we know that the input and output vectors are both integer vectors
161   // of the same size, and that their #elements is not the same.  Do the
162   // conversion here, which depends on whether the input or output has
163   // more elements.
164   bool isLittleEndian = TD.isLittleEndian();
165
166   SmallVector<Constant*, 32> Result;
167   if (NumDstElt < NumSrcElt) {
168     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169     Constant *Zero = Constant::getNullValue(DstEltTy);
170     unsigned Ratio = NumSrcElt/NumDstElt;
171     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172     unsigned SrcElt = 0;
173     for (unsigned i = 0; i != NumDstElt; ++i) {
174       // Build each element of the result.
175       Constant *Elt = Zero;
176       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177       for (unsigned j = 0; j != Ratio; ++j) {
178         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179         if (!Src)  // Reject constantexpr elements.
180           return ConstantExpr::getBitCast(C, DestTy);
181
182         // Zero extend the element to the right size.
183         Src = ConstantExpr::getZExt(Src, Elt->getType());
184
185         // Shift it to the right place, depending on endianness.
186         Src = ConstantExpr::getShl(Src,
187                                    ConstantInt::get(Src->getType(), ShiftAmt));
188         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189
190         // Mix it in.
191         Elt = ConstantExpr::getOr(Elt, Src);
192       }
193       Result.push_back(Elt);
194     }
195     return ConstantVector::get(Result);
196   }
197
198   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199   unsigned Ratio = NumDstElt/NumSrcElt;
200   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
201
202   // Loop over each source value, expanding into multiple results.
203   for (unsigned i = 0; i != NumSrcElt; ++i) {
204     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205     if (!Src)  // Reject constantexpr elements.
206       return ConstantExpr::getBitCast(C, DestTy);
207
208     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209     for (unsigned j = 0; j != Ratio; ++j) {
210       // Shift the piece of the value into the right place, depending on
211       // endianness.
212       Constant *Elt = ConstantExpr::getLShr(Src,
213                                   ConstantInt::get(Src->getType(), ShiftAmt));
214       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215
216       // Truncate and remember this piece.
217       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
218     }
219   }
220
221   return ConstantVector::get(Result);
222 }
223
224
225 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
226 /// from a global, return the global and the constant.  Because of
227 /// constantexprs, this function is recursive.
228 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
229                                        APInt &Offset, const DataLayout &TD) {
230   // Trivial case, constant is the global.
231   if ((GV = dyn_cast<GlobalValue>(C))) {
232     unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
233     Offset = APInt(BitWidth, 0);
234     return true;
235   }
236
237   // Otherwise, if this isn't a constant expr, bail out.
238   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
239   if (!CE) return false;
240
241   // Look through ptr->int and ptr->ptr casts.
242   if (CE->getOpcode() == Instruction::PtrToInt ||
243       CE->getOpcode() == Instruction::BitCast)
244     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
245
246   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
247   GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
248   if (!GEP)
249     return false;
250
251   unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
252   APInt TmpOffset(BitWidth, 0);
253
254   // If the base isn't a global+constant, we aren't either.
255   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
256     return false;
257
258   // Otherwise, add any offset that our operands provide.
259   if (!GEP->accumulateConstantOffset(TD, TmpOffset))
260     return false;
261
262   Offset = TmpOffset;
263   return true;
264 }
265
266 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
267 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
268 /// pointer to copy results into and BytesLeft is the number of bytes left in
269 /// the CurPtr buffer.  TD is the target data.
270 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
271                                unsigned char *CurPtr, unsigned BytesLeft,
272                                const DataLayout &TD) {
273   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
274          "Out of range access");
275
276   // If this element is zero or undefined, we can just return since *CurPtr is
277   // zero initialized.
278   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
279     return true;
280
281   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
282     if (CI->getBitWidth() > 64 ||
283         (CI->getBitWidth() & 7) != 0)
284       return false;
285
286     uint64_t Val = CI->getZExtValue();
287     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
288
289     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
290       int n = ByteOffset;
291       if (!TD.isLittleEndian())
292         n = IntBytes - n - 1;
293       CurPtr[i] = (unsigned char)(Val >> (n * 8));
294       ++ByteOffset;
295     }
296     return true;
297   }
298
299   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
300     if (CFP->getType()->isDoubleTy()) {
301       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
302       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
303     }
304     if (CFP->getType()->isFloatTy()){
305       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
306       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
307     }
308     if (CFP->getType()->isHalfTy()){
309       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
310       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
311     }
312     return false;
313   }
314
315   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
316     const StructLayout *SL = TD.getStructLayout(CS->getType());
317     unsigned Index = SL->getElementContainingOffset(ByteOffset);
318     uint64_t CurEltOffset = SL->getElementOffset(Index);
319     ByteOffset -= CurEltOffset;
320
321     while (1) {
322       // If the element access is to the element itself and not to tail padding,
323       // read the bytes from the element.
324       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
325
326       if (ByteOffset < EltSize &&
327           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
328                               BytesLeft, TD))
329         return false;
330
331       ++Index;
332
333       // Check to see if we read from the last struct element, if so we're done.
334       if (Index == CS->getType()->getNumElements())
335         return true;
336
337       // If we read all of the bytes we needed from this element we're done.
338       uint64_t NextEltOffset = SL->getElementOffset(Index);
339
340       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
341         return true;
342
343       // Move to the next element of the struct.
344       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
345       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
346       ByteOffset = 0;
347       CurEltOffset = NextEltOffset;
348     }
349     // not reached.
350   }
351
352   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
353       isa<ConstantDataSequential>(C)) {
354     Type *EltTy = C->getType()->getSequentialElementType();
355     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
356     uint64_t Index = ByteOffset / EltSize;
357     uint64_t Offset = ByteOffset - Index * EltSize;
358     uint64_t NumElts;
359     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
360       NumElts = AT->getNumElements();
361     else
362       NumElts = C->getType()->getVectorNumElements();
363
364     for (; Index != NumElts; ++Index) {
365       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
366                               BytesLeft, TD))
367         return false;
368
369       uint64_t BytesWritten = EltSize - Offset;
370       assert(BytesWritten <= EltSize && "Not indexing into this element?");
371       if (BytesWritten >= BytesLeft)
372         return true;
373
374       Offset = 0;
375       BytesLeft -= BytesWritten;
376       CurPtr += BytesWritten;
377     }
378     return true;
379   }
380
381   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
382     if (CE->getOpcode() == Instruction::IntToPtr &&
383         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
384       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
385                                 BytesLeft, TD);
386     }
387   }
388
389   // Otherwise, unknown initializer type.
390   return false;
391 }
392
393 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
394                                                  const DataLayout &TD) {
395   PointerType *PTy = cast<PointerType>(C->getType());
396   Type *LoadTy = PTy->getElementType();
397   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
398
399   // If this isn't an integer load we can't fold it directly.
400   if (!IntType) {
401     unsigned AS = PTy->getAddressSpace();
402
403     // If this is a float/double load, we can try folding it as an int32/64 load
404     // and then bitcast the result.  This can be useful for union cases.  Note
405     // that address spaces don't matter here since we're not going to result in
406     // an actual new load.
407     Type *MapTy;
408     if (LoadTy->isHalfTy())
409       MapTy = Type::getInt16PtrTy(C->getContext(), AS);
410     else if (LoadTy->isFloatTy())
411       MapTy = Type::getInt32PtrTy(C->getContext(), AS);
412     else if (LoadTy->isDoubleTy())
413       MapTy = Type::getInt64PtrTy(C->getContext(), AS);
414     else if (LoadTy->isVectorTy()) {
415       MapTy = PointerType::getIntNPtrTy(C->getContext(),
416                                         TD.getTypeAllocSizeInBits(LoadTy),
417                                         AS);
418     } else
419       return nullptr;
420
421     C = FoldBitCast(C, MapTy, TD);
422     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
423       return FoldBitCast(Res, LoadTy, TD);
424     return nullptr;
425   }
426
427   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
428   if (BytesLoaded > 32 || BytesLoaded == 0)
429     return nullptr;
430
431   GlobalValue *GVal;
432   APInt Offset;
433   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
434     return nullptr;
435
436   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
437   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
438       !GV->getInitializer()->getType()->isSized())
439     return nullptr;
440
441   // If we're loading off the beginning of the global, some bytes may be valid,
442   // but we don't try to handle this.
443   if (Offset.isNegative())
444     return nullptr;
445
446   // If we're not accessing anything in this constant, the result is undefined.
447   if (Offset.getZExtValue() >=
448       TD.getTypeAllocSize(GV->getInitializer()->getType()))
449     return UndefValue::get(IntType);
450
451   unsigned char RawBytes[32] = {0};
452   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
453                           BytesLoaded, TD))
454     return nullptr;
455
456   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
457   if (TD.isLittleEndian()) {
458     ResultVal = RawBytes[BytesLoaded - 1];
459     for (unsigned i = 1; i != BytesLoaded; ++i) {
460       ResultVal <<= 8;
461       ResultVal |= RawBytes[BytesLoaded - 1 - i];
462     }
463   } else {
464     ResultVal = RawBytes[0];
465     for (unsigned i = 1; i != BytesLoaded; ++i) {
466       ResultVal <<= 8;
467       ResultVal |= RawBytes[i];
468     }
469   }
470
471   return ConstantInt::get(IntType->getContext(), ResultVal);
472 }
473
474 static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
475                                                 const DataLayout *DL) {
476   if (!DL)
477     return nullptr;
478   auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
479   if (!DestPtrTy)
480     return nullptr;
481   Type *DestTy = DestPtrTy->getElementType();
482
483   Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
484   if (!C)
485     return nullptr;
486
487   do {
488     Type *SrcTy = C->getType();
489
490     // If the type sizes are the same and a cast is legal, just directly
491     // cast the constant.
492     if (DL->getTypeSizeInBits(DestTy) == DL->getTypeSizeInBits(SrcTy)) {
493       Instruction::CastOps Cast = Instruction::BitCast;
494       // If we are going from a pointer to int or vice versa, we spell the cast
495       // differently.
496       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
497         Cast = Instruction::IntToPtr;
498       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
499         Cast = Instruction::PtrToInt;
500
501       if (CastInst::castIsValid(Cast, C, DestTy))
502         return ConstantExpr::getCast(Cast, C, DestTy);
503     }
504
505     // If this isn't an aggregate type, there is nothing we can do to drill down
506     // and find a bitcastable constant.
507     if (!SrcTy->isAggregateType())
508       return nullptr;
509
510     // We're simulating a load through a pointer that was bitcast to point to
511     // a different type, so we can try to walk down through the initial
512     // elements of an aggregate to see if some part of th e aggregate is
513     // castable to implement the "load" semantic model.
514     C = C->getAggregateElement(0u);
515   } while (C);
516
517   return nullptr;
518 }
519
520 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
521 /// produce if it is constant and determinable.  If this is not determinable,
522 /// return null.
523 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
524                                              const DataLayout *TD) {
525   // First, try the easy cases:
526   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
527     if (GV->isConstant() && GV->hasDefinitiveInitializer())
528       return GV->getInitializer();
529
530   // If the loaded value isn't a constant expr, we can't handle it.
531   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
532   if (!CE)
533     return nullptr;
534
535   if (CE->getOpcode() == Instruction::GetElementPtr) {
536     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
537       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
538         if (Constant *V =
539              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
540           return V;
541       }
542     }
543   }
544
545   if (CE->getOpcode() == Instruction::BitCast)
546     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, TD))
547       return LoadedC;
548
549   // Instead of loading constant c string, use corresponding integer value
550   // directly if string length is small enough.
551   StringRef Str;
552   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
553     unsigned StrLen = Str.size();
554     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
555     unsigned NumBits = Ty->getPrimitiveSizeInBits();
556     // Replace load with immediate integer if the result is an integer or fp
557     // value.
558     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
559         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
560       APInt StrVal(NumBits, 0);
561       APInt SingleChar(NumBits, 0);
562       if (TD->isLittleEndian()) {
563         for (signed i = StrLen-1; i >= 0; i--) {
564           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
565           StrVal = (StrVal << 8) | SingleChar;
566         }
567       } else {
568         for (unsigned i = 0; i < StrLen; i++) {
569           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
570           StrVal = (StrVal << 8) | SingleChar;
571         }
572         // Append NULL at the end.
573         SingleChar = 0;
574         StrVal = (StrVal << 8) | SingleChar;
575       }
576
577       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
578       if (Ty->isFloatingPointTy())
579         Res = ConstantExpr::getBitCast(Res, Ty);
580       return Res;
581     }
582   }
583
584   // If this load comes from anywhere in a constant global, and if the global
585   // is all undef or zero, we know what it loads.
586   if (GlobalVariable *GV =
587         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
588     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
589       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
590       if (GV->getInitializer()->isNullValue())
591         return Constant::getNullValue(ResTy);
592       if (isa<UndefValue>(GV->getInitializer()))
593         return UndefValue::get(ResTy);
594     }
595   }
596
597   // Try hard to fold loads from bitcasted strange and non-type-safe things.
598   if (TD)
599     return FoldReinterpretLoadFromConstPtr(CE, *TD);
600   return nullptr;
601 }
602
603 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
604   if (LI->isVolatile()) return nullptr;
605
606   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
607     return ConstantFoldLoadFromConstPtr(C, TD);
608
609   return nullptr;
610 }
611
612 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
613 /// Attempt to symbolically evaluate the result of a binary operator merging
614 /// these together.  If target data info is available, it is provided as DL,
615 /// otherwise DL is null.
616 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
617                                            Constant *Op1, const DataLayout *DL){
618   // SROA
619
620   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
621   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
622   // bits.
623
624
625   if (Opc == Instruction::And && DL) {
626     unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
627     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
628     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
629     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
630     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
631     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
632       // All the bits of Op0 that the 'and' could be masking are already zero.
633       return Op0;
634     }
635     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
636       // All the bits of Op1 that the 'and' could be masking are already zero.
637       return Op1;
638     }
639
640     APInt KnownZero = KnownZero0 | KnownZero1;
641     APInt KnownOne = KnownOne0 & KnownOne1;
642     if ((KnownZero | KnownOne).isAllOnesValue()) {
643       return ConstantInt::get(Op0->getType(), KnownOne);
644     }
645   }
646
647   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
648   // constant.  This happens frequently when iterating over a global array.
649   if (Opc == Instruction::Sub && DL) {
650     GlobalValue *GV1, *GV2;
651     APInt Offs1, Offs2;
652
653     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
654       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
655           GV1 == GV2) {
656         unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
657
658         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
659         // PtrToInt may change the bitwidth so we have convert to the right size
660         // first.
661         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
662                                                 Offs2.zextOrTrunc(OpSize));
663       }
664   }
665
666   return nullptr;
667 }
668
669 /// CastGEPIndices - If array indices are not pointer-sized integers,
670 /// explicitly cast them so that they aren't implicitly casted by the
671 /// getelementptr.
672 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
673                                 Type *ResultTy, const DataLayout *TD,
674                                 const TargetLibraryInfo *TLI) {
675   if (!TD)
676     return nullptr;
677
678   Type *IntPtrTy = TD->getIntPtrType(ResultTy);
679
680   bool Any = false;
681   SmallVector<Constant*, 32> NewIdxs;
682   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
683     if ((i == 1 ||
684          !isa<StructType>(GetElementPtrInst::getIndexedType(
685                             Ops[0]->getType(),
686                             Ops.slice(1, i - 1)))) &&
687         Ops[i]->getType() != IntPtrTy) {
688       Any = true;
689       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
690                                                                       true,
691                                                                       IntPtrTy,
692                                                                       true),
693                                               Ops[i], IntPtrTy));
694     } else
695       NewIdxs.push_back(Ops[i]);
696   }
697
698   if (!Any)
699     return nullptr;
700
701   Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
702   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
703     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
704       C = Folded;
705   }
706
707   return C;
708 }
709
710 /// Strip the pointer casts, but preserve the address space information.
711 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
712   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
713   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
714   Ptr = Ptr->stripPointerCasts();
715   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
716
717   // Preserve the address space number of the pointer.
718   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
719     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
720       OldPtrTy->getAddressSpace());
721     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
722   }
723   return Ptr;
724 }
725
726 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
727 /// constant expression, do so.
728 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
729                                          Type *ResultTy, const DataLayout *TD,
730                                          const TargetLibraryInfo *TLI) {
731   Constant *Ptr = Ops[0];
732   if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
733       !Ptr->getType()->isPointerTy())
734     return nullptr;
735
736   Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
737   Type *ResultElementTy = ResultTy->getPointerElementType();
738
739   // If this is a constant expr gep that is effectively computing an
740   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
741   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
742     if (!isa<ConstantInt>(Ops[i])) {
743
744       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
745       // "inttoptr (sub (ptrtoint Ptr), V)"
746       if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
747         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
748         assert((!CE || CE->getType() == IntPtrTy) &&
749                "CastGEPIndices didn't canonicalize index types!");
750         if (CE && CE->getOpcode() == Instruction::Sub &&
751             CE->getOperand(0)->isNullValue()) {
752           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
753           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
754           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
755           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
756             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
757           return Res;
758         }
759       }
760       return nullptr;
761     }
762
763   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
764   APInt Offset =
765     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
766                                          makeArrayRef((Value *const*)
767                                                         Ops.data() + 1,
768                                                       Ops.size() - 1)));
769   Ptr = StripPtrCastKeepAS(Ptr);
770
771   // If this is a GEP of a GEP, fold it all into a single GEP.
772   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
773     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
774
775     // Do not try the incorporate the sub-GEP if some index is not a number.
776     bool AllConstantInt = true;
777     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
778       if (!isa<ConstantInt>(NestedOps[i])) {
779         AllConstantInt = false;
780         break;
781       }
782     if (!AllConstantInt)
783       break;
784
785     Ptr = cast<Constant>(GEP->getOperand(0));
786     Offset += APInt(BitWidth,
787                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
788     Ptr = StripPtrCastKeepAS(Ptr);
789   }
790
791   // If the base value for this address is a literal integer value, fold the
792   // getelementptr to the resulting integer value casted to the pointer type.
793   APInt BasePtr(BitWidth, 0);
794   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
795     if (CE->getOpcode() == Instruction::IntToPtr) {
796       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
797         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
798     }
799   }
800
801   if (Ptr->isNullValue() || BasePtr != 0) {
802     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
803     return ConstantExpr::getIntToPtr(C, ResultTy);
804   }
805
806   // Otherwise form a regular getelementptr. Recompute the indices so that
807   // we eliminate over-indexing of the notional static type array bounds.
808   // This makes it easy to determine if the getelementptr is "inbounds".
809   // Also, this helps GlobalOpt do SROA on GlobalVariables.
810   Type *Ty = Ptr->getType();
811   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
812   SmallVector<Constant *, 32> NewIdxs;
813
814   do {
815     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
816       if (ATy->isPointerTy()) {
817         // The only pointer indexing we'll do is on the first index of the GEP.
818         if (!NewIdxs.empty())
819           break;
820
821         // Only handle pointers to sized types, not pointers to functions.
822         if (!ATy->getElementType()->isSized())
823           return nullptr;
824       }
825
826       // Determine which element of the array the offset points into.
827       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
828       if (ElemSize == 0)
829         // The element size is 0. This may be [0 x Ty]*, so just use a zero
830         // index for this level and proceed to the next level to see if it can
831         // accommodate the offset.
832         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
833       else {
834         // The element size is non-zero divide the offset by the element
835         // size (rounding down), to compute the index at this level.
836         APInt NewIdx = Offset.udiv(ElemSize);
837         Offset -= NewIdx * ElemSize;
838         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
839       }
840       Ty = ATy->getElementType();
841     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
842       // If we end up with an offset that isn't valid for this struct type, we
843       // can't re-form this GEP in a regular form, so bail out. The pointer
844       // operand likely went through casts that are necessary to make the GEP
845       // sensible.
846       const StructLayout &SL = *TD->getStructLayout(STy);
847       if (Offset.uge(SL.getSizeInBytes()))
848         break;
849
850       // Determine which field of the struct the offset points into. The
851       // getZExtValue is fine as we've already ensured that the offset is
852       // within the range representable by the StructLayout API.
853       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
854       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
855                                          ElIdx));
856       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
857       Ty = STy->getTypeAtIndex(ElIdx);
858     } else {
859       // We've reached some non-indexable type.
860       break;
861     }
862   } while (Ty != ResultElementTy);
863
864   // If we haven't used up the entire offset by descending the static
865   // type, then the offset is pointing into the middle of an indivisible
866   // member, so we can't simplify it.
867   if (Offset != 0)
868     return nullptr;
869
870   // Create a GEP.
871   Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
872   assert(C->getType()->getPointerElementType() == Ty &&
873          "Computed GetElementPtr has unexpected type!");
874
875   // If we ended up indexing a member with a type that doesn't match
876   // the type of what the original indices indexed, add a cast.
877   if (Ty != ResultElementTy)
878     C = FoldBitCast(C, ResultTy, *TD);
879
880   return C;
881 }
882
883
884
885 //===----------------------------------------------------------------------===//
886 // Constant Folding public APIs
887 //===----------------------------------------------------------------------===//
888
889 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
890 /// If successful, the constant result is returned, if not, null is returned.
891 /// Note that this fails if not all of the operands are constant.  Otherwise,
892 /// this function can only fail when attempting to fold instructions like loads
893 /// and stores, which have no constant expression form.
894 Constant *llvm::ConstantFoldInstruction(Instruction *I,
895                                         const DataLayout *TD,
896                                         const TargetLibraryInfo *TLI) {
897   // Handle PHI nodes quickly here...
898   if (PHINode *PN = dyn_cast<PHINode>(I)) {
899     Constant *CommonValue = nullptr;
900
901     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
902       Value *Incoming = PN->getIncomingValue(i);
903       // If the incoming value is undef then skip it.  Note that while we could
904       // skip the value if it is equal to the phi node itself we choose not to
905       // because that would break the rule that constant folding only applies if
906       // all operands are constants.
907       if (isa<UndefValue>(Incoming))
908         continue;
909       // If the incoming value is not a constant, then give up.
910       Constant *C = dyn_cast<Constant>(Incoming);
911       if (!C)
912         return nullptr;
913       // Fold the PHI's operands.
914       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
915         C = ConstantFoldConstantExpression(NewC, TD, TLI);
916       // If the incoming value is a different constant to
917       // the one we saw previously, then give up.
918       if (CommonValue && C != CommonValue)
919         return nullptr;
920       CommonValue = C;
921     }
922
923
924     // If we reach here, all incoming values are the same constant or undef.
925     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
926   }
927
928   // Scan the operand list, checking to see if they are all constants, if so,
929   // hand off to ConstantFoldInstOperands.
930   SmallVector<Constant*, 8> Ops;
931   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
932     Constant *Op = dyn_cast<Constant>(*i);
933     if (!Op)
934       return nullptr;  // All operands not constant!
935
936     // Fold the Instruction's operands.
937     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
938       Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
939
940     Ops.push_back(Op);
941   }
942
943   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
944     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
945                                            TD, TLI);
946
947   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
948     return ConstantFoldLoadInst(LI, TD);
949
950   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
951     return ConstantExpr::getInsertValue(
952                                 cast<Constant>(IVI->getAggregateOperand()),
953                                 cast<Constant>(IVI->getInsertedValueOperand()),
954                                 IVI->getIndices());
955   }
956
957   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
958     return ConstantExpr::getExtractValue(
959                                     cast<Constant>(EVI->getAggregateOperand()),
960                                     EVI->getIndices());
961   }
962
963   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
964 }
965
966 static Constant *
967 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
968                                    const TargetLibraryInfo *TLI,
969                                    SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
970   SmallVector<Constant *, 8> Ops;
971   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
972        ++i) {
973     Constant *NewC = cast<Constant>(*i);
974     // Recursively fold the ConstantExpr's operands. If we have already folded
975     // a ConstantExpr, we don't have to process it again.
976     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
977       if (FoldedOps.insert(NewCE))
978         NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
979     }
980     Ops.push_back(NewC);
981   }
982
983   if (CE->isCompare())
984     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
985                                            TD, TLI);
986   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
987 }
988
989 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
990 /// using the specified DataLayout.  If successful, the constant result is
991 /// result is returned, if not, null is returned.
992 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
993                                                const DataLayout *TD,
994                                                const TargetLibraryInfo *TLI) {
995   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
996   return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
997 }
998
999 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
1000 /// specified opcode and operands.  If successful, the constant result is
1001 /// returned, if not, null is returned.  Note that this function can fail when
1002 /// attempting to fold instructions like loads and stores, which have no
1003 /// constant expression form.
1004 ///
1005 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1006 /// information, due to only being passed an opcode and operands. Constant
1007 /// folding using this function strips this information.
1008 ///
1009 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1010                                          ArrayRef<Constant *> Ops,
1011                                          const DataLayout *TD,
1012                                          const TargetLibraryInfo *TLI) {
1013   // Handle easy binops first.
1014   if (Instruction::isBinaryOp(Opcode)) {
1015     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1016       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
1017         return C;
1018     }
1019
1020     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1021   }
1022
1023   switch (Opcode) {
1024   default: return nullptr;
1025   case Instruction::ICmp:
1026   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1027   case Instruction::Call:
1028     if (Function *F = dyn_cast<Function>(Ops.back()))
1029       if (canConstantFoldCallTo(F))
1030         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1031     return nullptr;
1032   case Instruction::PtrToInt:
1033     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1034     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1035     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1036       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
1037         Constant *Input = CE->getOperand(0);
1038         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1039         unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
1040         if (PtrWidth < InWidth) {
1041           Constant *Mask =
1042             ConstantInt::get(CE->getContext(),
1043                              APInt::getLowBitsSet(InWidth, PtrWidth));
1044           Input = ConstantExpr::getAnd(Input, Mask);
1045         }
1046         // Do a zext or trunc to get to the dest size.
1047         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1048       }
1049     }
1050     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1051   case Instruction::IntToPtr:
1052     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1053     // the int size is >= the ptr size and the address spaces are the same.
1054     // This requires knowing the width of a pointer, so it can't be done in
1055     // ConstantExpr::getCast.
1056     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1057       if (TD && CE->getOpcode() == Instruction::PtrToInt) {
1058         Constant *SrcPtr = CE->getOperand(0);
1059         unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
1060         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1061
1062         if (MidIntSize >= SrcPtrSize) {
1063           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1064           if (SrcAS == DestTy->getPointerAddressSpace())
1065             return FoldBitCast(CE->getOperand(0), DestTy, *TD);
1066         }
1067       }
1068     }
1069
1070     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1071   case Instruction::Trunc:
1072   case Instruction::ZExt:
1073   case Instruction::SExt:
1074   case Instruction::FPTrunc:
1075   case Instruction::FPExt:
1076   case Instruction::UIToFP:
1077   case Instruction::SIToFP:
1078   case Instruction::FPToUI:
1079   case Instruction::FPToSI:
1080   case Instruction::AddrSpaceCast:
1081       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1082   case Instruction::BitCast:
1083     if (TD)
1084       return FoldBitCast(Ops[0], DestTy, *TD);
1085     return ConstantExpr::getBitCast(Ops[0], DestTy);
1086   case Instruction::Select:
1087     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1088   case Instruction::ExtractElement:
1089     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1090   case Instruction::InsertElement:
1091     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1092   case Instruction::ShuffleVector:
1093     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1094   case Instruction::GetElementPtr:
1095     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1096       return C;
1097     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1098       return C;
1099
1100     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1101   }
1102 }
1103
1104 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1105 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1106 /// returns a constant expression of the specified operands.
1107 ///
1108 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1109                                                 Constant *Ops0, Constant *Ops1,
1110                                                 const DataLayout *TD,
1111                                                 const TargetLibraryInfo *TLI) {
1112   // fold: icmp (inttoptr x), null         -> icmp x, 0
1113   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1114   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1115   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1116   //
1117   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1118   // around to know if bit truncation is happening.
1119   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1120     if (TD && Ops1->isNullValue()) {
1121       if (CE0->getOpcode() == Instruction::IntToPtr) {
1122         Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1123         // Convert the integer value to the right size to ensure we get the
1124         // proper extension or truncation.
1125         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1126                                                    IntPtrTy, false);
1127         Constant *Null = Constant::getNullValue(C->getType());
1128         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1129       }
1130
1131       // Only do this transformation if the int is intptrty in size, otherwise
1132       // there is a truncation or extension that we aren't modeling.
1133       if (CE0->getOpcode() == Instruction::PtrToInt) {
1134         Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1135         if (CE0->getType() == IntPtrTy) {
1136           Constant *C = CE0->getOperand(0);
1137           Constant *Null = Constant::getNullValue(C->getType());
1138           return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1139         }
1140       }
1141     }
1142
1143     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1144       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1145         if (CE0->getOpcode() == Instruction::IntToPtr) {
1146           Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1147
1148           // Convert the integer value to the right size to ensure we get the
1149           // proper extension or truncation.
1150           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1151                                                       IntPtrTy, false);
1152           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1153                                                       IntPtrTy, false);
1154           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1155         }
1156
1157         // Only do this transformation if the int is intptrty in size, otherwise
1158         // there is a truncation or extension that we aren't modeling.
1159         if (CE0->getOpcode() == Instruction::PtrToInt) {
1160           Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1161           if (CE0->getType() == IntPtrTy &&
1162               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1163             return ConstantFoldCompareInstOperands(Predicate,
1164                                                    CE0->getOperand(0),
1165                                                    CE1->getOperand(0),
1166                                                    TD,
1167                                                    TLI);
1168           }
1169         }
1170       }
1171     }
1172
1173     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1174     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1175     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1176         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1177       Constant *LHS =
1178         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1179                                         TD, TLI);
1180       Constant *RHS =
1181         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1182                                         TD, TLI);
1183       unsigned OpC =
1184         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1185       Constant *Ops[] = { LHS, RHS };
1186       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1187     }
1188   }
1189
1190   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1191 }
1192
1193
1194 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1195 /// getelementptr constantexpr, return the constant value being addressed by the
1196 /// constant expression, or null if something is funny and we can't decide.
1197 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1198                                                        ConstantExpr *CE) {
1199   if (!CE->getOperand(1)->isNullValue())
1200     return nullptr;  // Do not allow stepping over the value!
1201
1202   // Loop over all of the operands, tracking down which value we are
1203   // addressing.
1204   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1205     C = C->getAggregateElement(CE->getOperand(i));
1206     if (!C)
1207       return nullptr;
1208   }
1209   return C;
1210 }
1211
1212 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1213 /// indices (with an *implied* zero pointer index that is not in the list),
1214 /// return the constant value being addressed by a virtual load, or null if
1215 /// something is funny and we can't decide.
1216 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1217                                                   ArrayRef<Constant*> Indices) {
1218   // Loop over all of the operands, tracking down which value we are
1219   // addressing.
1220   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1221     C = C->getAggregateElement(Indices[i]);
1222     if (!C)
1223       return nullptr;
1224   }
1225   return C;
1226 }
1227
1228
1229 //===----------------------------------------------------------------------===//
1230 //  Constant Folding for Calls
1231 //
1232
1233 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1234 /// the specified function.
1235 bool llvm::canConstantFoldCallTo(const Function *F) {
1236   switch (F->getIntrinsicID()) {
1237   case Intrinsic::fabs:
1238   case Intrinsic::log:
1239   case Intrinsic::log2:
1240   case Intrinsic::log10:
1241   case Intrinsic::exp:
1242   case Intrinsic::exp2:
1243   case Intrinsic::floor:
1244   case Intrinsic::ceil:
1245   case Intrinsic::sqrt:
1246   case Intrinsic::pow:
1247   case Intrinsic::powi:
1248   case Intrinsic::bswap:
1249   case Intrinsic::ctpop:
1250   case Intrinsic::ctlz:
1251   case Intrinsic::cttz:
1252   case Intrinsic::fma:
1253   case Intrinsic::fmuladd:
1254   case Intrinsic::copysign:
1255   case Intrinsic::round:
1256   case Intrinsic::sadd_with_overflow:
1257   case Intrinsic::uadd_with_overflow:
1258   case Intrinsic::ssub_with_overflow:
1259   case Intrinsic::usub_with_overflow:
1260   case Intrinsic::smul_with_overflow:
1261   case Intrinsic::umul_with_overflow:
1262   case Intrinsic::convert_from_fp16:
1263   case Intrinsic::convert_to_fp16:
1264   case Intrinsic::x86_sse_cvtss2si:
1265   case Intrinsic::x86_sse_cvtss2si64:
1266   case Intrinsic::x86_sse_cvttss2si:
1267   case Intrinsic::x86_sse_cvttss2si64:
1268   case Intrinsic::x86_sse2_cvtsd2si:
1269   case Intrinsic::x86_sse2_cvtsd2si64:
1270   case Intrinsic::x86_sse2_cvttsd2si:
1271   case Intrinsic::x86_sse2_cvttsd2si64:
1272     return true;
1273   default:
1274     return false;
1275   case 0: break;
1276   }
1277
1278   if (!F->hasName())
1279     return false;
1280   StringRef Name = F->getName();
1281
1282   // In these cases, the check of the length is required.  We don't want to
1283   // return true for a name like "cos\0blah" which strcmp would return equal to
1284   // "cos", but has length 8.
1285   switch (Name[0]) {
1286   default: return false;
1287   case 'a':
1288     return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1289   case 'c':
1290     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1291   case 'e':
1292     return Name == "exp" || Name == "exp2";
1293   case 'f':
1294     return Name == "fabs" || Name == "fmod" || Name == "floor";
1295   case 'l':
1296     return Name == "log" || Name == "log10";
1297   case 'p':
1298     return Name == "pow";
1299   case 's':
1300     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1301       Name == "sinf" || Name == "sqrtf";
1302   case 't':
1303     return Name == "tan" || Name == "tanh";
1304   }
1305 }
1306
1307 static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1308   if (Ty->isHalfTy()) {
1309     APFloat APF(V);
1310     bool unused;
1311     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1312     return ConstantFP::get(Ty->getContext(), APF);
1313   }
1314   if (Ty->isFloatTy())
1315     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1316   if (Ty->isDoubleTy())
1317     return ConstantFP::get(Ty->getContext(), APFloat(V));
1318   llvm_unreachable("Can only constant fold half/float/double");
1319
1320 }
1321
1322 namespace {
1323 /// llvm_fenv_clearexcept - Clear the floating-point exception state.
1324 static inline void llvm_fenv_clearexcept() {
1325 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1326   feclearexcept(FE_ALL_EXCEPT);
1327 #endif
1328   errno = 0;
1329 }
1330
1331 /// llvm_fenv_testexcept - Test if a floating-point exception was raised.
1332 static inline bool llvm_fenv_testexcept() {
1333   int errno_val = errno;
1334   if (errno_val == ERANGE || errno_val == EDOM)
1335     return true;
1336 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1337   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1338     return true;
1339 #endif
1340   return false;
1341 }
1342 } // End namespace
1343
1344 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1345                                 Type *Ty) {
1346   llvm_fenv_clearexcept();
1347   V = NativeFP(V);
1348   if (llvm_fenv_testexcept()) {
1349     llvm_fenv_clearexcept();
1350     return nullptr;
1351   }
1352
1353   return GetConstantFoldFPValue(V, Ty);
1354 }
1355
1356 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1357                                       double V, double W, Type *Ty) {
1358   llvm_fenv_clearexcept();
1359   V = NativeFP(V, W);
1360   if (llvm_fenv_testexcept()) {
1361     llvm_fenv_clearexcept();
1362     return nullptr;
1363   }
1364
1365   return GetConstantFoldFPValue(V, Ty);
1366 }
1367
1368 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1369 /// conversion of a constant floating point. If roundTowardZero is false, the
1370 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1371 /// the behavior of the non-truncating SSE instructions in the default rounding
1372 /// mode. The desired integer type Ty is used to select how many bits are
1373 /// available for the result. Returns null if the conversion cannot be
1374 /// performed, otherwise returns the Constant value resulting from the
1375 /// conversion.
1376 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1377                                           bool roundTowardZero, Type *Ty) {
1378   // All of these conversion intrinsics form an integer of at most 64bits.
1379   unsigned ResultWidth = Ty->getIntegerBitWidth();
1380   assert(ResultWidth <= 64 &&
1381          "Can only constant fold conversions to 64 and 32 bit ints");
1382
1383   uint64_t UIntVal;
1384   bool isExact = false;
1385   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1386                                               : APFloat::rmNearestTiesToEven;
1387   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1388                                                   /*isSigned=*/true, mode,
1389                                                   &isExact);
1390   if (status != APFloat::opOK && status != APFloat::opInexact)
1391     return nullptr;
1392   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1393 }
1394
1395 static double getValueAsDouble(ConstantFP *Op) {
1396   Type *Ty = Op->getType();
1397
1398   if (Ty->isFloatTy())
1399     return Op->getValueAPF().convertToFloat();
1400
1401   if (Ty->isDoubleTy())
1402     return Op->getValueAPF().convertToDouble();
1403
1404   bool unused;
1405   APFloat APF = Op->getValueAPF();
1406   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1407   return APF.convertToDouble();
1408 }
1409
1410 static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1411                                         Type *Ty, ArrayRef<Constant *> Operands,
1412                                         const TargetLibraryInfo *TLI) {
1413   if (Operands.size() == 1) {
1414     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1415       if (IntrinsicID == Intrinsic::convert_to_fp16) {
1416         APFloat Val(Op->getValueAPF());
1417
1418         bool lost = false;
1419         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1420
1421         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1422       }
1423
1424       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1425         return nullptr;
1426
1427       if (IntrinsicID == Intrinsic::round) {
1428         APFloat V = Op->getValueAPF();
1429         V.roundToIntegral(APFloat::rmNearestTiesToAway);
1430         return ConstantFP::get(Ty->getContext(), V);
1431       }
1432
1433       /// We only fold functions with finite arguments. Folding NaN and inf is
1434       /// likely to be aborted with an exception anyway, and some host libms
1435       /// have known errors raising exceptions.
1436       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1437         return nullptr;
1438
1439       /// Currently APFloat versions of these functions do not exist, so we use
1440       /// the host native double versions.  Float versions are not called
1441       /// directly but for all these it is true (float)(f((double)arg)) ==
1442       /// f(arg).  Long double not supported yet.
1443       double V = getValueAsDouble(Op);
1444
1445       switch (IntrinsicID) {
1446         default: break;
1447         case Intrinsic::fabs:
1448           return ConstantFoldFP(fabs, V, Ty);
1449 #if HAVE_LOG2
1450         case Intrinsic::log2:
1451           return ConstantFoldFP(log2, V, Ty);
1452 #endif
1453 #if HAVE_LOG
1454         case Intrinsic::log:
1455           return ConstantFoldFP(log, V, Ty);
1456 #endif
1457 #if HAVE_LOG10
1458         case Intrinsic::log10:
1459           return ConstantFoldFP(log10, V, Ty);
1460 #endif
1461 #if HAVE_EXP
1462         case Intrinsic::exp:
1463           return ConstantFoldFP(exp, V, Ty);
1464 #endif
1465 #if HAVE_EXP2
1466         case Intrinsic::exp2:
1467           return ConstantFoldFP(exp2, V, Ty);
1468 #endif
1469         case Intrinsic::floor:
1470           return ConstantFoldFP(floor, V, Ty);
1471         case Intrinsic::ceil:
1472           return ConstantFoldFP(ceil, V, Ty);
1473       }
1474
1475       if (!TLI)
1476         return nullptr;
1477
1478       switch (Name[0]) {
1479       case 'a':
1480         if (Name == "acos" && TLI->has(LibFunc::acos))
1481           return ConstantFoldFP(acos, V, Ty);
1482         else if (Name == "asin" && TLI->has(LibFunc::asin))
1483           return ConstantFoldFP(asin, V, Ty);
1484         else if (Name == "atan" && TLI->has(LibFunc::atan))
1485           return ConstantFoldFP(atan, V, Ty);
1486         break;
1487       case 'c':
1488         if (Name == "ceil" && TLI->has(LibFunc::ceil))
1489           return ConstantFoldFP(ceil, V, Ty);
1490         else if (Name == "cos" && TLI->has(LibFunc::cos))
1491           return ConstantFoldFP(cos, V, Ty);
1492         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1493           return ConstantFoldFP(cosh, V, Ty);
1494         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1495           return ConstantFoldFP(cos, V, Ty);
1496         break;
1497       case 'e':
1498         if (Name == "exp" && TLI->has(LibFunc::exp))
1499           return ConstantFoldFP(exp, V, Ty);
1500
1501         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1502           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1503           // C99 library.
1504           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1505         }
1506         break;
1507       case 'f':
1508         if (Name == "fabs" && TLI->has(LibFunc::fabs))
1509           return ConstantFoldFP(fabs, V, Ty);
1510         else if (Name == "floor" && TLI->has(LibFunc::floor))
1511           return ConstantFoldFP(floor, V, Ty);
1512         break;
1513       case 'l':
1514         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1515           return ConstantFoldFP(log, V, Ty);
1516         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1517           return ConstantFoldFP(log10, V, Ty);
1518         else if (IntrinsicID == Intrinsic::sqrt &&
1519                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1520           if (V >= -0.0)
1521             return ConstantFoldFP(sqrt, V, Ty);
1522           else // Undefined
1523             return Constant::getNullValue(Ty);
1524         }
1525         break;
1526       case 's':
1527         if (Name == "sin" && TLI->has(LibFunc::sin))
1528           return ConstantFoldFP(sin, V, Ty);
1529         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1530           return ConstantFoldFP(sinh, V, Ty);
1531         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1532           return ConstantFoldFP(sqrt, V, Ty);
1533         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1534           return ConstantFoldFP(sqrt, V, Ty);
1535         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1536           return ConstantFoldFP(sin, V, Ty);
1537         break;
1538       case 't':
1539         if (Name == "tan" && TLI->has(LibFunc::tan))
1540           return ConstantFoldFP(tan, V, Ty);
1541         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1542           return ConstantFoldFP(tanh, V, Ty);
1543         break;
1544       default:
1545         break;
1546       }
1547       return nullptr;
1548     }
1549
1550     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1551       switch (IntrinsicID) {
1552       case Intrinsic::bswap:
1553         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1554       case Intrinsic::ctpop:
1555         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1556       case Intrinsic::convert_from_fp16: {
1557         APFloat Val(APFloat::IEEEhalf, Op->getValue());
1558
1559         bool lost = false;
1560         APFloat::opStatus status =
1561           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1562
1563         // Conversion is always precise.
1564         (void)status;
1565         assert(status == APFloat::opOK && !lost &&
1566                "Precision lost during fp16 constfolding");
1567
1568         return ConstantFP::get(Ty->getContext(), Val);
1569       }
1570       default:
1571         return nullptr;
1572       }
1573     }
1574
1575     // Support ConstantVector in case we have an Undef in the top.
1576     if (isa<ConstantVector>(Operands[0]) ||
1577         isa<ConstantDataVector>(Operands[0])) {
1578       Constant *Op = cast<Constant>(Operands[0]);
1579       switch (IntrinsicID) {
1580       default: break;
1581       case Intrinsic::x86_sse_cvtss2si:
1582       case Intrinsic::x86_sse_cvtss2si64:
1583       case Intrinsic::x86_sse2_cvtsd2si:
1584       case Intrinsic::x86_sse2_cvtsd2si64:
1585         if (ConstantFP *FPOp =
1586               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1587           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1588                                           /*roundTowardZero=*/false, Ty);
1589       case Intrinsic::x86_sse_cvttss2si:
1590       case Intrinsic::x86_sse_cvttss2si64:
1591       case Intrinsic::x86_sse2_cvttsd2si:
1592       case Intrinsic::x86_sse2_cvttsd2si64:
1593         if (ConstantFP *FPOp =
1594               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1595           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1596                                           /*roundTowardZero=*/true, Ty);
1597       }
1598     }
1599
1600     if (isa<UndefValue>(Operands[0])) {
1601       if (IntrinsicID == Intrinsic::bswap)
1602         return Operands[0];
1603       return nullptr;
1604     }
1605
1606     return nullptr;
1607   }
1608
1609   if (Operands.size() == 2) {
1610     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1611       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1612         return nullptr;
1613       double Op1V = getValueAsDouble(Op1);
1614
1615       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1616         if (Op2->getType() != Op1->getType())
1617           return nullptr;
1618
1619         double Op2V = getValueAsDouble(Op2);
1620         if (IntrinsicID == Intrinsic::pow) {
1621           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1622         }
1623         if (IntrinsicID == Intrinsic::copysign) {
1624           APFloat V1 = Op1->getValueAPF();
1625           APFloat V2 = Op2->getValueAPF();
1626           V1.copySign(V2);
1627           return ConstantFP::get(Ty->getContext(), V1);
1628         }
1629         if (!TLI)
1630           return nullptr;
1631         if (Name == "pow" && TLI->has(LibFunc::pow))
1632           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1633         if (Name == "fmod" && TLI->has(LibFunc::fmod))
1634           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1635         if (Name == "atan2" && TLI->has(LibFunc::atan2))
1636           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1637       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1638         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1639           return ConstantFP::get(Ty->getContext(),
1640                                  APFloat((float)std::pow((float)Op1V,
1641                                                  (int)Op2C->getZExtValue())));
1642         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1643           return ConstantFP::get(Ty->getContext(),
1644                                  APFloat((float)std::pow((float)Op1V,
1645                                                  (int)Op2C->getZExtValue())));
1646         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1647           return ConstantFP::get(Ty->getContext(),
1648                                  APFloat((double)std::pow((double)Op1V,
1649                                                    (int)Op2C->getZExtValue())));
1650       }
1651       return nullptr;
1652     }
1653
1654     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1655       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1656         switch (IntrinsicID) {
1657         default: break;
1658         case Intrinsic::sadd_with_overflow:
1659         case Intrinsic::uadd_with_overflow:
1660         case Intrinsic::ssub_with_overflow:
1661         case Intrinsic::usub_with_overflow:
1662         case Intrinsic::smul_with_overflow:
1663         case Intrinsic::umul_with_overflow: {
1664           APInt Res;
1665           bool Overflow;
1666           switch (IntrinsicID) {
1667           default: llvm_unreachable("Invalid case");
1668           case Intrinsic::sadd_with_overflow:
1669             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1670             break;
1671           case Intrinsic::uadd_with_overflow:
1672             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1673             break;
1674           case Intrinsic::ssub_with_overflow:
1675             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1676             break;
1677           case Intrinsic::usub_with_overflow:
1678             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1679             break;
1680           case Intrinsic::smul_with_overflow:
1681             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1682             break;
1683           case Intrinsic::umul_with_overflow:
1684             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1685             break;
1686           }
1687           Constant *Ops[] = {
1688             ConstantInt::get(Ty->getContext(), Res),
1689             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1690           };
1691           return ConstantStruct::get(cast<StructType>(Ty), Ops);
1692         }
1693         case Intrinsic::cttz:
1694           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1695             return UndefValue::get(Ty);
1696           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1697         case Intrinsic::ctlz:
1698           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1699             return UndefValue::get(Ty);
1700           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1701         }
1702       }
1703
1704       return nullptr;
1705     }
1706     return nullptr;
1707   }
1708
1709   if (Operands.size() != 3)
1710     return nullptr;
1711
1712   if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1713     if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1714       if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1715         switch (IntrinsicID) {
1716         default: break;
1717         case Intrinsic::fma:
1718         case Intrinsic::fmuladd: {
1719           APFloat V = Op1->getValueAPF();
1720           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1721                                                    Op3->getValueAPF(),
1722                                                    APFloat::rmNearestTiesToEven);
1723           if (s != APFloat::opInvalidOp)
1724             return ConstantFP::get(Ty->getContext(), V);
1725
1726           return nullptr;
1727         }
1728         }
1729       }
1730     }
1731   }
1732
1733   return nullptr;
1734 }
1735
1736 static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1737                                         VectorType *VTy,
1738                                         ArrayRef<Constant *> Operands,
1739                                         const TargetLibraryInfo *TLI) {
1740   SmallVector<Constant *, 4> Result(VTy->getNumElements());
1741   SmallVector<Constant *, 4> Lane(Operands.size());
1742   Type *Ty = VTy->getElementType();
1743
1744   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1745     // Gather a column of constants.
1746     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1747       Constant *Agg = Operands[J]->getAggregateElement(I);
1748       if (!Agg)
1749         return nullptr;
1750
1751       Lane[J] = Agg;
1752     }
1753
1754     // Use the regular scalar folding to simplify this column.
1755     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1756     if (!Folded)
1757       return nullptr;
1758     Result[I] = Folded;
1759   }
1760
1761   return ConstantVector::get(Result);
1762 }
1763
1764 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1765 /// with the specified arguments, returning null if unsuccessful.
1766 Constant *
1767 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1768                        const TargetLibraryInfo *TLI) {
1769   if (!F->hasName())
1770     return nullptr;
1771   StringRef Name = F->getName();
1772
1773   Type *Ty = F->getReturnType();
1774
1775   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1776     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1777
1778   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1779 }