Previously, RecursivelyDeleteDeadInstructions provided an option
[oota-llvm.git] / include / llvm / Transforms / Utils / BasicBlockUtils.h
1 //===-- Transform/Utils/BasicBlockUtils.h - BasicBlock Utils ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_TRANSFORMS_UTILS_BASICBLOCK_H
16 #define LLVM_TRANSFORMS_UTILS_BASICBLOCK_H
17
18 // FIXME: Move to this file: BasicBlock::removePredecessor, BB::splitBasicBlock
19
20 #include "llvm/BasicBlock.h"
21 #include "llvm/Support/CFG.h"
22
23 namespace llvm {
24
25 class Instruction;
26 class Pass;
27 class AliasAnalysis;
28 class ValueDeletionListener;
29
30 /// DeleteDeadBlock - Delete the specified block, which must have no
31 /// predecessors.
32 void DeleteDeadBlock(BasicBlock *BB);
33   
34   
35 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
36 /// any single-entry PHI nodes in it, fold them away.  This handles the case
37 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
38 /// when the block has exactly one predecessor.
39 void FoldSingleEntryPHINodes(BasicBlock *BB);
40
41 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
42 /// is dead. Also recursively delete any operands that become dead as
43 /// a result. This includes tracing the def-use list from the PHI to see if
44 /// it is ultimately unused or if it reaches an unused cycle.  If a
45 /// ValueDeletionListener is specified, it is notified of the deletions.
46 void DeleteDeadPHIs(BasicBlock *BB, ValueDeletionListener *VDL = 0);
47
48 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
49 /// if possible.  The return value indicates success or failure.
50 bool MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P = 0);
51
52 // ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
53 // with a value, then remove and delete the original instruction.
54 //
55 void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
56                           BasicBlock::iterator &BI, Value *V);
57
58 // ReplaceInstWithInst - Replace the instruction specified by BI with the
59 // instruction specified by I.  The original instruction is deleted and BI is
60 // updated to point to the new instruction.
61 //
62 void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
63                          BasicBlock::iterator &BI, Instruction *I);
64
65 // ReplaceInstWithInst - Replace the instruction specified by From with the
66 // instruction specified by To.
67 //
68 void ReplaceInstWithInst(Instruction *From, Instruction *To);
69
70 /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
71 /// make a copy of the stoppoint before InsertPos (presumably before copying
72 /// or moving I).
73 void CopyPrecedingStopPoint(Instruction *I, BasicBlock::iterator InsertPos);
74
75 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
76 /// instruction before ScanFrom) checking to see if we have the value at the
77 /// memory address *Ptr locally available within a small number of instructions.
78 /// If the value is available, return it.
79 ///
80 /// If not, return the iterator for the last validated instruction that the 
81 /// value would be live through.  If we scanned the entire block and didn't find
82 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
83 /// begin() and this returns null.  ScanFrom could also be left 
84 ///
85 /// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
86 /// it is set to 0, it will scan the whole block. You can also optionally
87 /// specify an alias analysis implementation, which makes this more precise.
88 Value *FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
89                                 BasicBlock::iterator &ScanFrom,
90                                 unsigned MaxInstsToScan = 6,
91                                 AliasAnalysis *AA = 0);
92     
93   
94
95 // RemoveSuccessor - Change the specified terminator instruction such that its
96 // successor #SuccNum no longer exists.  Because this reduces the outgoing
97 // degree of the current basic block, the actual terminator instruction itself
98 // may have to be changed.  In the case where the last successor of the block is
99 // deleted, a return instruction is inserted in its place which can cause a
100 // suprising change in program behavior if it is not expected.
101 //
102 void RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum);
103
104 /// isCriticalEdge - Return true if the specified edge is a critical edge.
105 /// Critical edges are edges from a block with multiple successors to a block
106 /// with multiple predecessors.
107 ///
108 bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
109                     bool AllowIdenticalEdges = false);
110
111 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
112 /// split the critical edge.  This will update DominatorTree and
113 /// DominatorFrontier information if it is available, thus calling this pass
114 /// will not invalidate either of them. This returns true if the edge was split,
115 /// false otherwise.  
116 ///
117 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
118 /// specified successor will be merged into the same critical edge block.  
119 /// This is most commonly interesting with switch instructions, which may 
120 /// have many edges to any one destination.  This ensures that all edges to that
121 /// dest go to one block instead of each going to a different block, but isn't 
122 /// the standard definition of a "critical edge".
123 ///
124 bool SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P = 0,
125                        bool MergeIdenticalEdges = false);
126
127 inline bool SplitCriticalEdge(BasicBlock *BB, succ_iterator SI, Pass *P = 0) {
128   return SplitCriticalEdge(BB->getTerminator(), SI.getSuccessorIndex(), P);
129 }
130
131 /// SplitCriticalEdge - If the edge from *PI to BB is not critical, return
132 /// false.  Otherwise, split all edges between the two blocks and return true.
133 /// This updates all of the same analyses as the other SplitCriticalEdge
134 /// function.  If P is specified, it updates the analyses
135 /// described above.
136 inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI, Pass *P = 0) {
137   bool MadeChange = false;
138   TerminatorInst *TI = (*PI)->getTerminator();
139   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
140     if (TI->getSuccessor(i) == Succ)
141       MadeChange |= SplitCriticalEdge(TI, i, P);
142   return MadeChange;
143 }
144
145 /// SplitCriticalEdge - If an edge from Src to Dst is critical, split the edge
146 /// and return true, otherwise return false.  This method requires that there be
147 /// an edge between the two blocks.  If P is specified, it updates the analyses
148 /// described above.
149 inline bool SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst, Pass *P = 0,
150                               bool MergeIdenticalEdges = false) {
151   TerminatorInst *TI = Src->getTerminator();
152   unsigned i = 0;
153   while (1) {
154     assert(i != TI->getNumSuccessors() && "Edge doesn't exist!");
155     if (TI->getSuccessor(i) == Dst)
156       return SplitCriticalEdge(TI, i, P, MergeIdenticalEdges);
157     ++i;
158   }
159 }
160
161 /// SplitEdge -  Split the edge connecting specified block. Pass P must 
162 /// not be NULL. 
163 BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To, Pass *P);
164
165 /// SplitBlock - Split the specified block at the specified instruction - every
166 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
167 /// to a new block.  The two blocks are joined by an unconditional branch and
168 /// the loop info is updated.
169 ///
170 BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P);
171  
172 /// SplitBlockPredecessors - This method transforms BB by introducing a new
173 /// basic block into the function, and moving some of the predecessors of BB to
174 /// be predecessors of the new block.  The new predecessors are indicated by the
175 /// Preds array, which has NumPreds elements in it.  The new block is given a
176 /// suffix of 'Suffix'.  This function returns the new block.
177 ///
178 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
179 /// DominanceFrontier, but no other analyses.
180 BasicBlock *SplitBlockPredecessors(BasicBlock *BB, BasicBlock *const *Preds,
181                                    unsigned NumPreds, const char *Suffix,
182                                    Pass *P = 0);
183   
184 } // End llvm namespace
185
186 #endif