Eliminate unnecessary LLVMContexts.
[oota-llvm.git] / include / llvm / Transforms / Utils / Cloning.h
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various functions that are used to clone chunks of LLVM
11 // code for various purposes.  This varies from copying whole modules into new
12 // modules, to cloning functions with different arguments, to inlining
13 // functions, to copying basic blocks to support loop unrolling or superblock
14 // formation, etc.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
20
21 #include "llvm/ADT/DenseMap.h"
22
23 namespace llvm {
24
25 class Module;
26 class Function;
27 class Instruction;
28 class Pass;
29 class LPPassManager;
30 class BasicBlock;
31 class Value;
32 class CallInst;
33 class InvokeInst;
34 class ReturnInst;
35 class CallSite;
36 class Trace;
37 class CallGraph;
38 class TargetData;
39 class Loop;
40 class LoopInfo;
41 class AllocaInst;
42 template <typename T> class SmallVectorImpl;
43
44 /// CloneModule - Return an exact copy of the specified module
45 ///
46 Module *CloneModule(const Module *M);
47 Module *CloneModule(const Module *M, DenseMap<const Value*, Value*> &ValueMap);
48
49 /// ClonedCodeInfo - This struct can be used to capture information about code
50 /// being cloned, while it is being cloned.
51 struct ClonedCodeInfo {
52   /// ContainsCalls - This is set to true if the cloned code contains a normal
53   /// call instruction.
54   bool ContainsCalls;
55   
56   /// ContainsUnwinds - This is set to true if the cloned code contains an
57   /// unwind instruction.
58   bool ContainsUnwinds;
59   
60   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
61   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
62   /// the entry block or they are in the entry block but are not a constant
63   /// size.
64   bool ContainsDynamicAllocas;
65   
66   ClonedCodeInfo() {
67     ContainsCalls = false;
68     ContainsUnwinds = false;
69     ContainsDynamicAllocas = false;
70   }
71 };
72
73
74 /// CloneBasicBlock - Return a copy of the specified basic block, but without
75 /// embedding the block into a particular function.  The block returned is an
76 /// exact copy of the specified basic block, without any remapping having been
77 /// performed.  Because of this, this is only suitable for applications where
78 /// the basic block will be inserted into the same function that it was cloned
79 /// from (loop unrolling would use this, for example).
80 ///
81 /// Also, note that this function makes a direct copy of the basic block, and
82 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
83 /// nodes from the original block, even though there are no predecessors for the
84 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
85 /// block will branch to the old successors of the original block: these
86 /// successors will have to have any PHI nodes updated to account for the new
87 /// incoming edges.
88 ///
89 /// The correlation between instructions in the source and result basic blocks
90 /// is recorded in the ValueMap map.
91 ///
92 /// If you have a particular suffix you'd like to use to add to any cloned
93 /// names, specify it as the optional third parameter.
94 ///
95 /// If you would like the basic block to be auto-inserted into the end of a
96 /// function, you can specify it as the optional fourth parameter.
97 ///
98 /// If you would like to collect additional information about the cloned
99 /// function, you can specify a ClonedCodeInfo object with the optional fifth
100 /// parameter.
101 ///
102 BasicBlock *CloneBasicBlock(const BasicBlock *BB,
103                             DenseMap<const Value*, Value*> &ValueMap,
104                             const char *NameSuffix = "", Function *F = 0,
105                             ClonedCodeInfo *CodeInfo = 0);
106
107
108 /// CloneLoop - Clone Loop. Clone dominator info for loop insiders. Populate
109 /// ValueMap using old blocks to new blocks mapping.
110 Loop *CloneLoop(Loop *L, LPPassManager *LPM, LoopInfo *LI, 
111                 DenseMap<const Value *, Value *> &ValueMap, Pass *P);
112
113 /// CloneFunction - Return a copy of the specified function, but without
114 /// embedding the function into another module.  Also, any references specified
115 /// in the ValueMap are changed to refer to their mapped value instead of the
116 /// original one.  If any of the arguments to the function are in the ValueMap,
117 /// the arguments are deleted from the resultant function.  The ValueMap is
118 /// updated to include mappings from all of the instructions and basicblocks in
119 /// the function from their old to new values.  The final argument captures
120 /// information about the cloned code if non-null.
121 ///
122 Function *CloneFunction(const Function *F,
123                         DenseMap<const Value*, Value*> &ValueMap,
124                         ClonedCodeInfo *CodeInfo = 0);
125
126 /// CloneFunction - Version of the function that doesn't need the ValueMap.
127 ///
128 inline Function *CloneFunction(const Function *F, ClonedCodeInfo *CodeInfo = 0){
129   DenseMap<const Value*, Value*> ValueMap;
130   return CloneFunction(F, ValueMap, CodeInfo);
131 }
132
133 /// Clone OldFunc into NewFunc, transforming the old arguments into references
134 /// to ArgMap values.  Note that if NewFunc already has basic blocks, the ones
135 /// cloned into it will be added to the end of the function.  This function
136 /// fills in a list of return instructions, and can optionally append the
137 /// specified suffix to all values cloned.
138 ///
139 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
140                        DenseMap<const Value*, Value*> &ValueMap,
141                        SmallVectorImpl<ReturnInst*> &Returns,
142                        const char *NameSuffix = "", 
143                        ClonedCodeInfo *CodeInfo = 0);
144
145 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
146 /// except that it does some simple constant prop and DCE on the fly.  The
147 /// effect of this is to copy significantly less code in cases where (for
148 /// example) a function call with constant arguments is inlined, and those
149 /// constant arguments cause a significant amount of code in the callee to be
150 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
151 /// used for things like CloneFunction or CloneModule.
152 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
153                                DenseMap<const Value*, Value*> &ValueMap,
154                                SmallVectorImpl<ReturnInst*> &Returns,
155                                const char *NameSuffix = "", 
156                                ClonedCodeInfo *CodeInfo = 0,
157                                const TargetData *TD = 0,
158                                Instruction *TheCall = 0);
159
160 /// InlineFunction - This function inlines the called function into the basic
161 /// block of the caller.  This returns false if it is not possible to inline
162 /// this call.  The program is still in a well defined state if this occurs
163 /// though.
164 ///
165 /// Note that this only does one level of inlining.  For example, if the
166 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
167 /// exists in the instruction stream.  Similiarly this will inline a recursive
168 /// function by one level.
169 ///
170 /// If a non-null callgraph pointer is provided, these functions update the
171 /// CallGraph to represent the program after inlining.
172 ///
173 /// If StaticAllocas is non-null, InlineFunction populates it with all of the
174 /// static allocas that it inlines into the caller.
175 ///
176 bool InlineFunction(CallInst *C, CallGraph *CG = 0, const TargetData *TD = 0,
177                     SmallVectorImpl<AllocaInst*> *StaticAllocas = 0);
178 bool InlineFunction(InvokeInst *II, CallGraph *CG = 0, const TargetData *TD = 0,
179                     SmallVectorImpl<AllocaInst*> *StaticAllocas = 0);
180 bool InlineFunction(CallSite CS, CallGraph *CG = 0, const TargetData *TD = 0,
181                     SmallVectorImpl<AllocaInst*> *StaticAllocas = 0);
182
183 } // End llvm namespace
184
185 #endif