Don't attribute in file headers anymore. See llvmdev for the
[oota-llvm.git] / include / llvm / Transforms / Utils / Cloning.h
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various functions that are used to clone chunks of LLVM
11 // code for various purposes.  This varies from copying whole modules into new
12 // modules, to cloning functions with different arguments, to inlining
13 // functions, to copying basic blocks to support loop unrolling or superblock
14 // formation, etc.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
20
21 #include <vector>
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/Analysis/LoopInfo.h"
24
25 namespace llvm {
26
27 class Module;
28 class Function;
29 class Pass;
30 class LPPassManager;
31 class BasicBlock;
32 class Value;
33 class CallInst;
34 class InvokeInst;
35 class ReturnInst;
36 class CallSite;
37 class Trace;
38 class CallGraph;
39 class TargetData;
40
41 /// CloneModule - Return an exact copy of the specified module
42 ///
43 Module *CloneModule(const Module *M);
44 Module *CloneModule(const Module *M, DenseMap<const Value*, Value*> &ValueMap);
45
46 /// ClonedCodeInfo - This struct can be used to capture information about code
47 /// being cloned, while it is being cloned.
48 struct ClonedCodeInfo {
49   /// ContainsCalls - This is set to true if the cloned code contains a normal
50   /// call instruction.
51   bool ContainsCalls;
52   
53   /// ContainsUnwinds - This is set to true if the cloned code contains an
54   /// unwind instruction.
55   bool ContainsUnwinds;
56   
57   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
58   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
59   /// the entry block or they are in the entry block but are not a constant
60   /// size.
61   bool ContainsDynamicAllocas;
62   
63   ClonedCodeInfo() {
64     ContainsCalls = false;
65     ContainsUnwinds = false;
66     ContainsDynamicAllocas = false;
67   }
68 };
69
70
71 /// CloneBasicBlock - Return a copy of the specified basic block, but without
72 /// embedding the block into a particular function.  The block returned is an
73 /// exact copy of the specified basic block, without any remapping having been
74 /// performed.  Because of this, this is only suitable for applications where
75 /// the basic block will be inserted into the same function that it was cloned
76 /// from (loop unrolling would use this, for example).
77 ///
78 /// Also, note that this function makes a direct copy of the basic block, and
79 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
80 /// nodes from the original block, even though there are no predecessors for the
81 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
82 /// block will branch to the old successors of the original block: these
83 /// successors will have to have any PHI nodes updated to account for the new
84 /// incoming edges.
85 ///
86 /// The correlation between instructions in the source and result basic blocks
87 /// is recorded in the ValueMap map.
88 ///
89 /// If you have a particular suffix you'd like to use to add to any cloned
90 /// names, specify it as the optional third parameter.
91 ///
92 /// If you would like the basic block to be auto-inserted into the end of a
93 /// function, you can specify it as the optional fourth parameter.
94 ///
95 /// If you would like to collect additional information about the cloned
96 /// function, you can specify a ClonedCodeInfo object with the optional fifth
97 /// parameter.
98 ///
99 BasicBlock *CloneBasicBlock(const BasicBlock *BB,
100                             DenseMap<const Value*, Value*> &ValueMap,
101                             const char *NameSuffix = "", Function *F = 0,
102                             ClonedCodeInfo *CodeInfo = 0);
103
104
105 /// CloneLoop - Clone Loop. Clone dominator info for loop insiders. Populate ValueMap
106 /// using old blocks to new blocks mapping.
107 Loop *CloneLoop(Loop *L, LPPassManager  *LPM, LoopInfo *LI, 
108                 DenseMap<const Value *, Value *> &ValueMap, Pass *P);
109
110 /// CloneFunction - Return a copy of the specified function, but without
111 /// embedding the function into another module.  Also, any references specified
112 /// in the ValueMap are changed to refer to their mapped value instead of the
113 /// original one.  If any of the arguments to the function are in the ValueMap,
114 /// the arguments are deleted from the resultant function.  The ValueMap is
115 /// updated to include mappings from all of the instructions and basicblocks in
116 /// the function from their old to new values.  The final argument captures
117 /// information about the cloned code if non-null.
118 ///
119 Function *CloneFunction(const Function *F,
120                         DenseMap<const Value*, Value*> &ValueMap,
121                         ClonedCodeInfo *CodeInfo = 0);
122
123 /// CloneFunction - Version of the function that doesn't need the ValueMap.
124 ///
125 inline Function *CloneFunction(const Function *F, ClonedCodeInfo *CodeInfo = 0){
126   DenseMap<const Value*, Value*> ValueMap;
127   return CloneFunction(F, ValueMap, CodeInfo);
128 }
129
130 /// Clone OldFunc into NewFunc, transforming the old arguments into references
131 /// to ArgMap values.  Note that if NewFunc already has basic blocks, the ones
132 /// cloned into it will be added to the end of the function.  This function
133 /// fills in a list of return instructions, and can optionally append the
134 /// specified suffix to all values cloned.
135 ///
136 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
137                        DenseMap<const Value*, Value*> &ValueMap,
138                        std::vector<ReturnInst*> &Returns,
139                        const char *NameSuffix = "", 
140                        ClonedCodeInfo *CodeInfo = 0);
141
142 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
143 /// except that it does some simple constant prop and DCE on the fly.  The
144 /// effect of this is to copy significantly less code in cases where (for
145 /// example) a function call with constant arguments is inlined, and those
146 /// constant arguments cause a significant amount of code in the callee to be
147 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
148 /// used for things like CloneFunction or CloneModule.
149 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
150                                DenseMap<const Value*, Value*> &ValueMap,
151                                std::vector<ReturnInst*> &Returns,
152                                const char *NameSuffix = "", 
153                                ClonedCodeInfo *CodeInfo = 0,
154                                const TargetData *TD = 0);
155
156
157 /// CloneTraceInto - Clone T into NewFunc. Original<->clone mapping is
158 /// saved in ValueMap.
159 ///
160 void CloneTraceInto(Function *NewFunc, Trace &T,
161                     DenseMap<const Value*, Value*> &ValueMap,
162                     const char *NameSuffix);
163
164 /// CloneTrace - Returns a copy of the specified trace.
165 /// It takes a vector of basic blocks clones the basic blocks, removes internal
166 /// phi nodes, adds it to the same function as the original (although there is
167 /// no jump to it) and returns the new vector of basic blocks.
168 std::vector<BasicBlock *> CloneTrace(const std::vector<BasicBlock*> &origTrace);
169
170 /// InlineFunction - This function inlines the called function into the basic
171 /// block of the caller.  This returns false if it is not possible to inline
172 /// this call.  The program is still in a well defined state if this occurs
173 /// though.
174 ///
175 /// Note that this only does one level of inlining.  For example, if the
176 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
177 /// exists in the instruction stream.  Similiarly this will inline a recursive
178 /// function by one level.
179 ///
180 /// If a non-null callgraph pointer is provided, these functions update the
181 /// CallGraph to represent the program after inlining.
182 ///
183 bool InlineFunction(CallInst *C, CallGraph *CG = 0, const TargetData *TD = 0);
184 bool InlineFunction(InvokeInst *II, CallGraph *CG = 0, const TargetData *TD =0);
185 bool InlineFunction(CallSite CS, CallGraph *CG = 0, const TargetData *TD = 0);
186
187 } // End llvm namespace
188
189 #endif