Remove the TRI::getSubRegisterRegClass() hook.
[oota-llvm.git] / include / llvm / Target / TargetRegisterInfo.h
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18
19 #include "llvm/MC/MCRegisterInfo.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include <cassert>
24 #include <functional>
25
26 namespace llvm {
27
28 class BitVector;
29 class MachineFunction;
30 class RegScavenger;
31 template<class T> class SmallVectorImpl;
32 class raw_ostream;
33
34 class TargetRegisterClass {
35 public:
36   typedef const unsigned* iterator;
37   typedef const unsigned* const_iterator;
38   typedef const EVT* vt_iterator;
39   typedef const TargetRegisterClass* const * sc_iterator;
40 private:
41   const MCRegisterClass *MC;
42   const vt_iterator VTs;
43   const unsigned *SubClassMask;
44   const sc_iterator SuperClasses;
45   const sc_iterator SuperRegClasses;
46 public:
47   TargetRegisterClass(const MCRegisterClass *MC, const EVT *vts,
48                       const unsigned *subcm,
49                       const TargetRegisterClass * const *supcs,
50                       const TargetRegisterClass * const *superregcs)
51     : MC(MC), VTs(vts), SubClassMask(subcm), SuperClasses(supcs),
52       SuperRegClasses(superregcs) {}
53
54   virtual ~TargetRegisterClass() {}     // Allow subclasses
55
56   /// getID() - Return the register class ID number.
57   ///
58   unsigned getID() const { return MC->getID(); }
59
60   /// getName() - Return the register class name for debugging.
61   ///
62   const char *getName() const { return MC->getName(); }
63
64   /// begin/end - Return all of the registers in this class.
65   ///
66   iterator       begin() const { return MC->begin(); }
67   iterator         end() const { return MC->end(); }
68
69   /// getNumRegs - Return the number of registers in this class.
70   ///
71   unsigned getNumRegs() const { return MC->getNumRegs(); }
72
73   /// getRegister - Return the specified register in the class.
74   ///
75   unsigned getRegister(unsigned i) const {
76     return MC->getRegister(i);
77   }
78
79   /// contains - Return true if the specified register is included in this
80   /// register class.  This does not include virtual registers.
81   bool contains(unsigned Reg) const {
82     return MC->contains(Reg);
83   }
84
85   /// contains - Return true if both registers are in this class.
86   bool contains(unsigned Reg1, unsigned Reg2) const {
87     return MC->contains(Reg1, Reg2);
88   }
89
90   /// getSize - Return the size of the register in bytes, which is also the size
91   /// of a stack slot allocated to hold a spilled copy of this register.
92   unsigned getSize() const { return MC->getSize(); }
93
94   /// getAlignment - Return the minimum required alignment for a register of
95   /// this class.
96   unsigned getAlignment() const { return MC->getAlignment(); }
97
98   /// getCopyCost - Return the cost of copying a value between two registers in
99   /// this class. A negative number means the register class is very expensive
100   /// to copy e.g. status flag register classes.
101   int getCopyCost() const { return MC->getCopyCost(); }
102
103   /// isAllocatable - Return true if this register class may be used to create
104   /// virtual registers.
105   bool isAllocatable() const { return MC->isAllocatable(); }
106
107   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
108   ///
109   bool hasType(EVT vt) const {
110     for(int i = 0; VTs[i] != MVT::Other; ++i)
111       if (VTs[i] == vt)
112         return true;
113     return false;
114   }
115
116   /// vt_begin / vt_end - Loop over all of the value types that can be
117   /// represented by values in this register class.
118   vt_iterator vt_begin() const {
119     return VTs;
120   }
121
122   vt_iterator vt_end() const {
123     vt_iterator I = VTs;
124     while (*I != MVT::Other) ++I;
125     return I;
126   }
127
128   /// superregclasses_begin / superregclasses_end - Loop over all of
129   /// the superreg register classes of this register class.
130   sc_iterator superregclasses_begin() const {
131     return SuperRegClasses;
132   }
133
134   sc_iterator superregclasses_end() const {
135     sc_iterator I = SuperRegClasses;
136     while (*I != NULL) ++I;
137     return I;
138   }
139
140   /// hasSubClass - return true if the specified TargetRegisterClass
141   /// is a proper sub-class of this TargetRegisterClass.
142   bool hasSubClass(const TargetRegisterClass *RC) const {
143     return RC != this && hasSubClassEq(RC);
144   }
145
146   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
147   /// class.
148   bool hasSubClassEq(const TargetRegisterClass *RC) const {
149     unsigned ID = RC->getID();
150     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
151   }
152
153   /// hasSuperClass - return true if the specified TargetRegisterClass is a
154   /// proper super-class of this TargetRegisterClass.
155   bool hasSuperClass(const TargetRegisterClass *RC) const {
156     return RC->hasSubClass(this);
157   }
158
159   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
160   /// class.
161   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
162     return RC->hasSubClassEq(this);
163   }
164
165   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
166   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
167   /// use it.
168   const unsigned *getSubClassMask() const {
169     return SubClassMask;
170   }
171
172   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
173   /// classes are ordered by ID which is also a topological ordering from large
174   /// to small classes.  The list does NOT include the current class.
175   sc_iterator getSuperClasses() const {
176     return SuperClasses;
177   }
178
179   /// isASubClass - return true if this TargetRegisterClass is a subset
180   /// class of at least one other TargetRegisterClass.
181   bool isASubClass() const {
182     return SuperClasses[0] != 0;
183   }
184
185   /// getRawAllocationOrder - Returns the preferred order for allocating
186   /// registers from this register class in MF. The raw order comes directly
187   /// from the .td file and may include reserved registers that are not
188   /// allocatable. Register allocators should also make sure to allocate
189   /// callee-saved registers only after all the volatiles are used. The
190   /// RegisterClassInfo class provides filtered allocation orders with
191   /// callee-saved registers moved to the end.
192   ///
193   /// The MachineFunction argument can be used to tune the allocatable
194   /// registers based on the characteristics of the function, subtarget, or
195   /// other criteria.
196   ///
197   /// By default, this method returns all registers in the class.
198   ///
199   virtual
200   ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
201     return makeArrayRef(begin(), getNumRegs());
202   }
203 };
204
205 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
206 /// registers. These are used by codegen, not by MC.
207 struct TargetRegisterInfoDesc {
208   unsigned CostPerUse;          // Extra cost of instructions using register.
209   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
210 };
211
212 /// TargetRegisterInfo base class - We assume that the target defines a static
213 /// array of TargetRegisterDesc objects that represent all of the machine
214 /// registers that the target has.  As such, we simply have to track a pointer
215 /// to this array so that we can turn register number into a register
216 /// descriptor.
217 ///
218 class TargetRegisterInfo : public MCRegisterInfo {
219 public:
220   typedef const TargetRegisterClass * const * regclass_iterator;
221 private:
222   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
223   const char *const *SubRegIndexNames;        // Names of subreg indexes.
224   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
225
226 protected:
227   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
228                      regclass_iterator RegClassBegin,
229                      regclass_iterator RegClassEnd,
230                      const char *const *subregindexnames);
231   virtual ~TargetRegisterInfo();
232 public:
233
234   // Register numbers can represent physical registers, virtual registers, and
235   // sometimes stack slots. The unsigned values are divided into these ranges:
236   //
237   //   0           Not a register, can be used as a sentinel.
238   //   [1;2^30)    Physical registers assigned by TableGen.
239   //   [2^30;2^31) Stack slots. (Rarely used.)
240   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
241   //
242   // Further sentinels can be allocated from the small negative integers.
243   // DenseMapInfo<unsigned> uses -1u and -2u.
244
245   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
246   /// frame index in a variable that normally holds a register. isStackSlot()
247   /// returns true if Reg is in the range used for stack slots.
248   ///
249   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
250   /// slots, so if a variable may contains a stack slot, always check
251   /// isStackSlot() first.
252   ///
253   static bool isStackSlot(unsigned Reg) {
254     return int(Reg) >= (1 << 30);
255   }
256
257   /// stackSlot2Index - Compute the frame index from a register value
258   /// representing a stack slot.
259   static int stackSlot2Index(unsigned Reg) {
260     assert(isStackSlot(Reg) && "Not a stack slot");
261     return int(Reg - (1u << 30));
262   }
263
264   /// index2StackSlot - Convert a non-negative frame index to a stack slot
265   /// register value.
266   static unsigned index2StackSlot(int FI) {
267     assert(FI >= 0 && "Cannot hold a negative frame index.");
268     return FI + (1u << 30);
269   }
270
271   /// isPhysicalRegister - Return true if the specified register number is in
272   /// the physical register namespace.
273   static bool isPhysicalRegister(unsigned Reg) {
274     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
275     return int(Reg) > 0;
276   }
277
278   /// isVirtualRegister - Return true if the specified register number is in
279   /// the virtual register namespace.
280   static bool isVirtualRegister(unsigned Reg) {
281     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
282     return int(Reg) < 0;
283   }
284
285   /// virtReg2Index - Convert a virtual register number to a 0-based index.
286   /// The first virtual register in a function will get the index 0.
287   static unsigned virtReg2Index(unsigned Reg) {
288     assert(isVirtualRegister(Reg) && "Not a virtual register");
289     return Reg & ~(1u << 31);
290   }
291
292   /// index2VirtReg - Convert a 0-based index to a virtual register number.
293   /// This is the inverse operation of VirtReg2IndexFunctor below.
294   static unsigned index2VirtReg(unsigned Index) {
295     return Index | (1u << 31);
296   }
297
298   /// getMinimalPhysRegClass - Returns the Register Class of a physical
299   /// register of the given type, picking the most sub register class of
300   /// the right type that contains this physreg.
301   const TargetRegisterClass *
302     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
303
304   /// getAllocatableSet - Returns a bitset indexed by register number
305   /// indicating if a register is allocatable or not. If a register class is
306   /// specified, returns the subset for the class.
307   BitVector getAllocatableSet(const MachineFunction &MF,
308                               const TargetRegisterClass *RC = NULL) const;
309
310   /// getCostPerUse - Return the additional cost of using this register instead
311   /// of other registers in its class.
312   unsigned getCostPerUse(unsigned RegNo) const {
313     return InfoDesc[RegNo].CostPerUse;
314   }
315
316   /// isInAllocatableClass - Return true if the register is in the allocation
317   /// of any register class.
318   bool isInAllocatableClass(unsigned RegNo) const {
319     return InfoDesc[RegNo].inAllocatableClass;
320   }
321
322   /// getSubRegIndexName - Return the human-readable symbolic target-specific
323   /// name for the specified SubRegIndex.
324   const char *getSubRegIndexName(unsigned SubIdx) const {
325     assert(SubIdx && "This is not a subregister index");
326     return SubRegIndexNames[SubIdx-1];
327   }
328
329   /// regsOverlap - Returns true if the two registers are equal or alias each
330   /// other. The registers may be virtual register.
331   bool regsOverlap(unsigned regA, unsigned regB) const {
332     if (regA == regB) return true;
333     if (isVirtualRegister(regA) || isVirtualRegister(regB))
334       return false;
335     for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
336       if (*regList == regB) return true;
337     }
338     return false;
339   }
340
341   /// isSubRegister - Returns true if regB is a sub-register of regA.
342   ///
343   bool isSubRegister(unsigned regA, unsigned regB) const {
344     return isSuperRegister(regB, regA);
345   }
346
347   /// isSuperRegister - Returns true if regB is a super-register of regA.
348   ///
349   bool isSuperRegister(unsigned regA, unsigned regB) const {
350     for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
351       if (*regList == regB) return true;
352     }
353     return false;
354   }
355
356   /// getCalleeSavedRegs - Return a null-terminated list of all of the
357   /// callee saved registers on this target. The register should be in the
358   /// order of desired callee-save stack frame offset. The first register is
359   /// closed to the incoming stack pointer if stack grows down, and vice versa.
360   virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
361                                                                       const = 0;
362
363
364   /// getReservedRegs - Returns a bitset indexed by physical register number
365   /// indicating if a register is a special register that has particular uses
366   /// and should be considered unavailable at all times, e.g. SP, RA. This is
367   /// used by register scavenger to determine what registers are free.
368   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
369
370   /// getSubReg - Returns the physical register number of sub-register "Index"
371   /// for physical register RegNo. Return zero if the sub-register does not
372   /// exist.
373   virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
374
375   /// getSubRegIndex - For a given register pair, return the sub-register index
376   /// if the second register is a sub-register of the first. Return zero
377   /// otherwise.
378   virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
379
380   /// getMatchingSuperReg - Return a super-register of the specified register
381   /// Reg so its sub-register of index SubIdx is Reg.
382   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
383                                const TargetRegisterClass *RC) const {
384     for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
385       if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
386         return SR;
387     return 0;
388   }
389
390   /// canCombineSubRegIndices - Given a register class and a list of
391   /// subregister indices, return true if it's possible to combine the
392   /// subregister indices into one that corresponds to a larger
393   /// subregister. Return the new subregister index by reference. Note the
394   /// new index may be zero if the given subregisters can be combined to
395   /// form the whole register.
396   virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
397                                        SmallVectorImpl<unsigned> &SubIndices,
398                                        unsigned &NewSubIdx) const {
399     return 0;
400   }
401
402   /// getMatchingSuperRegClass - Return a subclass of the specified register
403   /// class A so that each register in it has a sub-register of the
404   /// specified sub-register index which is in the specified register class B.
405   virtual const TargetRegisterClass *
406   getMatchingSuperRegClass(const TargetRegisterClass *A,
407                            const TargetRegisterClass *B, unsigned Idx) const {
408     return 0;
409   }
410
411   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
412   /// supports the sub-register index Idx.
413   /// If no such sub-class exists, return NULL.
414   /// If all registers in RC already have an Idx sub-register, return RC.
415   ///
416   /// TableGen generates a version of this function that is good enough in most
417   /// cases.  Targets can override if they have constraints that TableGen
418   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
419   /// supported by the full GR32 register class in 64-bit mode, but only by the
420   /// GR32_ABCD regiister class in 32-bit mode.
421   ///
422   virtual const TargetRegisterClass *
423   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
424
425   /// composeSubRegIndices - Return the subregister index you get from composing
426   /// two subregister indices.
427   ///
428   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
429   /// returns c. Note that composeSubRegIndices does not tell you about illegal
430   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
431   /// b, composeSubRegIndices doesn't tell you.
432   ///
433   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
434   /// ssub_0:S0 - ssub_3:S3 subregs.
435   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
436   ///
437   virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
438     // This default implementation is correct for most targets.
439     return b;
440   }
441
442   //===--------------------------------------------------------------------===//
443   // Register Class Information
444   //
445
446   /// Register class iterators
447   ///
448   regclass_iterator regclass_begin() const { return RegClassBegin; }
449   regclass_iterator regclass_end() const { return RegClassEnd; }
450
451   unsigned getNumRegClasses() const {
452     return (unsigned)(regclass_end()-regclass_begin());
453   }
454
455   /// getRegClass - Returns the register class associated with the enumeration
456   /// value.  See class MCOperandInfo.
457   const TargetRegisterClass *getRegClass(unsigned i) const {
458     assert(i < getNumRegClasses() && "Register Class ID out of range");
459     return RegClassBegin[i];
460   }
461
462   /// getCommonSubClass - find the largest common subclass of A and B. Return
463   /// NULL if there is no common subclass.
464   const TargetRegisterClass *
465   getCommonSubClass(const TargetRegisterClass *A,
466                     const TargetRegisterClass *B) const;
467
468   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
469   /// values.  If a target supports multiple different pointer register classes,
470   /// kind specifies which one is indicated.
471   virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
472     assert(0 && "Target didn't implement getPointerRegClass!");
473     return 0; // Must return a value in order to compile with VS 2005
474   }
475
476   /// getCrossCopyRegClass - Returns a legal register class to copy a register
477   /// in the specified class to or from. If it is possible to copy the register
478   /// directly without using a cross register class copy, return the specified
479   /// RC. Returns NULL if it is not possible to copy between a two registers of
480   /// the specified class.
481   virtual const TargetRegisterClass *
482   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
483     return RC;
484   }
485
486   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
487   /// legal to use in the current sub-target and has the same spill size.
488   /// The returned register class can be used to create virtual registers which
489   /// means that all its registers can be copied and spilled.
490   virtual const TargetRegisterClass*
491   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
492     /// The default implementation is very conservative and doesn't allow the
493     /// register allocator to inflate register classes.
494     return RC;
495   }
496
497   /// getRegPressureLimit - Return the register pressure "high water mark" for
498   /// the specific register class. The scheduler is in high register pressure
499   /// mode (for the specific register class) if it goes over the limit.
500   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
501                                        MachineFunction &MF) const {
502     return 0;
503   }
504
505   /// getRawAllocationOrder - Returns the register allocation order for a
506   /// specified register class with a target-dependent hint. The returned list
507   /// may contain reserved registers that cannot be allocated.
508   ///
509   /// Register allocators need only call this function to resolve
510   /// target-dependent hints, but it should work without hinting as well.
511   virtual ArrayRef<unsigned>
512   getRawAllocationOrder(const TargetRegisterClass *RC,
513                         unsigned HintType, unsigned HintReg,
514                         const MachineFunction &MF) const {
515     return RC->getRawAllocationOrder(MF);
516   }
517
518   /// ResolveRegAllocHint - Resolves the specified register allocation hint
519   /// to a physical register. Returns the physical register if it is successful.
520   virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
521                                        const MachineFunction &MF) const {
522     if (Type == 0 && Reg && isPhysicalRegister(Reg))
523       return Reg;
524     return 0;
525   }
526
527   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
528   /// writing a register from RC in two consecutive instructions.
529   /// This can avoid pipeline stalls on certain architectures.
530   /// It does cause increased register pressure, though.
531   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
532     return false;
533   }
534
535   /// UpdateRegAllocHint - A callback to allow target a chance to update
536   /// register allocation hints when a register is "changed" (e.g. coalesced)
537   /// to another register. e.g. On ARM, some virtual registers should target
538   /// register pairs, if one of pair is coalesced to another register, the
539   /// allocation hint of the other half of the pair should be changed to point
540   /// to the new register.
541   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
542                                   MachineFunction &MF) const {
543     // Do nothing.
544   }
545
546   /// requiresRegisterScavenging - returns true if the target requires (and can
547   /// make use of) the register scavenger.
548   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
549     return false;
550   }
551
552   /// useFPForScavengingIndex - returns true if the target wants to use
553   /// frame pointer based accesses to spill to the scavenger emergency spill
554   /// slot.
555   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
556     return true;
557   }
558
559   /// requiresFrameIndexScavenging - returns true if the target requires post
560   /// PEI scavenging of registers for materializing frame index constants.
561   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
562     return false;
563   }
564
565   /// requiresVirtualBaseRegisters - Returns true if the target wants the
566   /// LocalStackAllocation pass to be run and virtual base registers
567   /// used for more efficient stack access.
568   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
569     return false;
570   }
571
572   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
573   /// the stack frame of the given function for the specified register. e.g. On
574   /// x86, if the frame register is required, the first fixed stack object is
575   /// reserved as its spill slot. This tells PEI not to create a new stack frame
576   /// object for the given register. It should be called only after
577   /// processFunctionBeforeCalleeSavedScan().
578   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
579                                     int &FrameIdx) const {
580     return false;
581   }
582
583   /// needsStackRealignment - true if storage within the function requires the
584   /// stack pointer to be aligned more than the normal calling convention calls
585   /// for.
586   virtual bool needsStackRealignment(const MachineFunction &MF) const {
587     return false;
588   }
589
590   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
591   /// index in the instruction, if there is one.
592   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
593                                            int Idx) const {
594     return 0;
595   }
596
597   /// needsFrameBaseReg - Returns true if the instruction's frame index
598   /// reference would be better served by a base register other than FP
599   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
600   /// references it should create new base registers for.
601   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
602     return false;
603   }
604
605   /// materializeFrameBaseRegister - Insert defining instruction(s) for
606   /// BaseReg to be a pointer to FrameIdx before insertion point I.
607   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
608                                             unsigned BaseReg, int FrameIdx,
609                                             int64_t Offset) const {
610     assert(0 && "materializeFrameBaseRegister does not exist on this target");
611   }
612
613   /// resolveFrameIndex - Resolve a frame index operand of an instruction
614   /// to reference the indicated base register plus offset instead.
615   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
616                                  unsigned BaseReg, int64_t Offset) const {
617     assert(0 && "resolveFrameIndex does not exist on this target");
618   }
619
620   /// isFrameOffsetLegal - Determine whether a given offset immediate is
621   /// encodable to resolve a frame index.
622   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
623                                   int64_t Offset) const {
624     assert(0 && "isFrameOffsetLegal does not exist on this target");
625     return false; // Must return a value in order to compile with VS 2005
626   }
627
628   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
629   /// code insertion to eliminate call frame setup and destroy pseudo
630   /// instructions (but only if the Target is using them).  It is responsible
631   /// for eliminating these instructions, replacing them with concrete
632   /// instructions.  This method need only be implemented if using call frame
633   /// setup/destroy pseudo instructions.
634   ///
635   virtual void
636   eliminateCallFramePseudoInstr(MachineFunction &MF,
637                                 MachineBasicBlock &MBB,
638                                 MachineBasicBlock::iterator MI) const {
639     assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
640   }
641
642
643   /// saveScavengerRegister - Spill the register so it can be used by the
644   /// register scavenger. Return true if the register was spilled, false
645   /// otherwise. If this function does not spill the register, the scavenger
646   /// will instead spill it to the emergency spill slot.
647   ///
648   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
649                                      MachineBasicBlock::iterator I,
650                                      MachineBasicBlock::iterator &UseMI,
651                                      const TargetRegisterClass *RC,
652                                      unsigned Reg) const {
653     return false;
654   }
655
656   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
657   /// frame indices from instructions which may use them.  The instruction
658   /// referenced by the iterator contains an MO_FrameIndex operand which must be
659   /// eliminated by this method.  This method may modify or replace the
660   /// specified instruction, as long as it keeps the iterator pointing at the
661   /// finished product. SPAdj is the SP adjustment due to call frame setup
662   /// instruction.
663   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
664                                    int SPAdj, RegScavenger *RS=NULL) const = 0;
665
666   //===--------------------------------------------------------------------===//
667   /// Debug information queries.
668
669   /// getFrameRegister - This method should return the register used as a base
670   /// for values allocated in the current stack frame.
671   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
672
673   /// getCompactUnwindRegNum - This function maps the register to the number for
674   /// compact unwind encoding. Return -1 if the register isn't valid.
675   virtual int getCompactUnwindRegNum(unsigned, bool) const {
676     return -1;
677   }
678 };
679
680
681 // This is useful when building IndexedMaps keyed on virtual registers
682 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
683   unsigned operator()(unsigned Reg) const {
684     return TargetRegisterInfo::virtReg2Index(Reg);
685   }
686 };
687
688 /// PrintReg - Helper class for printing registers on a raw_ostream.
689 /// Prints virtual and physical registers with or without a TRI instance.
690 ///
691 /// The format is:
692 ///   %noreg          - NoRegister
693 ///   %vreg5          - a virtual register.
694 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
695 ///   %EAX            - a physical register
696 ///   %physreg17      - a physical register when no TRI instance given.
697 ///
698 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
699 ///
700 class PrintReg {
701   const TargetRegisterInfo *TRI;
702   unsigned Reg;
703   unsigned SubIdx;
704 public:
705   PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
706     : TRI(tri), Reg(reg), SubIdx(subidx) {}
707   void print(raw_ostream&) const;
708 };
709
710 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
711   PR.print(OS);
712   return OS;
713 }
714
715 } // End llvm namespace
716
717 #endif