Added instregex support to TableGen subtarget emitter.
[oota-llvm.git] / include / llvm / Target / TargetSchedule.td
1 //===- TargetSchedule.td - Target Independent Scheduling ---*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the target-independent scheduling interfaces which should
11 // be implemented by each target which is using TableGen based scheduling.
12 //
13 // The SchedMachineModel is defined by subtargets for three categories of data:
14 // 1. Basic properties for coarse grained instruction cost model.
15 // 2. Scheduler Read/Write resources for simple per-opcode cost model.
16 // 3. Instruction itineraties for detailed reservation tables.
17 //
18 // (1) Basic properties are defined by the SchedMachineModel
19 // class. Target hooks allow subtargets to associate opcodes with
20 // those properties.
21 //
22 // (2) A per-operand machine model can be implemented in any
23 // combination of the following ways:
24 //
25 // A. Associate per-operand SchedReadWrite types with Instructions by
26 // modifying the Instruction definition to inherit from Sched. For
27 // each subtarget, define WriteRes and ReadAdvance to associate
28 // processor resources and latency with each SchedReadWrite type.
29 //
30 // B. In each instruction definition, name an ItineraryClass. For each
31 // subtarget, define ItinRW entries to map ItineraryClass to
32 // per-operand SchedReadWrite types. Unlike method A, these types may
33 // be subtarget specific and can be directly associated with resources
34 // by defining SchedWriteRes and SchedReadAdvance.
35 //
36 // C. In the subtarget, map SchedReadWrite types to specific
37 // opcodes. This overrides any SchedReadWrite types or
38 // ItineraryClasses defined by the Instruction. As in method B, the
39 // subtarget can directly associate resources with SchedReadWrite
40 // types by defining SchedWriteRes and SchedReadAdvance.
41 //
42 // D. In either the target or subtarget, define SchedWriteVariant or
43 // SchedReadVariant to map one SchedReadWrite type onto another
44 // sequence of SchedReadWrite types. This allows dynamic selection of
45 // an instruction's machine model via custom C++ code. It also allows
46 // a machine-independent SchedReadWrite type to map to a sequence of
47 // machine-dependent types.
48 //
49 // (3) A per-pipeline-stage machine model can be implemented by providing
50 // Itineraries in addition to mapping instructions to ItineraryClasses.
51 //===----------------------------------------------------------------------===//
52
53 // Include legacy support for instruction itineraries.
54 include "llvm/Target/TargetItinerary.td"
55
56 class Instruction; // Forward def
57
58 // DAG operator that interprets the DAG args as Instruction defs.
59 def instrs;
60
61 // DAG operator that interprets each DAG arg as a regex pattern for
62 // matching Instruction opcode names.
63 // The regex must match the beginning of the opcode (as in Python re.match).
64 // To avoid matching prefixes, append '$' to the pattern.
65 def instregex;
66
67 // Define the SchedMachineModel and provide basic properties for
68 // coarse grained instruction cost model. Default values for the
69 // properties are defined in MCSchedModel. A value of "-1" in the
70 // target description's SchedMachineModel indicates that the property
71 // is not overriden by the target.
72 //
73 // Target hooks allow subtargets to associate LoadLatency and
74 // HighLatency with groups of opcodes.
75 class SchedMachineModel {
76   int IssueWidth = -1; // Max micro-ops that may be scheduled per cycle.
77   int MinLatency = -1; // Determines which instrucions are allowed in a group.
78                        // (-1) inorder (0) ooo, (1): inorder +var latencies.
79   int LoadLatency = -1; // Cycles for loads to access the cache.
80   int HighLatency = -1; // Approximation of cycles for "high latency" ops.
81   int MispredictPenalty = -1; // Extra cycles for a mispredicted branch.
82
83   // Per-cycle resources tables.
84   ProcessorItineraries Itineraries = NoItineraries;
85
86   bit NoModel = 0; // Special tag to indicate missing machine model.
87 }
88
89 def NoSchedModel : SchedMachineModel {
90   let NoModel = 1;
91 }
92
93 // Define a kind of processor resource that may be common across
94 // similar subtargets.
95 class ProcResourceKind;
96
97 // Define a number of interchangeable processor resources. NumUnits
98 // determines the throughput of instructions that require the resource.
99 //
100 // An optional Super resource may be given to model these resources as
101 // a subset of the more general super resources. Using one of these
102 // resources implies using one of the super resoruces.
103 //
104 // ProcResourceUnits normally model a few buffered resources within an
105 // out-of-order engine that the compiler attempts to conserve.
106 // Buffered resources may be held for multiple clock cycles, but the
107 // scheduler does not pin them to a particular clock cycle relative to
108 // instruction dispatch. Setting Buffered=0 changes this to an
109 // in-order resource. In this case, the scheduler counts down from the
110 // cycle that the instruction issues in-order, forcing an interlock
111 // with subsequent instructions that require the same resource until
112 // the number of ResourceCyles specified in WriteRes expire.
113 //
114 // SchedModel ties these units to a processor for any stand-alone defs
115 // of this class. Instances of subclass ProcResource will be automatically
116 // attached to a processor, so SchedModel is not needed.
117 class ProcResourceUnits<ProcResourceKind kind, int num> {
118   ProcResourceKind Kind = kind;
119   int NumUnits = num;
120   ProcResourceKind Super = ?;
121   bit Buffered = 1;
122   SchedMachineModel SchedModel = ?;
123 }
124
125 // EponymousProcResourceKind helps implement ProcResourceUnits by
126 // allowing a ProcResourceUnits definition to reference itself. It
127 // should not be referenced anywhere else.
128 def EponymousProcResourceKind : ProcResourceKind;
129
130 // Subtargets typically define processor resource kind and number of
131 // units in one place.
132 class ProcResource<int num> : ProcResourceKind,
133   ProcResourceUnits<EponymousProcResourceKind, num>;
134
135 // A target architecture may define SchedReadWrite types and associate
136 // them with instruction operands.
137 class SchedReadWrite;
138
139 // List the per-operand types that map to the machine model of an
140 // instruction. One SchedWrite type must be listed for each explicit
141 // def operand in order. Additional SchedWrite types may optionally be
142 // listed for implicit def operands.  SchedRead types may optionally
143 // be listed for use operands in order. The order of defs relative to
144 // uses is insignificant. This way, the same SchedReadWrite list may
145 // be used for multiple forms of an operation. For example, a
146 // two-address instruction could have two tied operands or single
147 // operand that both reads and writes a reg. In both cases we have a
148 // single SchedWrite and single SchedRead in any order.
149 class Sched<list<SchedReadWrite> schedrw> {
150   list<SchedReadWrite> SchedRW = schedrw;
151 }
152
153 // Define a scheduler resource associated with a def operand.
154 class SchedWrite : SchedReadWrite;
155 def NoWrite : SchedWrite;
156
157 // Define a scheduler resource associated with a use operand.
158 class SchedRead  : SchedReadWrite;
159
160 // Define a SchedWrite that is modeled as a sequence of other
161 // SchedWrites with additive latency. This allows a single operand to
162 // be mapped the resources composed from a set of previously defined
163 // SchedWrites.
164 //
165 // If the final write in this sequence is a SchedWriteVariant marked
166 // Variadic, then the list of prior writes are distributed across all
167 // operands after resolving the predicate for the final write.
168 //
169 // SchedModel silences warnings but is ignored.
170 class WriteSequence<list<SchedWrite> writes, int rep = 1> : SchedWrite {
171   list<SchedWrite> Writes = writes;
172   int Repeat = rep;
173   SchedMachineModel SchedModel = ?;
174 }
175
176 // Define values common to WriteRes and SchedWriteRes.
177 //
178 // SchedModel ties these resources to a processor.
179 class ProcWriteResources<list<ProcResourceKind> resources> {
180   list<ProcResourceKind> ProcResources = resources;
181   list<int> ResourceCycles = [];
182   int Latency = 1;
183   int NumMicroOps = 1;
184   bit BeginGroup = 0;
185   bit EndGroup = 0;
186   // Allow a processor to mark some scheduling classes as unsupported
187   // for stronger verification.
188   bit Unsupported = 0;
189   SchedMachineModel SchedModel = ?;
190 }
191
192 // Define the resources and latency of a SchedWrite. This will be used
193 // directly by targets that have no itinerary classes. In this case,
194 // SchedWrite is defined by the target, while WriteResources is
195 // defined by the subtarget, and maps the SchedWrite to processor
196 // resources.
197 //
198 // If a target already has itinerary classes, SchedWriteResources can
199 // be used instead to define subtarget specific SchedWrites and map
200 // them to processor resources in one place. Then ItinRW can map
201 // itinerary classes to the subtarget's SchedWrites.
202 //
203 // ProcResources indicates the set of resources consumed by the write.
204 // Optionally, ResourceCycles indicates the number of cycles the
205 // resource is consumed. Each ResourceCycles item is paired with the
206 // ProcResource item at the same position in its list. Since
207 // ResourceCycles are rarely specialized, the list may be
208 // incomplete. By default, resources are consumed for a single cycle,
209 // regardless of latency, which models a fully pipelined processing
210 // unit. A value of 0 for ResourceCycles means that the resource must
211 // be available but is not consumed, which is only relevant for
212 // unbuffered resources.
213 //
214 // By default, each SchedWrite takes one micro-op, which is counted
215 // against the processor's IssueWidth limit. If an instruction can
216 // write multiple registers with a single micro-op, the subtarget
217 // should define one of the writes to be zero micro-ops. If a
218 // subtarget requires multiple micro-ops to write a single result, it
219 // should either override the write's NumMicroOps to be greater than 1
220 // or require additional writes. Extra writes can be required either
221 // by defining a WriteSequence, or simply listing extra writes in the
222 // instruction's list of writers beyond the number of "def"
223 // operands. The scheduler assumes that all micro-ops must be
224 // dispatched in the same cycle. These micro-ops may be required to
225 // begin or end the current dispatch group.
226 class WriteRes<SchedWrite write, list<ProcResourceKind> resources>
227   : ProcWriteResources<resources> {
228   SchedWrite WriteType = write;
229 }
230
231 // Directly name a set of WriteResources defining a new SchedWrite
232 // type at the same time. This class is unaware of its SchedModel so
233 // must be referenced by InstRW or ItinRW.
234 class SchedWriteRes<list<ProcResourceKind> resources> : SchedWrite,
235   ProcWriteResources<resources>;
236
237 // Define values common to ReadAdvance and SchedReadAdvance.
238 //
239 // SchedModel ties these resources to a processor.
240 class ProcReadAdvance<int cycles, list<SchedWrite> writes = []> {
241   int Cycles = cycles;
242   list<SchedWrite> ValidWrites = writes;
243   // Allow a processor to mark some scheduling classes as unsupported
244   // for stronger verification.
245   bit Unsupported = 0;
246   SchedMachineModel SchedModel = ?;
247 }
248
249 // A processor may define a ReadAdvance associated with a SchedRead
250 // to reduce latency of a prior write by N cycles. A negative advance
251 // effectively increases latency, which may be used for cross-domain
252 // stalls.
253 //
254 // A ReadAdvance may be associated with a list of SchedWrites
255 // to implement pipeline bypass. The Writes list may be empty to
256 // indicate operands that are always read this number of Cycles later
257 // than a normal register read, allowing the read's parent instruction
258 // to issue earlier relative to the writer.
259 class ReadAdvance<SchedRead read, int cycles, list<SchedWrite> writes = []>
260   : ProcReadAdvance<cycles, writes> {
261   SchedRead ReadType = read;
262 }
263
264 // Directly associate a new SchedRead type with a delay and optional
265 // pipeline bypess. For use with InstRW or ItinRW.
266 class SchedReadAdvance<int cycles, list<SchedWrite> writes = []> : SchedRead,
267   ProcReadAdvance<cycles, writes>;
268
269 // Define SchedRead defaults. Reads seldom need special treatment.
270 def ReadDefault : SchedRead;
271 def NoReadAdvance : SchedReadAdvance<0>;
272
273 // Define shared code that will be in the same scope as all
274 // SchedPredicates. Available variables are:
275 // (const MachineInstr *MI, const TargetSchedModel *SchedModel)
276 class PredicateProlog<code c> {
277   code Code = c;
278 }
279
280 // Define a predicate to determine which SchedVariant applies to a
281 // particular MachineInstr. The code snippet is used as an
282 // if-statement's expression. Available variables are MI, SchedModel,
283 // and anything defined in a PredicateProlog.
284 //
285 // SchedModel silences warnings but is ignored.
286 class SchedPredicate<code pred> {
287   SchedMachineModel SchedModel = ?;
288   code Predicate = pred;
289 }
290 def NoSchedPred : SchedPredicate<[{true}]>;
291
292 // Associate a predicate with a list of SchedReadWrites. By default,
293 // the selected SchedReadWrites are still associated with a single
294 // operand and assumed to execute sequentially with additive
295 // latency. However, if the parent SchedWriteVariant or
296 // SchedReadVariant is marked "Variadic", then each Selected
297 // SchedReadWrite is mapped in place to the instruction's variadic
298 // operands. In this case, latency is not additive. If the current Variant
299 // is already part of a Sequence, then that entire chain leading up to
300 // the Variant is distributed over the variadic operands.
301 class SchedVar<SchedPredicate pred, list<SchedReadWrite> selected> {
302   SchedPredicate Predicate = pred;
303   list<SchedReadWrite> Selected = selected;
304 }
305
306 // SchedModel silences warnings but is ignored.
307 class SchedVariant<list<SchedVar> variants> {
308   list<SchedVar> Variants = variants;
309   bit Variadic = 0;
310   SchedMachineModel SchedModel = ?;
311 }
312
313 // A SchedWriteVariant is a single SchedWrite type that maps to a list
314 // of SchedWrite types under the conditions defined by its predicates.
315 //
316 // A Variadic write is expanded to cover multiple "def" operands. The
317 // SchedVariant's Expansion list is then interpreted as one write
318 // per-operand instead of the usual sequential writes feeding a single
319 // operand.
320 class SchedWriteVariant<list<SchedVar> variants> : SchedWrite,
321   SchedVariant<variants> {
322 }
323
324 // A SchedReadVariant is a single SchedRead type that maps to a list
325 // of SchedRead types under the conditions defined by its predicates.
326 //
327 // A Variadic write is expanded to cover multiple "readsReg" operands as
328 // explained above.
329 class SchedReadVariant<list<SchedVar> variants> : SchedRead,
330   SchedVariant<variants> {
331 }
332
333 // Map a set of opcodes to a list of SchedReadWrite types. This allows
334 // the subtarget to easily override specific operations.
335 //
336 // SchedModel ties this opcode mapping to a processor.
337 class InstRW<list<SchedReadWrite> rw, dag instrlist> {
338   list<SchedReadWrite> OperandReadWrites = rw;
339   dag Instrs = instrlist;
340   SchedMachineModel SchedModel = ?;
341 }
342
343 // Map a set of itinerary classes to SchedReadWrite resources. This is
344 // used to bootstrap a target (e.g. ARM) when itineraries already
345 // exist and changing InstrInfo is undesirable.
346 //
347 // SchedModel ties this ItineraryClass mapping to a processor.
348 class ItinRW<list<SchedReadWrite> rw, list<InstrItinClass> iic> {
349   list<InstrItinClass> MatchedItinClasses = iic;
350   list<SchedReadWrite> OperandReadWrites = rw;
351   SchedMachineModel SchedModel = ?;
352 }
353
354 // Alias a target-defined SchedReadWrite to a processor specific
355 // SchedReadWrite. This allows a subtarget to easily map a
356 // SchedReadWrite type onto a WriteSequence, SchedWriteVariant, or
357 // SchedReadVariant.
358 //
359 // SchedModel will usually be provided by surrounding let statement
360 // and ties this SchedAlias mapping to a processor.
361 class SchedAlias<SchedReadWrite match, SchedReadWrite alias> {
362   SchedReadWrite MatchRW = match;
363   SchedReadWrite AliasRW = alias;
364   SchedMachineModel SchedModel = ?;
365 }