Move all of the header files which are involved in modelling the LLVM IR
[oota-llvm.git] / include / llvm / Target / TargetRegisterInfo.h
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include <cassert>
25 #include <functional>
26
27 namespace llvm {
28
29 class BitVector;
30 class MachineFunction;
31 class RegScavenger;
32 template<class T> class SmallVectorImpl;
33 class VirtRegMap;
34 class raw_ostream;
35
36 class TargetRegisterClass {
37 public:
38   typedef const MCPhysReg* iterator;
39   typedef const MCPhysReg* const_iterator;
40   typedef const MVT::SimpleValueType* vt_iterator;
41   typedef const TargetRegisterClass* const * sc_iterator;
42
43   // Instance variables filled by tablegen, do not use!
44   const MCRegisterClass *MC;
45   const vt_iterator VTs;
46   const uint32_t *SubClassMask;
47   const uint16_t *SuperRegIndices;
48   const sc_iterator SuperClasses;
49   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
50
51   /// getID() - Return the register class ID number.
52   ///
53   unsigned getID() const { return MC->getID(); }
54
55   /// getName() - Return the register class name for debugging.
56   ///
57   const char *getName() const { return MC->getName(); }
58
59   /// begin/end - Return all of the registers in this class.
60   ///
61   iterator       begin() const { return MC->begin(); }
62   iterator         end() const { return MC->end(); }
63
64   /// getNumRegs - Return the number of registers in this class.
65   ///
66   unsigned getNumRegs() const { return MC->getNumRegs(); }
67
68   /// getRegister - Return the specified register in the class.
69   ///
70   unsigned getRegister(unsigned i) const {
71     return MC->getRegister(i);
72   }
73
74   /// contains - Return true if the specified register is included in this
75   /// register class.  This does not include virtual registers.
76   bool contains(unsigned Reg) const {
77     return MC->contains(Reg);
78   }
79
80   /// contains - Return true if both registers are in this class.
81   bool contains(unsigned Reg1, unsigned Reg2) const {
82     return MC->contains(Reg1, Reg2);
83   }
84
85   /// getSize - Return the size of the register in bytes, which is also the size
86   /// of a stack slot allocated to hold a spilled copy of this register.
87   unsigned getSize() const { return MC->getSize(); }
88
89   /// getAlignment - Return the minimum required alignment for a register of
90   /// this class.
91   unsigned getAlignment() const { return MC->getAlignment(); }
92
93   /// getCopyCost - Return the cost of copying a value between two registers in
94   /// this class. A negative number means the register class is very expensive
95   /// to copy e.g. status flag register classes.
96   int getCopyCost() const { return MC->getCopyCost(); }
97
98   /// isAllocatable - Return true if this register class may be used to create
99   /// virtual registers.
100   bool isAllocatable() const { return MC->isAllocatable(); }
101
102   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
103   ///
104   bool hasType(EVT vt) const {
105     for(int i = 0; VTs[i] != MVT::Other; ++i)
106       if (EVT(VTs[i]) == vt)
107         return true;
108     return false;
109   }
110
111   /// vt_begin / vt_end - Loop over all of the value types that can be
112   /// represented by values in this register class.
113   vt_iterator vt_begin() const {
114     return VTs;
115   }
116
117   vt_iterator vt_end() const {
118     vt_iterator I = VTs;
119     while (*I != MVT::Other) ++I;
120     return I;
121   }
122
123   /// hasSubClass - return true if the specified TargetRegisterClass
124   /// is a proper sub-class of this TargetRegisterClass.
125   bool hasSubClass(const TargetRegisterClass *RC) const {
126     return RC != this && hasSubClassEq(RC);
127   }
128
129   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
130   /// class.
131   bool hasSubClassEq(const TargetRegisterClass *RC) const {
132     unsigned ID = RC->getID();
133     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
134   }
135
136   /// hasSuperClass - return true if the specified TargetRegisterClass is a
137   /// proper super-class of this TargetRegisterClass.
138   bool hasSuperClass(const TargetRegisterClass *RC) const {
139     return RC->hasSubClass(this);
140   }
141
142   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
143   /// class.
144   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
145     return RC->hasSubClassEq(this);
146   }
147
148   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
149   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
150   /// use it.
151   const uint32_t *getSubClassMask() const {
152     return SubClassMask;
153   }
154
155   /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
156   /// that project some super-register class into this register class. The list
157   /// has an entry for each Idx such that:
158   ///
159   ///   There exists SuperRC where:
160   ///     For all Reg in SuperRC:
161   ///       this->contains(Reg:Idx)
162   ///
163   const uint16_t *getSuperRegIndices() const {
164     return SuperRegIndices;
165   }
166
167   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
168   /// classes are ordered by ID which is also a topological ordering from large
169   /// to small classes.  The list does NOT include the current class.
170   sc_iterator getSuperClasses() const {
171     return SuperClasses;
172   }
173
174   /// isASubClass - return true if this TargetRegisterClass is a subset
175   /// class of at least one other TargetRegisterClass.
176   bool isASubClass() const {
177     return SuperClasses[0] != 0;
178   }
179
180   /// getRawAllocationOrder - Returns the preferred order for allocating
181   /// registers from this register class in MF. The raw order comes directly
182   /// from the .td file and may include reserved registers that are not
183   /// allocatable. Register allocators should also make sure to allocate
184   /// callee-saved registers only after all the volatiles are used. The
185   /// RegisterClassInfo class provides filtered allocation orders with
186   /// callee-saved registers moved to the end.
187   ///
188   /// The MachineFunction argument can be used to tune the allocatable
189   /// registers based on the characteristics of the function, subtarget, or
190   /// other criteria.
191   ///
192   /// By default, this method returns all registers in the class.
193   ///
194   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
195     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
196   }
197 };
198
199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
200 /// registers. These are used by codegen, not by MC.
201 struct TargetRegisterInfoDesc {
202   unsigned CostPerUse;          // Extra cost of instructions using register.
203   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
204 };
205
206 /// Each TargetRegisterClass has a per register weight, and weight
207 /// limit which must be less than the limits of its pressure sets.
208 struct RegClassWeight {
209   unsigned RegWeight;
210   unsigned WeightLimit;
211 };
212
213 /// TargetRegisterInfo base class - We assume that the target defines a static
214 /// array of TargetRegisterDesc objects that represent all of the machine
215 /// registers that the target has.  As such, we simply have to track a pointer
216 /// to this array so that we can turn register number into a register
217 /// descriptor.
218 ///
219 class TargetRegisterInfo : public MCRegisterInfo {
220 public:
221   typedef const TargetRegisterClass * const * regclass_iterator;
222 private:
223   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
224   const char *const *SubRegIndexNames;        // Names of subreg indexes.
225   // Pointer to array of lane masks, one per sub-reg index.
226   const unsigned *SubRegIndexLaneMasks;
227
228   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
229
230 protected:
231   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
232                      regclass_iterator RegClassBegin,
233                      regclass_iterator RegClassEnd,
234                      const char *const *SRINames,
235                      const unsigned *SRILaneMasks);
236   virtual ~TargetRegisterInfo();
237 public:
238
239   // Register numbers can represent physical registers, virtual registers, and
240   // sometimes stack slots. The unsigned values are divided into these ranges:
241   //
242   //   0           Not a register, can be used as a sentinel.
243   //   [1;2^30)    Physical registers assigned by TableGen.
244   //   [2^30;2^31) Stack slots. (Rarely used.)
245   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
246   //
247   // Further sentinels can be allocated from the small negative integers.
248   // DenseMapInfo<unsigned> uses -1u and -2u.
249
250   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
251   /// frame index in a variable that normally holds a register. isStackSlot()
252   /// returns true if Reg is in the range used for stack slots.
253   ///
254   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
255   /// slots, so if a variable may contains a stack slot, always check
256   /// isStackSlot() first.
257   ///
258   static bool isStackSlot(unsigned Reg) {
259     return int(Reg) >= (1 << 30);
260   }
261
262   /// stackSlot2Index - Compute the frame index from a register value
263   /// representing a stack slot.
264   static int stackSlot2Index(unsigned Reg) {
265     assert(isStackSlot(Reg) && "Not a stack slot");
266     return int(Reg - (1u << 30));
267   }
268
269   /// index2StackSlot - Convert a non-negative frame index to a stack slot
270   /// register value.
271   static unsigned index2StackSlot(int FI) {
272     assert(FI >= 0 && "Cannot hold a negative frame index.");
273     return FI + (1u << 30);
274   }
275
276   /// isPhysicalRegister - Return true if the specified register number is in
277   /// the physical register namespace.
278   static bool isPhysicalRegister(unsigned Reg) {
279     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
280     return int(Reg) > 0;
281   }
282
283   /// isVirtualRegister - Return true if the specified register number is in
284   /// the virtual register namespace.
285   static bool isVirtualRegister(unsigned Reg) {
286     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
287     return int(Reg) < 0;
288   }
289
290   /// virtReg2Index - Convert a virtual register number to a 0-based index.
291   /// The first virtual register in a function will get the index 0.
292   static unsigned virtReg2Index(unsigned Reg) {
293     assert(isVirtualRegister(Reg) && "Not a virtual register");
294     return Reg & ~(1u << 31);
295   }
296
297   /// index2VirtReg - Convert a 0-based index to a virtual register number.
298   /// This is the inverse operation of VirtReg2IndexFunctor below.
299   static unsigned index2VirtReg(unsigned Index) {
300     return Index | (1u << 31);
301   }
302
303   /// getMinimalPhysRegClass - Returns the Register Class of a physical
304   /// register of the given type, picking the most sub register class of
305   /// the right type that contains this physreg.
306   const TargetRegisterClass *
307     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
308
309   /// getAllocatableClass - Return the maximal subclass of the given register
310   /// class that is alloctable, or NULL.
311   const TargetRegisterClass *
312     getAllocatableClass(const TargetRegisterClass *RC) const;
313
314   /// getAllocatableSet - Returns a bitset indexed by register number
315   /// indicating if a register is allocatable or not. If a register class is
316   /// specified, returns the subset for the class.
317   BitVector getAllocatableSet(const MachineFunction &MF,
318                               const TargetRegisterClass *RC = NULL) const;
319
320   /// getCostPerUse - Return the additional cost of using this register instead
321   /// of other registers in its class.
322   unsigned getCostPerUse(unsigned RegNo) const {
323     return InfoDesc[RegNo].CostPerUse;
324   }
325
326   /// isInAllocatableClass - Return true if the register is in the allocation
327   /// of any register class.
328   bool isInAllocatableClass(unsigned RegNo) const {
329     return InfoDesc[RegNo].inAllocatableClass;
330   }
331
332   /// getSubRegIndexName - Return the human-readable symbolic target-specific
333   /// name for the specified SubRegIndex.
334   const char *getSubRegIndexName(unsigned SubIdx) const {
335     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
336            "This is not a subregister index");
337     return SubRegIndexNames[SubIdx-1];
338   }
339
340   /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
341   /// register that are covered by SubIdx.
342   ///
343   /// Lane masks for sub-register indices are similar to register units for
344   /// physical registers. The individual bits in a lane mask can't be assigned
345   /// any specific meaning. They can be used to check if two sub-register
346   /// indices overlap.
347   ///
348   /// If the target has a register such that:
349   ///
350   ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
351   ///
352   /// then:
353   ///
354   ///   getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
355   ///
356   /// The converse is not necessarily true. If two lane masks have a common
357   /// bit, the corresponding sub-registers may not overlap, but it can be
358   /// assumed that they usually will.
359   unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
360     // SubIdx == 0 is allowed, it has the lane mask ~0u.
361     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
362     return SubRegIndexLaneMasks[SubIdx];
363   }
364
365   /// regsOverlap - Returns true if the two registers are equal or alias each
366   /// other. The registers may be virtual register.
367   bool regsOverlap(unsigned regA, unsigned regB) const {
368     if (regA == regB) return true;
369     if (isVirtualRegister(regA) || isVirtualRegister(regB))
370       return false;
371
372     // Regunits are numerically ordered. Find a common unit.
373     MCRegUnitIterator RUA(regA, this);
374     MCRegUnitIterator RUB(regB, this);
375     do {
376       if (*RUA == *RUB) return true;
377       if (*RUA < *RUB) ++RUA;
378       else             ++RUB;
379     } while (RUA.isValid() && RUB.isValid());
380     return false;
381   }
382
383   /// hasRegUnit - Returns true if Reg contains RegUnit.
384   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
385     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
386       if (*Units == RegUnit)
387         return true;
388     return false;
389   }
390
391   /// getCalleeSavedRegs - Return a null-terminated list of all of the
392   /// callee saved registers on this target. The register should be in the
393   /// order of desired callee-save stack frame offset. The first register is
394   /// closest to the incoming stack pointer if stack grows down, and vice versa.
395   ///
396   virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0)
397                                                                       const = 0;
398
399   /// getCallPreservedMask - Return a mask of call-preserved registers for the
400   /// given calling convention on the current sub-target.  The mask should
401   /// include all call-preserved aliases.  This is used by the register
402   /// allocator to determine which registers can be live across a call.
403   ///
404   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
405   /// A set bit indicates that all bits of the corresponding register are
406   /// preserved across the function call.  The bit mask is expected to be
407   /// sub-register complete, i.e. if A is preserved, so are all its
408   /// sub-registers.
409   ///
410   /// Bits are numbered from the LSB, so the bit for physical register Reg can
411   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
412   ///
413   /// A NULL pointer means that no register mask will be used, and call
414   /// instructions should use implicit-def operands to indicate call clobbered
415   /// registers.
416   ///
417   virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
418     // The default mask clobbers everything.  All targets should override.
419     return 0;
420   }
421
422   /// getReservedRegs - Returns a bitset indexed by physical register number
423   /// indicating if a register is a special register that has particular uses
424   /// and should be considered unavailable at all times, e.g. SP, RA. This is
425   /// used by register scavenger to determine what registers are free.
426   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
427
428   /// getMatchingSuperReg - Return a super-register of the specified register
429   /// Reg so its sub-register of index SubIdx is Reg.
430   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
431                                const TargetRegisterClass *RC) const {
432     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
433   }
434
435   /// getMatchingSuperRegClass - Return a subclass of the specified register
436   /// class A so that each register in it has a sub-register of the
437   /// specified sub-register index which is in the specified register class B.
438   ///
439   /// TableGen will synthesize missing A sub-classes.
440   virtual const TargetRegisterClass *
441   getMatchingSuperRegClass(const TargetRegisterClass *A,
442                            const TargetRegisterClass *B, unsigned Idx) const;
443
444   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
445   /// supports the sub-register index Idx.
446   /// If no such sub-class exists, return NULL.
447   /// If all registers in RC already have an Idx sub-register, return RC.
448   ///
449   /// TableGen generates a version of this function that is good enough in most
450   /// cases.  Targets can override if they have constraints that TableGen
451   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
452   /// supported by the full GR32 register class in 64-bit mode, but only by the
453   /// GR32_ABCD regiister class in 32-bit mode.
454   ///
455   /// TableGen will synthesize missing RC sub-classes.
456   virtual const TargetRegisterClass *
457   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
458     assert(Idx == 0 && "Target has no sub-registers");
459     return RC;
460   }
461
462   /// composeSubRegIndices - Return the subregister index you get from composing
463   /// two subregister indices.
464   ///
465   /// The special null sub-register index composes as the identity.
466   ///
467   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
468   /// returns c. Note that composeSubRegIndices does not tell you about illegal
469   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
470   /// b, composeSubRegIndices doesn't tell you.
471   ///
472   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
473   /// ssub_0:S0 - ssub_3:S3 subregs.
474   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
475   ///
476   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
477     if (!a) return b;
478     if (!b) return a;
479     return composeSubRegIndicesImpl(a, b);
480   }
481
482 protected:
483   /// Overridden by TableGen in targets that have sub-registers.
484   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
485     llvm_unreachable("Target has no sub-registers");
486   }
487
488 public:
489   /// getCommonSuperRegClass - Find a common super-register class if it exists.
490   ///
491   /// Find a register class, SuperRC and two sub-register indices, PreA and
492   /// PreB, such that:
493   ///
494   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
495   ///
496   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
497   ///
498   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
499   ///
500   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
501   /// requirements, and there is no register class with a smaller spill size
502   /// that satisfies the requirements.
503   ///
504   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
505   ///
506   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
507   /// that case, the returned register class will be a sub-class of the
508   /// corresponding argument register class.
509   ///
510   /// The function returns NULL if no register class can be found.
511   ///
512   const TargetRegisterClass*
513   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
514                          const TargetRegisterClass *RCB, unsigned SubB,
515                          unsigned &PreA, unsigned &PreB) const;
516
517   //===--------------------------------------------------------------------===//
518   // Register Class Information
519   //
520
521   /// Register class iterators
522   ///
523   regclass_iterator regclass_begin() const { return RegClassBegin; }
524   regclass_iterator regclass_end() const { return RegClassEnd; }
525
526   unsigned getNumRegClasses() const {
527     return (unsigned)(regclass_end()-regclass_begin());
528   }
529
530   /// getRegClass - Returns the register class associated with the enumeration
531   /// value.  See class MCOperandInfo.
532   const TargetRegisterClass *getRegClass(unsigned i) const {
533     assert(i < getNumRegClasses() && "Register Class ID out of range");
534     return RegClassBegin[i];
535   }
536
537   /// getCommonSubClass - find the largest common subclass of A and B. Return
538   /// NULL if there is no common subclass.
539   const TargetRegisterClass *
540   getCommonSubClass(const TargetRegisterClass *A,
541                     const TargetRegisterClass *B) const;
542
543   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
544   /// values.  If a target supports multiple different pointer register classes,
545   /// kind specifies which one is indicated.
546   virtual const TargetRegisterClass *
547   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
548     llvm_unreachable("Target didn't implement getPointerRegClass!");
549   }
550
551   /// getCrossCopyRegClass - Returns a legal register class to copy a register
552   /// in the specified class to or from. If it is possible to copy the register
553   /// directly without using a cross register class copy, return the specified
554   /// RC. Returns NULL if it is not possible to copy between a two registers of
555   /// the specified class.
556   virtual const TargetRegisterClass *
557   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
558     return RC;
559   }
560
561   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
562   /// legal to use in the current sub-target and has the same spill size.
563   /// The returned register class can be used to create virtual registers which
564   /// means that all its registers can be copied and spilled.
565   virtual const TargetRegisterClass*
566   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
567     /// The default implementation is very conservative and doesn't allow the
568     /// register allocator to inflate register classes.
569     return RC;
570   }
571
572   /// getRegPressureLimit - Return the register pressure "high water mark" for
573   /// the specific register class. The scheduler is in high register pressure
574   /// mode (for the specific register class) if it goes over the limit.
575   ///
576   /// Note: this is the old register pressure model that relies on a manually
577   /// specified representative register class per value type.
578   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
579                                        MachineFunction &MF) const {
580     return 0;
581   }
582
583   /// Get the weight in units of pressure for this register class.
584   virtual const RegClassWeight &getRegClassWeight(
585     const TargetRegisterClass *RC) const = 0;
586
587   /// Get the weight in units of pressure for this register unit.
588   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
589
590   /// Get the number of dimensions of register pressure.
591   virtual unsigned getNumRegPressureSets() const = 0;
592
593   /// Get the name of this register unit pressure set.
594   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
595
596   /// Get the register unit pressure limit for this dimension.
597   /// This limit must be adjusted dynamically for reserved registers.
598   virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
599
600   /// Get the dimensions of register pressure impacted by this register class.
601   /// Returns a -1 terminated array of pressure set IDs.
602   virtual const int *getRegClassPressureSets(
603     const TargetRegisterClass *RC) const = 0;
604
605   /// Get the dimensions of register pressure impacted by this register unit.
606   /// Returns a -1 terminated array of pressure set IDs.
607   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
608
609   /// Get a list of 'hint' registers that the register allocator should try
610   /// first when allocating a physical register for the virtual register
611   /// VirtReg. These registers are effectively moved to the front of the
612   /// allocation order.
613   ///
614   /// The Order argument is the allocation order for VirtReg's register class
615   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
616   /// come from Order, and they must not be reserved.
617   ///
618   /// The default implementation of this function can resolve
619   /// target-independent hints provided to MRI::setRegAllocationHint with
620   /// HintType == 0. Targets that override this function should defer to the
621   /// default implementation if they have no reason to change the allocation
622   /// order for VirtReg. There may be target-independent hints.
623   virtual void getRegAllocationHints(unsigned VirtReg,
624                                      ArrayRef<MCPhysReg> Order,
625                                      SmallVectorImpl<MCPhysReg> &Hints,
626                                      const MachineFunction &MF,
627                                      const VirtRegMap *VRM = 0) const;
628
629   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
630   /// writing a register from RC in two consecutive instructions.
631   /// This can avoid pipeline stalls on certain architectures.
632   /// It does cause increased register pressure, though.
633   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
634     return false;
635   }
636
637   /// UpdateRegAllocHint - A callback to allow target a chance to update
638   /// register allocation hints when a register is "changed" (e.g. coalesced)
639   /// to another register. e.g. On ARM, some virtual registers should target
640   /// register pairs, if one of pair is coalesced to another register, the
641   /// allocation hint of the other half of the pair should be changed to point
642   /// to the new register.
643   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
644                                   MachineFunction &MF) const {
645     // Do nothing.
646   }
647
648   /// requiresRegisterScavenging - returns true if the target requires (and can
649   /// make use of) the register scavenger.
650   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
651     return false;
652   }
653
654   /// useFPForScavengingIndex - returns true if the target wants to use
655   /// frame pointer based accesses to spill to the scavenger emergency spill
656   /// slot.
657   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
658     return true;
659   }
660
661   /// requiresFrameIndexScavenging - returns true if the target requires post
662   /// PEI scavenging of registers for materializing frame index constants.
663   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
664     return false;
665   }
666
667   /// requiresVirtualBaseRegisters - Returns true if the target wants the
668   /// LocalStackAllocation pass to be run and virtual base registers
669   /// used for more efficient stack access.
670   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
671     return false;
672   }
673
674   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
675   /// the stack frame of the given function for the specified register. e.g. On
676   /// x86, if the frame register is required, the first fixed stack object is
677   /// reserved as its spill slot. This tells PEI not to create a new stack frame
678   /// object for the given register. It should be called only after
679   /// processFunctionBeforeCalleeSavedScan().
680   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
681                                     int &FrameIdx) const {
682     return false;
683   }
684
685   /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
686   /// after register allocation.
687   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
688     return false;
689   }
690
691   /// needsStackRealignment - true if storage within the function requires the
692   /// stack pointer to be aligned more than the normal calling convention calls
693   /// for.
694   virtual bool needsStackRealignment(const MachineFunction &MF) const {
695     return false;
696   }
697
698   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
699   /// index in the instruction, if there is one.
700   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
701                                            int Idx) const {
702     return 0;
703   }
704
705   /// needsFrameBaseReg - Returns true if the instruction's frame index
706   /// reference would be better served by a base register other than FP
707   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
708   /// references it should create new base registers for.
709   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
710     return false;
711   }
712
713   /// materializeFrameBaseRegister - Insert defining instruction(s) for
714   /// BaseReg to be a pointer to FrameIdx before insertion point I.
715   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
716                                             unsigned BaseReg, int FrameIdx,
717                                             int64_t Offset) const {
718     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
719                      "target");
720   }
721
722   /// resolveFrameIndex - Resolve a frame index operand of an instruction
723   /// to reference the indicated base register plus offset instead.
724   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
725                                  unsigned BaseReg, int64_t Offset) const {
726     llvm_unreachable("resolveFrameIndex does not exist on this target");
727   }
728
729   /// isFrameOffsetLegal - Determine whether a given offset immediate is
730   /// encodable to resolve a frame index.
731   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
732                                   int64_t Offset) const {
733     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
734   }
735
736   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
737   /// code insertion to eliminate call frame setup and destroy pseudo
738   /// instructions (but only if the Target is using them).  It is responsible
739   /// for eliminating these instructions, replacing them with concrete
740   /// instructions.  This method need only be implemented if using call frame
741   /// setup/destroy pseudo instructions.
742   ///
743   virtual void
744   eliminateCallFramePseudoInstr(MachineFunction &MF,
745                                 MachineBasicBlock &MBB,
746                                 MachineBasicBlock::iterator MI) const {
747     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
748                      "target!");
749   }
750
751
752   /// saveScavengerRegister - Spill the register so it can be used by the
753   /// register scavenger. Return true if the register was spilled, false
754   /// otherwise. If this function does not spill the register, the scavenger
755   /// will instead spill it to the emergency spill slot.
756   ///
757   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
758                                      MachineBasicBlock::iterator I,
759                                      MachineBasicBlock::iterator &UseMI,
760                                      const TargetRegisterClass *RC,
761                                      unsigned Reg) const {
762     return false;
763   }
764
765   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
766   /// frame indices from instructions which may use them.  The instruction
767   /// referenced by the iterator contains an MO_FrameIndex operand which must be
768   /// eliminated by this method.  This method may modify or replace the
769   /// specified instruction, as long as it keeps the iterator pointing at the
770   /// finished product. SPAdj is the SP adjustment due to call frame setup
771   /// instruction.
772   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
773                                    int SPAdj, RegScavenger *RS=NULL) const = 0;
774
775   //===--------------------------------------------------------------------===//
776   /// Debug information queries.
777
778   /// getFrameRegister - This method should return the register used as a base
779   /// for values allocated in the current stack frame.
780   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
781
782   /// getCompactUnwindRegNum - This function maps the register to the number for
783   /// compact unwind encoding. Return -1 if the register isn't valid.
784   virtual int getCompactUnwindRegNum(unsigned, bool) const {
785     return -1;
786   }
787 };
788
789
790 //===----------------------------------------------------------------------===//
791 //                           SuperRegClassIterator
792 //===----------------------------------------------------------------------===//
793 //
794 // Iterate over the possible super-registers for a given register class. The
795 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
796 // possible classes of super-registers.
797 //
798 // Each bit mask will have at least one set bit, and each set bit in Mask
799 // corresponds to a SuperRC such that:
800 //
801 //   For all Reg in SuperRC: Reg:Idx is in RC.
802 //
803 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
804 // also satisfies the above requirement, assuming Reg:0 == Reg.
805 //
806 class SuperRegClassIterator {
807   const unsigned RCMaskWords;
808   unsigned SubReg;
809   const uint16_t *Idx;
810   const uint32_t *Mask;
811
812 public:
813   /// Create a SuperRegClassIterator that visits all the super-register classes
814   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
815   SuperRegClassIterator(const TargetRegisterClass *RC,
816                         const TargetRegisterInfo *TRI,
817                         bool IncludeSelf = false)
818     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
819       SubReg(0),
820       Idx(RC->getSuperRegIndices()),
821       Mask(RC->getSubClassMask()) {
822     if (!IncludeSelf)
823       ++*this;
824   }
825
826   /// Returns true if this iterator is still pointing at a valid entry.
827   bool isValid() const { return Idx; }
828
829   /// Returns the current sub-register index.
830   unsigned getSubReg() const { return SubReg; }
831
832   /// Returns the bit mask if register classes that getSubReg() projects into
833   /// RC.
834   const uint32_t *getMask() const { return Mask; }
835
836   /// Advance iterator to the next entry.
837   void operator++() {
838     assert(isValid() && "Cannot move iterator past end.");
839     Mask += RCMaskWords;
840     SubReg = *Idx++;
841     if (!SubReg)
842       Idx = 0;
843   }
844 };
845
846 // This is useful when building IndexedMaps keyed on virtual registers
847 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
848   unsigned operator()(unsigned Reg) const {
849     return TargetRegisterInfo::virtReg2Index(Reg);
850   }
851 };
852
853 /// PrintReg - Helper class for printing registers on a raw_ostream.
854 /// Prints virtual and physical registers with or without a TRI instance.
855 ///
856 /// The format is:
857 ///   %noreg          - NoRegister
858 ///   %vreg5          - a virtual register.
859 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
860 ///   %EAX            - a physical register
861 ///   %physreg17      - a physical register when no TRI instance given.
862 ///
863 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
864 ///
865 class PrintReg {
866   const TargetRegisterInfo *TRI;
867   unsigned Reg;
868   unsigned SubIdx;
869 public:
870   explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0,
871                     unsigned subidx = 0)
872     : TRI(tri), Reg(reg), SubIdx(subidx) {}
873   void print(raw_ostream&) const;
874 };
875
876 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
877   PR.print(OS);
878   return OS;
879 }
880
881 /// PrintRegUnit - Helper class for printing register units on a raw_ostream.
882 ///
883 /// Register units are named after their root registers:
884 ///
885 ///   AL      - Single root.
886 ///   FP0~ST7 - Dual roots.
887 ///
888 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
889 ///
890 class PrintRegUnit {
891   const TargetRegisterInfo *TRI;
892   unsigned Unit;
893 public:
894   PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
895     : TRI(tri), Unit(unit) {}
896   void print(raw_ostream&) const;
897 };
898
899 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
900   PR.print(OS);
901   return OS;
902 }
903
904 } // End llvm namespace
905
906 #endif