The inliner/cloner can now optionally take TargetData info, which can be
[oota-llvm.git] / include / llvm / Transforms / Utils / Cloning.h
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various functions that are used to clone chunks of LLVM
11 // code for various purposes.  This varies from copying whole modules into new
12 // modules, to cloning functions with different arguments, to inlining
13 // functions, to copying basic blocks to support loop unrolling or superblock
14 // formation, etc.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
20
21 #include <vector>
22 #include <map>
23
24 namespace llvm {
25
26 class Module;
27 class Function;
28 class BasicBlock;
29 class Value;
30 class CallInst;
31 class InvokeInst;
32 class ReturnInst;
33 class CallSite;
34 class Trace;
35 class CallGraph;
36 class TargetData;
37
38 /// CloneModule - Return an exact copy of the specified module
39 ///
40 Module *CloneModule(const Module *M);
41 Module *CloneModule(const Module *M, std::map<const Value*, Value*> &ValueMap);
42
43 /// ClonedCodeInfo - This struct can be used to capture information about code
44 /// being cloned, while it is being cloned.
45 struct ClonedCodeInfo {
46   /// ContainsCalls - This is set to true if the cloned code contains a normal
47   /// call instruction.
48   bool ContainsCalls;
49   
50   /// ContainsUnwinds - This is set to true if the cloned code contains an
51   /// unwind instruction.
52   bool ContainsUnwinds;
53   
54   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
55   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
56   /// the entry block or they are in the entry block but are not a constant
57   /// size.
58   bool ContainsDynamicAllocas;
59   
60   ClonedCodeInfo() {
61     ContainsCalls = false;
62     ContainsUnwinds = false;
63     ContainsDynamicAllocas = false;
64   }
65 };
66
67
68 /// CloneBasicBlock - Return a copy of the specified basic block, but without
69 /// embedding the block into a particular function.  The block returned is an
70 /// exact copy of the specified basic block, without any remapping having been
71 /// performed.  Because of this, this is only suitable for applications where
72 /// the basic block will be inserted into the same function that it was cloned
73 /// from (loop unrolling would use this, for example).
74 ///
75 /// Also, note that this function makes a direct copy of the basic block, and
76 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
77 /// nodes from the original block, even though there are no predecessors for the
78 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
79 /// block will branch to the old successors of the original block: these
80 /// successors will have to have any PHI nodes updated to account for the new
81 /// incoming edges.
82 ///
83 /// The correlation between instructions in the source and result basic blocks
84 /// is recorded in the ValueMap map.
85 ///
86 /// If you have a particular suffix you'd like to use to add to any cloned
87 /// names, specify it as the optional third parameter.
88 ///
89 /// If you would like the basic block to be auto-inserted into the end of a
90 /// function, you can specify it as the optional fourth parameter.
91 ///
92 /// If you would like to collect additional information about the cloned
93 /// function, you can specify a ClonedCodeInfo object with the optional fifth
94 /// parameter.
95 ///
96 BasicBlock *CloneBasicBlock(const BasicBlock *BB,
97                             std::map<const Value*, Value*> &ValueMap,
98                             const char *NameSuffix = "", Function *F = 0,
99                             ClonedCodeInfo *CodeInfo = 0);
100
101
102 /// CloneFunction - Return a copy of the specified function, but without
103 /// embedding the function into another module.  Also, any references specified
104 /// in the ValueMap are changed to refer to their mapped value instead of the
105 /// original one.  If any of the arguments to the function are in the ValueMap,
106 /// the arguments are deleted from the resultant function.  The ValueMap is
107 /// updated to include mappings from all of the instructions and basicblocks in
108 /// the function from their old to new values.  The final argument captures
109 /// information about the cloned code if non-null.
110 ///
111 Function *CloneFunction(const Function *F,
112                         std::map<const Value*, Value*> &ValueMap,
113                         ClonedCodeInfo *CodeInfo = 0);
114
115 /// CloneFunction - Version of the function that doesn't need the ValueMap.
116 ///
117 inline Function *CloneFunction(const Function *F, ClonedCodeInfo *CodeInfo = 0){
118   std::map<const Value*, Value*> ValueMap;
119   return CloneFunction(F, ValueMap, CodeInfo);
120 }
121
122 /// Clone OldFunc into NewFunc, transforming the old arguments into references
123 /// to ArgMap values.  Note that if NewFunc already has basic blocks, the ones
124 /// cloned into it will be added to the end of the function.  This function
125 /// fills in a list of return instructions, and can optionally append the
126 /// specified suffix to all values cloned.
127 ///
128 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
129                        std::map<const Value*, Value*> &ValueMap,
130                        std::vector<ReturnInst*> &Returns,
131                        const char *NameSuffix = "", 
132                        ClonedCodeInfo *CodeInfo = 0);
133
134 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
135 /// except that it does some simple constant prop and DCE on the fly.  The
136 /// effect of this is to copy significantly less code in cases where (for
137 /// example) a function call with constant arguments is inlined, and those
138 /// constant arguments cause a significant amount of code in the callee to be
139 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
140 /// used for things like CloneFunction or CloneModule.
141 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
142                                std::map<const Value*, Value*> &ValueMap,
143                                std::vector<ReturnInst*> &Returns,
144                                const char *NameSuffix = "", 
145                                ClonedCodeInfo *CodeInfo = 0,
146                                const TargetData *TD = 0);
147
148
149 /// CloneTraceInto - Clone T into NewFunc. Original<->clone mapping is
150 /// saved in ValueMap.
151 ///
152 void CloneTraceInto(Function *NewFunc, Trace &T,
153                     std::map<const Value*, Value*> &ValueMap,
154                     const char *NameSuffix);
155
156 /// CloneTrace - Returns a copy of the specified trace.
157 /// It takes a vector of basic blocks clones the basic blocks, removes internal
158 /// phi nodes, adds it to the same function as the original (although there is
159 /// no jump to it) and returns the new vector of basic blocks.
160 std::vector<BasicBlock *> CloneTrace(const std::vector<BasicBlock*> &origTrace);
161
162 /// InlineFunction - This function inlines the called function into the basic
163 /// block of the caller.  This returns false if it is not possible to inline
164 /// this call.  The program is still in a well defined state if this occurs
165 /// though.
166 ///
167 /// Note that this only does one level of inlining.  For example, if the
168 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
169 /// exists in the instruction stream.  Similiarly this will inline a recursive
170 /// function by one level.
171 ///
172 /// If a non-null callgraph pointer is provided, these functions update the
173 /// CallGraph to represent the program after inlining.
174 ///
175 bool InlineFunction(CallInst *C, CallGraph *CG = 0, const TargetData *TD = 0);
176 bool InlineFunction(InvokeInst *II, CallGraph *CG = 0, const TargetData *TD =0);
177 bool InlineFunction(CallSite CS, CallGraph *CG = 0, const TargetData *TD = 0);
178
179 } // End llvm namespace
180
181 #endif