Removing LLVM_DELETED_FUNCTION, as MSVC 2012 was the last reason for requiring the...
[oota-llvm.git] / include / llvm / Target / TargetInstrInfo.h
1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the target machine instruction set to the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/CodeGen/MachineCombinerPattern.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23
24 namespace llvm {
25
26 class InstrItineraryData;
27 class LiveVariables;
28 class MCAsmInfo;
29 class MachineMemOperand;
30 class MachineRegisterInfo;
31 class MDNode;
32 class MCInst;
33 struct MCSchedModel;
34 class MCSymbolRefExpr;
35 class SDNode;
36 class ScheduleHazardRecognizer;
37 class SelectionDAG;
38 class ScheduleDAG;
39 class TargetRegisterClass;
40 class TargetRegisterInfo;
41 class BranchProbability;
42 class TargetSubtargetInfo;
43 class DFAPacketizer;
44
45 template<class T> class SmallVectorImpl;
46
47
48 //---------------------------------------------------------------------------
49 ///
50 /// TargetInstrInfo - Interface to description of machine instruction set
51 ///
52 class TargetInstrInfo : public MCInstrInfo {
53   TargetInstrInfo(const TargetInstrInfo &) = delete;
54   void operator=(const TargetInstrInfo &) = delete;
55 public:
56   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
57     : CallFrameSetupOpcode(CFSetupOpcode),
58       CallFrameDestroyOpcode(CFDestroyOpcode) {
59   }
60
61   virtual ~TargetInstrInfo();
62
63   /// getRegClass - Givem a machine instruction descriptor, returns the register
64   /// class constraint for OpNum, or NULL.
65   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
66                                          unsigned OpNum,
67                                          const TargetRegisterInfo *TRI,
68                                          const MachineFunction &MF) const;
69
70   /// isTriviallyReMaterializable - Return true if the instruction is trivially
71   /// rematerializable, meaning it has no side effects and requires no operands
72   /// that aren't always available.
73   bool isTriviallyReMaterializable(const MachineInstr *MI,
74                                    AliasAnalysis *AA = nullptr) const {
75     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
76            (MI->getDesc().isRematerializable() &&
77             (isReallyTriviallyReMaterializable(MI, AA) ||
78              isReallyTriviallyReMaterializableGeneric(MI, AA)));
79   }
80
81 protected:
82   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
83   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
84   /// specify whether the instruction is actually trivially rematerializable,
85   /// taking into consideration its operands. This predicate must return false
86   /// if the instruction has any side effects other than producing a value, or
87   /// if it requres any address registers that are not always available.
88   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
89                                                  AliasAnalysis *AA) const {
90     return false;
91   }
92
93 private:
94   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
95   /// for which the M_REMATERIALIZABLE flag is set and the target hook
96   /// isReallyTriviallyReMaterializable returns false, this function does
97   /// target-independent tests to determine if the instruction is really
98   /// trivially rematerializable.
99   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
100                                                 AliasAnalysis *AA) const;
101
102 public:
103   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
104   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
105   /// targets use pseudo instructions in order to abstract away the difference
106   /// between operating with a frame pointer and operating without, through the
107   /// use of these two instructions.
108   ///
109   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
110   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
111
112   /// Returns the actual stack pointer adjustment made by an instruction
113   /// as part of a call sequence. By default, only call frame setup/destroy
114   /// instructions adjust the stack, but targets may want to override this
115   /// to enable more fine-grained adjustment, or adjust by a different value.
116   virtual int getSPAdjust(const MachineInstr *MI) const;
117
118   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
119   /// extension instruction. That is, it's like a copy where it's legal for the
120   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
121   /// true, then it's expected the pre-extension value is available as a subreg
122   /// of the result register. This also returns the sub-register index in
123   /// SubIdx.
124   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
125                                      unsigned &SrcReg, unsigned &DstReg,
126                                      unsigned &SubIdx) const {
127     return false;
128   }
129
130   /// isLoadFromStackSlot - If the specified machine instruction is a direct
131   /// load from a stack slot, return the virtual or physical register number of
132   /// the destination along with the FrameIndex of the loaded stack slot.  If
133   /// not, return 0.  This predicate must return 0 if the instruction has
134   /// any side effects other than loading from the stack slot.
135   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
136                                        int &FrameIndex) const {
137     return 0;
138   }
139
140   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
141   /// stack locations as well.  This uses a heuristic so it isn't
142   /// reliable for correctness.
143   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
144                                              int &FrameIndex) const {
145     return 0;
146   }
147
148   /// hasLoadFromStackSlot - If the specified machine instruction has
149   /// a load from a stack slot, return true along with the FrameIndex
150   /// of the loaded stack slot and the machine mem operand containing
151   /// the reference.  If not, return false.  Unlike
152   /// isLoadFromStackSlot, this returns true for any instructions that
153   /// loads from the stack.  This is just a hint, as some cases may be
154   /// missed.
155   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
156                                     const MachineMemOperand *&MMO,
157                                     int &FrameIndex) const;
158
159   /// isStoreToStackSlot - If the specified machine instruction is a direct
160   /// store to a stack slot, return the virtual or physical register number of
161   /// the source reg along with the FrameIndex of the loaded stack slot.  If
162   /// not, return 0.  This predicate must return 0 if the instruction has
163   /// any side effects other than storing to the stack slot.
164   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
165                                       int &FrameIndex) const {
166     return 0;
167   }
168
169   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
170   /// stack locations as well.  This uses a heuristic so it isn't
171   /// reliable for correctness.
172   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
173                                             int &FrameIndex) const {
174     return 0;
175   }
176
177   /// hasStoreToStackSlot - If the specified machine instruction has a
178   /// store to a stack slot, return true along with the FrameIndex of
179   /// the loaded stack slot and the machine mem operand containing the
180   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
181   /// this returns true for any instructions that stores to the
182   /// stack.  This is just a hint, as some cases may be missed.
183   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
184                                    const MachineMemOperand *&MMO,
185                                    int &FrameIndex) const;
186
187   /// isStackSlotCopy - Return true if the specified machine instruction
188   /// is a copy of one stack slot to another and has no other effect.
189   /// Provide the identity of the two frame indices.
190   virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
191                                int &SrcFrameIndex) const {
192     return false;
193   }
194
195   /// Compute the size in bytes and offset within a stack slot of a spilled
196   /// register or subregister.
197   ///
198   /// \param [out] Size in bytes of the spilled value.
199   /// \param [out] Offset in bytes within the stack slot.
200   /// \returns true if both Size and Offset are successfully computed.
201   ///
202   /// Not all subregisters have computable spill slots. For example,
203   /// subregisters registers may not be byte-sized, and a pair of discontiguous
204   /// subregisters has no single offset.
205   ///
206   /// Targets with nontrivial bigendian implementations may need to override
207   /// this, particularly to support spilled vector registers.
208   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
209                                  unsigned &Size, unsigned &Offset,
210                                  const TargetMachine *TM) const;
211
212   /// isAsCheapAsAMove - Return true if the instruction is as cheap as a move
213   /// instruction.
214   ///
215   /// Targets for different archs need to override this, and different
216   /// micro-architectures can also be finely tuned inside.
217   virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
218     return MI->isAsCheapAsAMove();
219   }
220
221   /// reMaterialize - Re-issue the specified 'original' instruction at the
222   /// specific location targeting a new destination register.
223   /// The register in Orig->getOperand(0).getReg() will be substituted by
224   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
225   /// SubIdx.
226   virtual void reMaterialize(MachineBasicBlock &MBB,
227                              MachineBasicBlock::iterator MI,
228                              unsigned DestReg, unsigned SubIdx,
229                              const MachineInstr *Orig,
230                              const TargetRegisterInfo &TRI) const;
231
232   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
233   /// MachineFunction::CloneMachineInstr(), but the target may update operands
234   /// that are required to be unique.
235   ///
236   /// The instruction must be duplicable as indicated by isNotDuplicable().
237   virtual MachineInstr *duplicate(MachineInstr *Orig,
238                                   MachineFunction &MF) const;
239
240   /// convertToThreeAddress - This method must be implemented by targets that
241   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
242   /// may be able to convert a two-address instruction into one or more true
243   /// three-address instructions on demand.  This allows the X86 target (for
244   /// example) to convert ADD and SHL instructions into LEA instructions if they
245   /// would require register copies due to two-addressness.
246   ///
247   /// This method returns a null pointer if the transformation cannot be
248   /// performed, otherwise it returns the last new instruction.
249   ///
250   virtual MachineInstr *
251   convertToThreeAddress(MachineFunction::iterator &MFI,
252                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
253     return nullptr;
254   }
255
256   /// commuteInstruction - If a target has any instructions that are
257   /// commutable but require converting to different instructions or making
258   /// non-trivial changes to commute them, this method can overloaded to do
259   /// that.  The default implementation simply swaps the commutable operands.
260   /// If NewMI is false, MI is modified in place and returned; otherwise, a
261   /// new machine instruction is created and returned.  Do not call this
262   /// method for a non-commutable instruction, but there may be some cases
263   /// where this method fails and returns null.
264   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
265                                            bool NewMI = false) const;
266
267   /// findCommutedOpIndices - If specified MI is commutable, return the two
268   /// operand indices that would swap value. Return false if the instruction
269   /// is not in a form which this routine understands.
270   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
271                                      unsigned &SrcOpIdx2) const;
272
273   /// A pair composed of a register and a sub-register index.
274   /// Used to give some type checking when modeling Reg:SubReg.
275   struct RegSubRegPair {
276     unsigned Reg;
277     unsigned SubReg;
278     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
279         : Reg(Reg), SubReg(SubReg) {}
280   };
281   /// A pair composed of a pair of a register and a sub-register index,
282   /// and another sub-register index.
283   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
284   struct RegSubRegPairAndIdx : RegSubRegPair {
285     unsigned SubIdx;
286     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
287                         unsigned SubIdx = 0)
288         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
289   };
290
291   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
292   /// and \p DefIdx.
293   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
294   /// the list is modeled as <Reg:SubReg, SubIdx>.
295   /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
296   /// two elements:
297   /// - vreg1:sub1, sub0
298   /// - vreg2<:0>, sub1
299   ///
300   /// \returns true if it is possible to build such an input sequence
301   /// with the pair \p MI, \p DefIdx. False otherwise.
302   ///
303   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
304   ///
305   /// \note The generic implementation does not provide any support for
306   /// MI.isRegSequenceLike(). In other words, one has to override
307   /// getRegSequenceLikeInputs for target specific instructions.
308   bool
309   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
310                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
311
312   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
313   /// and \p DefIdx.
314   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
315   /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
316   /// - vreg1:sub1, sub0
317   ///
318   /// \returns true if it is possible to build such an input sequence
319   /// with the pair \p MI, \p DefIdx. False otherwise.
320   ///
321   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
322   ///
323   /// \note The generic implementation does not provide any support for
324   /// MI.isExtractSubregLike(). In other words, one has to override
325   /// getExtractSubregLikeInputs for target specific instructions.
326   bool
327   getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
328                          RegSubRegPairAndIdx &InputReg) const;
329
330   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
331   /// and \p DefIdx.
332   /// \p [out] BaseReg and \p [out] InsertedReg contain
333   /// the equivalent inputs of INSERT_SUBREG.
334   /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
335   /// - BaseReg: vreg0:sub0
336   /// - InsertedReg: vreg1:sub1, sub3
337   ///
338   /// \returns true if it is possible to build such an input sequence
339   /// with the pair \p MI, \p DefIdx. False otherwise.
340   ///
341   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
342   ///
343   /// \note The generic implementation does not provide any support for
344   /// MI.isInsertSubregLike(). In other words, one has to override
345   /// getInsertSubregLikeInputs for target specific instructions.
346   bool
347   getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
348                         RegSubRegPair &BaseReg,
349                         RegSubRegPairAndIdx &InsertedReg) const;
350
351
352   /// produceSameValue - Return true if two machine instructions would produce
353   /// identical values. By default, this is only true when the two instructions
354   /// are deemed identical except for defs. If this function is called when the
355   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
356   /// aggressive checks.
357   virtual bool produceSameValue(const MachineInstr *MI0,
358                                 const MachineInstr *MI1,
359                                 const MachineRegisterInfo *MRI = nullptr) const;
360
361   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
362   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
363   /// implemented for a target).  Upon success, this returns false and returns
364   /// with the following information in various cases:
365   ///
366   /// 1. If this block ends with no branches (it just falls through to its succ)
367   ///    just return false, leaving TBB/FBB null.
368   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
369   ///    the destination block.
370   /// 3. If this block ends with a conditional branch and it falls through to a
371   ///    successor block, it sets TBB to be the branch destination block and a
372   ///    list of operands that evaluate the condition. These operands can be
373   ///    passed to other TargetInstrInfo methods to create new branches.
374   /// 4. If this block ends with a conditional branch followed by an
375   ///    unconditional branch, it returns the 'true' destination in TBB, the
376   ///    'false' destination in FBB, and a list of operands that evaluate the
377   ///    condition.  These operands can be passed to other TargetInstrInfo
378   ///    methods to create new branches.
379   ///
380   /// Note that RemoveBranch and InsertBranch must be implemented to support
381   /// cases where this method returns success.
382   ///
383   /// If AllowModify is true, then this routine is allowed to modify the basic
384   /// block (e.g. delete instructions after the unconditional branch).
385   ///
386   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
387                              MachineBasicBlock *&FBB,
388                              SmallVectorImpl<MachineOperand> &Cond,
389                              bool AllowModify = false) const {
390     return true;
391   }
392
393   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
394   /// This is only invoked in cases where AnalyzeBranch returns success. It
395   /// returns the number of instructions that were removed.
396   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
397     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
398   }
399
400   /// InsertBranch - Insert branch code into the end of the specified
401   /// MachineBasicBlock.  The operands to this method are the same as those
402   /// returned by AnalyzeBranch.  This is only invoked in cases where
403   /// AnalyzeBranch returns success. It returns the number of instructions
404   /// inserted.
405   ///
406   /// It is also invoked by tail merging to add unconditional branches in
407   /// cases where AnalyzeBranch doesn't apply because there was no original
408   /// branch to analyze.  At least this much must be implemented, else tail
409   /// merging needs to be disabled.
410   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
411                                 MachineBasicBlock *FBB,
412                                 const SmallVectorImpl<MachineOperand> &Cond,
413                                 DebugLoc DL) const {
414     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
415   }
416
417   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
418   /// after it, replacing it with an unconditional branch to NewDest. This is
419   /// used by the tail merging pass.
420   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
421                                        MachineBasicBlock *NewDest) const;
422
423   /// getUnconditionalBranch - Get an instruction that performs an unconditional
424   /// branch to the given symbol.
425   virtual void
426   getUnconditionalBranch(MCInst &MI,
427                          const MCSymbolRefExpr *BranchTarget) const {
428     llvm_unreachable("Target didn't implement "
429                      "TargetInstrInfo::getUnconditionalBranch!");
430   }
431
432   /// getTrap - Get a machine trap instruction
433   virtual void getTrap(MCInst &MI) const {
434     llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
435   }
436
437   /// getJumpInstrTableEntryBound - Get a number of bytes that suffices to hold
438   /// either the instruction returned by getUnconditionalBranch or the
439   /// instruction returned by getTrap. This only makes sense because
440   /// getUnconditionalBranch returns a single, specific instruction. This
441   /// information is needed by the jumptable construction code, since it must
442   /// decide how many bytes to use for a jumptable entry so it can generate the
443   /// right mask.
444   ///
445   /// Note that if the jumptable instruction requires alignment, then that
446   /// alignment should be factored into this required bound so that the
447   /// resulting bound gives the right alignment for the instruction.
448   virtual unsigned getJumpInstrTableEntryBound() const {
449     // This method gets called by LLVMTargetMachine always, so it can't fail
450     // just because there happens to be no implementation for this target.
451     // Any code that tries to use a jumptable annotation without defining
452     // getUnconditionalBranch on the appropriate Target will fail anyway, and
453     // the value returned here won't matter in that case.
454     return 0;
455   }
456
457   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
458   /// block at the specified instruction (i.e. instruction would be the start
459   /// of a new basic block).
460   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
461                                    MachineBasicBlock::iterator MBBI) const {
462     return true;
463   }
464
465   /// isProfitableToIfCvt - Return true if it's profitable to predicate
466   /// instructions with accumulated instruction latency of "NumCycles"
467   /// of the specified basic block, where the probability of the instructions
468   /// being executed is given by Probability, and Confidence is a measure
469   /// of our confidence that it will be properly predicted.
470   virtual
471   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
472                            unsigned ExtraPredCycles,
473                            const BranchProbability &Probability) const {
474     return false;
475   }
476
477   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
478   /// checks for the case where two basic blocks from true and false path
479   /// of a if-then-else (diamond) are predicated on mutally exclusive
480   /// predicates, where the probability of the true path being taken is given
481   /// by Probability, and Confidence is a measure of our confidence that it
482   /// will be properly predicted.
483   virtual bool
484   isProfitableToIfCvt(MachineBasicBlock &TMBB,
485                       unsigned NumTCycles, unsigned ExtraTCycles,
486                       MachineBasicBlock &FMBB,
487                       unsigned NumFCycles, unsigned ExtraFCycles,
488                       const BranchProbability &Probability) const {
489     return false;
490   }
491
492   /// isProfitableToDupForIfCvt - Return true if it's profitable for
493   /// if-converter to duplicate instructions of specified accumulated
494   /// instruction latencies in the specified MBB to enable if-conversion.
495   /// The probability of the instructions being executed is given by
496   /// Probability, and Confidence is a measure of our confidence that it
497   /// will be properly predicted.
498   virtual bool
499   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
500                             const BranchProbability &Probability) const {
501     return false;
502   }
503
504   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
505   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
506   /// exclusive predicates.
507   /// e.g.
508   ///   subeq  r0, r1, #1
509   ///   addne  r0, r1, #1
510   /// =>
511   ///   sub    r0, r1, #1
512   ///   addne  r0, r1, #1
513   ///
514   /// This may be profitable is conditional instructions are always executed.
515   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
516                                          MachineBasicBlock &FMBB) const {
517     return false;
518   }
519
520   /// canInsertSelect - Return true if it is possible to insert a select
521   /// instruction that chooses between TrueReg and FalseReg based on the
522   /// condition code in Cond.
523   ///
524   /// When successful, also return the latency in cycles from TrueReg,
525   /// FalseReg, and Cond to the destination register. In most cases, a select
526   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
527   ///
528   /// Some x86 implementations have 2-cycle cmov instructions.
529   ///
530   /// @param MBB         Block where select instruction would be inserted.
531   /// @param Cond        Condition returned by AnalyzeBranch.
532   /// @param TrueReg     Virtual register to select when Cond is true.
533   /// @param FalseReg    Virtual register to select when Cond is false.
534   /// @param CondCycles  Latency from Cond+Branch to select output.
535   /// @param TrueCycles  Latency from TrueReg to select output.
536   /// @param FalseCycles Latency from FalseReg to select output.
537   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
538                                const SmallVectorImpl<MachineOperand> &Cond,
539                                unsigned TrueReg, unsigned FalseReg,
540                                int &CondCycles,
541                                int &TrueCycles, int &FalseCycles) const {
542     return false;
543   }
544
545   /// insertSelect - Insert a select instruction into MBB before I that will
546   /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
547   /// Cond is false.
548   ///
549   /// This function can only be called after canInsertSelect() returned true.
550   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
551   /// that the same flags or registers required by Cond are available at the
552   /// insertion point.
553   ///
554   /// @param MBB      Block where select instruction should be inserted.
555   /// @param I        Insertion point.
556   /// @param DL       Source location for debugging.
557   /// @param DstReg   Virtual register to be defined by select instruction.
558   /// @param Cond     Condition as computed by AnalyzeBranch.
559   /// @param TrueReg  Virtual register to copy when Cond is true.
560   /// @param FalseReg Virtual register to copy when Cons is false.
561   virtual void insertSelect(MachineBasicBlock &MBB,
562                             MachineBasicBlock::iterator I, DebugLoc DL,
563                             unsigned DstReg,
564                             const SmallVectorImpl<MachineOperand> &Cond,
565                             unsigned TrueReg, unsigned FalseReg) const {
566     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
567   }
568
569   /// analyzeSelect - Analyze the given select instruction, returning true if
570   /// it cannot be understood. It is assumed that MI->isSelect() is true.
571   ///
572   /// When successful, return the controlling condition and the operands that
573   /// determine the true and false result values.
574   ///
575   ///   Result = SELECT Cond, TrueOp, FalseOp
576   ///
577   /// Some targets can optimize select instructions, for example by predicating
578   /// the instruction defining one of the operands. Such targets should set
579   /// Optimizable.
580   ///
581   /// @param         MI Select instruction to analyze.
582   /// @param Cond    Condition controlling the select.
583   /// @param TrueOp  Operand number of the value selected when Cond is true.
584   /// @param FalseOp Operand number of the value selected when Cond is false.
585   /// @param Optimizable Returned as true if MI is optimizable.
586   /// @returns False on success.
587   virtual bool analyzeSelect(const MachineInstr *MI,
588                              SmallVectorImpl<MachineOperand> &Cond,
589                              unsigned &TrueOp, unsigned &FalseOp,
590                              bool &Optimizable) const {
591     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
592     return true;
593   }
594
595   /// optimizeSelect - Given a select instruction that was understood by
596   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
597   /// merging it with one of its operands. Returns NULL on failure.
598   ///
599   /// When successful, returns the new select instruction. The client is
600   /// responsible for deleting MI.
601   ///
602   /// If both sides of the select can be optimized, PreferFalse is used to pick
603   /// a side.
604   ///
605   /// @param MI          Optimizable select instruction.
606   /// @param NewMIs     Set that record all MIs in the basic block up to \p
607   /// MI. Has to be updated with any newly created MI or deleted ones.
608   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
609   /// @returns Optimized instruction or NULL.
610   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
611                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
612                                        bool PreferFalse = false) const {
613     // This function must be implemented if Optimizable is ever set.
614     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
615   }
616
617   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
618   ///
619   /// This function should support copies within any legal register class as
620   /// well as any cross-class copies created during instruction selection.
621   ///
622   /// The source and destination registers may overlap, which may require a
623   /// careful implementation when multiple copy instructions are required for
624   /// large registers. See for example the ARM target.
625   virtual void copyPhysReg(MachineBasicBlock &MBB,
626                            MachineBasicBlock::iterator MI, DebugLoc DL,
627                            unsigned DestReg, unsigned SrcReg,
628                            bool KillSrc) const {
629     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
630   }
631
632   /// storeRegToStackSlot - Store the specified register of the given register
633   /// class to the specified stack frame index. The store instruction is to be
634   /// added to the given machine basic block before the specified machine
635   /// instruction. If isKill is true, the register operand is the last use and
636   /// must be marked kill.
637   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
638                                    MachineBasicBlock::iterator MI,
639                                    unsigned SrcReg, bool isKill, int FrameIndex,
640                                    const TargetRegisterClass *RC,
641                                    const TargetRegisterInfo *TRI) const {
642     llvm_unreachable("Target didn't implement "
643                      "TargetInstrInfo::storeRegToStackSlot!");
644   }
645
646   /// loadRegFromStackSlot - Load the specified register of the given register
647   /// class from the specified stack frame index. The load instruction is to be
648   /// added to the given machine basic block before the specified machine
649   /// instruction.
650   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
651                                     MachineBasicBlock::iterator MI,
652                                     unsigned DestReg, int FrameIndex,
653                                     const TargetRegisterClass *RC,
654                                     const TargetRegisterInfo *TRI) const {
655     llvm_unreachable("Target didn't implement "
656                      "TargetInstrInfo::loadRegFromStackSlot!");
657   }
658
659   /// expandPostRAPseudo - This function is called for all pseudo instructions
660   /// that remain after register allocation. Many pseudo instructions are
661   /// created to help register allocation. This is the place to convert them
662   /// into real instructions. The target can edit MI in place, or it can insert
663   /// new instructions and erase MI. The function should return true if
664   /// anything was changed.
665   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
666     return false;
667   }
668
669   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
670   /// slot into the specified machine instruction for the specified operand(s).
671   /// If this is possible, a new instruction is returned with the specified
672   /// operand folded, otherwise NULL is returned.
673   /// The new instruction is inserted before MI, and the client is responsible
674   /// for removing the old instruction.
675   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
676                                   const SmallVectorImpl<unsigned> &Ops,
677                                   int FrameIndex) const;
678
679   /// foldMemoryOperand - Same as the previous version except it allows folding
680   /// of any load and store from / to any address, not just from a specific
681   /// stack slot.
682   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
683                                   const SmallVectorImpl<unsigned> &Ops,
684                                   MachineInstr* LoadMI) const;
685
686   /// hasPattern - return true when there is potentially a faster code sequence
687   /// for an instruction chain ending in \p Root. All potential pattern are
688   /// returned in the \p Pattern vector. Pattern should be sorted in priority
689   /// order since the pattern evaluator stops checking as soon as it finds a
690   /// faster sequence.
691   /// \param Root - Instruction that could be combined with one of its operands
692   /// \param Pattern - Vector of possible combination pattern
693
694   virtual bool hasPattern(
695       MachineInstr &Root,
696       SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Pattern) const {
697     return false;
698   }
699
700   /// genAlternativeCodeSequence - when hasPattern() finds a pattern this
701   /// function generates the instructions that could replace the original code
702   /// sequence. The client has to decide whether the actual replacementment is
703   /// beneficial or not.
704   /// \param Root - Instruction that could be combined with one of its operands
705   /// \param P - Combination pattern for Root
706   /// \param InsInstrs - Vector of new instructions that implement P
707   /// \param DelInstrs - Old instructions, including Root, that could be replaced
708   /// by InsInstr
709   /// \param InstrIdxForVirtReg - map of virtual register to instruction in
710   /// InsInstr that defines it
711   virtual void genAlternativeCodeSequence(
712       MachineInstr &Root, MachineCombinerPattern::MC_PATTERN P,
713       SmallVectorImpl<MachineInstr *> &InsInstrs,
714       SmallVectorImpl<MachineInstr *> &DelInstrs,
715       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
716     return;
717   }
718
719   /// useMachineCombiner - return true when a target supports MachineCombiner
720   virtual bool useMachineCombiner() const { return false; }
721
722 protected:
723   /// foldMemoryOperandImpl - Target-dependent implementation for
724   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
725   /// take care of adding a MachineMemOperand to the newly created instruction.
726   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
727                                           MachineInstr* MI,
728                                           const SmallVectorImpl<unsigned> &Ops,
729                                           int FrameIndex) const {
730     return nullptr;
731   }
732
733   /// foldMemoryOperandImpl - Target-dependent implementation for
734   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
735   /// take care of adding a MachineMemOperand to the newly created instruction.
736   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
737                                               MachineInstr* MI,
738                                           const SmallVectorImpl<unsigned> &Ops,
739                                               MachineInstr* LoadMI) const {
740     return nullptr;
741   }
742
743   /// \brief Target-dependent implementation of getRegSequenceInputs.
744   ///
745   /// \returns true if it is possible to build the equivalent
746   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
747   ///
748   /// \pre MI.isRegSequenceLike().
749   ///
750   /// \see TargetInstrInfo::getRegSequenceInputs.
751   virtual bool getRegSequenceLikeInputs(
752       const MachineInstr &MI, unsigned DefIdx,
753       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
754     return false;
755   }
756
757   /// \brief Target-dependent implementation of getExtractSubregInputs.
758   ///
759   /// \returns true if it is possible to build the equivalent
760   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
761   ///
762   /// \pre MI.isExtractSubregLike().
763   ///
764   /// \see TargetInstrInfo::getExtractSubregInputs.
765   virtual bool getExtractSubregLikeInputs(
766       const MachineInstr &MI, unsigned DefIdx,
767       RegSubRegPairAndIdx &InputReg) const {
768     return false;
769   }
770
771   /// \brief Target-dependent implementation of getInsertSubregInputs.
772   ///
773   /// \returns true if it is possible to build the equivalent
774   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
775   ///
776   /// \pre MI.isInsertSubregLike().
777   ///
778   /// \see TargetInstrInfo::getInsertSubregInputs.
779   virtual bool
780   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
781                             RegSubRegPair &BaseReg,
782                             RegSubRegPairAndIdx &InsertedReg) const {
783     return false;
784   }
785
786 public:
787   /// canFoldMemoryOperand - Returns true for the specified load / store if
788   /// folding is possible.
789   virtual
790   bool canFoldMemoryOperand(const MachineInstr *MI,
791                             const SmallVectorImpl<unsigned> &Ops) const;
792
793   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
794   /// a store or a load and a store into two or more instruction. If this is
795   /// possible, returns true as well as the new instructions by reference.
796   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
797                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
798                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
799     return false;
800   }
801
802   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
803                                    SmallVectorImpl<SDNode*> &NewNodes) const {
804     return false;
805   }
806
807   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
808   /// instruction after load / store are unfolded from an instruction of the
809   /// specified opcode. It returns zero if the specified unfolding is not
810   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
811   /// index of the operand which will hold the register holding the loaded
812   /// value.
813   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
814                                       bool UnfoldLoad, bool UnfoldStore,
815                                       unsigned *LoadRegIndex = nullptr) const {
816     return 0;
817   }
818
819   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
820   /// to determine if two loads are loading from the same base address. It
821   /// should only return true if the base pointers are the same and the
822   /// only differences between the two addresses are the offset. It also returns
823   /// the offsets by reference.
824   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
825                                     int64_t &Offset1, int64_t &Offset2) const {
826     return false;
827   }
828
829   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
830   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
831   /// be scheduled togther. On some targets if two loads are loading from
832   /// addresses in the same cache line, it's better if they are scheduled
833   /// together. This function takes two integers that represent the load offsets
834   /// from the common base address. It returns true if it decides it's desirable
835   /// to schedule the two loads together. "NumLoads" is the number of loads that
836   /// have already been scheduled after Load1.
837   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
838                                        int64_t Offset1, int64_t Offset2,
839                                        unsigned NumLoads) const {
840     return false;
841   }
842
843   /// \brief Get the base register and byte offset of a load/store instr.
844   virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
845                                     unsigned &BaseReg, unsigned &Offset,
846                                     const TargetRegisterInfo *TRI) const {
847     return false;
848   }
849
850   virtual bool enableClusterLoads() const { return false; }
851
852   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
853                                   MachineInstr *SecondLdSt,
854                                   unsigned NumLoads) const {
855     return false;
856   }
857
858   /// \brief Can this target fuse the given instructions if they are scheduled
859   /// adjacent.
860   virtual bool shouldScheduleAdjacent(MachineInstr* First,
861                                       MachineInstr *Second) const {
862     return false;
863   }
864
865   /// ReverseBranchCondition - Reverses the branch condition of the specified
866   /// condition list, returning false on success and true if it cannot be
867   /// reversed.
868   virtual
869   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
870     return true;
871   }
872
873   /// insertNoop - Insert a noop into the instruction stream at the specified
874   /// point.
875   virtual void insertNoop(MachineBasicBlock &MBB,
876                           MachineBasicBlock::iterator MI) const;
877
878
879   /// Return the noop instruction to use for a noop.
880   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
881
882
883   /// isPredicated - Returns true if the instruction is already predicated.
884   ///
885   virtual bool isPredicated(const MachineInstr *MI) const {
886     return false;
887   }
888
889   /// isUnpredicatedTerminator - Returns true if the instruction is a
890   /// terminator instruction that has not been predicated.
891   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
892
893   /// PredicateInstruction - Convert the instruction into a predicated
894   /// instruction. It returns true if the operation was successful.
895   virtual
896   bool PredicateInstruction(MachineInstr *MI,
897                         const SmallVectorImpl<MachineOperand> &Pred) const;
898
899   /// SubsumesPredicate - Returns true if the first specified predicate
900   /// subsumes the second, e.g. GE subsumes GT.
901   virtual
902   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
903                          const SmallVectorImpl<MachineOperand> &Pred2) const {
904     return false;
905   }
906
907   /// DefinesPredicate - If the specified instruction defines any predicate
908   /// or condition code register(s) used for predication, returns true as well
909   /// as the definition predicate(s) by reference.
910   virtual bool DefinesPredicate(MachineInstr *MI,
911                                 std::vector<MachineOperand> &Pred) const {
912     return false;
913   }
914
915   /// isPredicable - Return true if the specified instruction can be predicated.
916   /// By default, this returns true for every instruction with a
917   /// PredicateOperand.
918   virtual bool isPredicable(MachineInstr *MI) const {
919     return MI->getDesc().isPredicable();
920   }
921
922   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
923   /// instruction that defines the specified register class.
924   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
925     return true;
926   }
927
928   /// isSchedulingBoundary - Test if the given instruction should be
929   /// considered a scheduling boundary. This primarily includes labels and
930   /// terminators.
931   virtual bool isSchedulingBoundary(const MachineInstr *MI,
932                                     const MachineBasicBlock *MBB,
933                                     const MachineFunction &MF) const;
934
935   /// Measure the specified inline asm to determine an approximation of its
936   /// length.
937   virtual unsigned getInlineAsmLength(const char *Str,
938                                       const MCAsmInfo &MAI) const;
939
940   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
941   /// use for this target when scheduling the machine instructions before
942   /// register allocation.
943   virtual ScheduleHazardRecognizer*
944   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
945                                const ScheduleDAG *DAG) const;
946
947   /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
948   /// to use for this target when scheduling the machine instructions before
949   /// register allocation.
950   virtual ScheduleHazardRecognizer*
951   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
952                                  const ScheduleDAG *DAG) const;
953
954   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
955   /// recognizer to use for this target when scheduling the machine instructions
956   /// after register allocation.
957   virtual ScheduleHazardRecognizer*
958   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
959                                      const ScheduleDAG *DAG) const;
960
961   /// Provide a global flag for disabling the PreRA hazard recognizer that
962   /// targets may choose to honor.
963   bool usePreRAHazardRecognizer() const;
964
965   /// analyzeCompare - For a comparison instruction, return the source registers
966   /// in SrcReg and SrcReg2 if having two register operands, and the value it
967   /// compares against in CmpValue. Return true if the comparison instruction
968   /// can be analyzed.
969   virtual bool analyzeCompare(const MachineInstr *MI,
970                               unsigned &SrcReg, unsigned &SrcReg2,
971                               int &Mask, int &Value) const {
972     return false;
973   }
974
975   /// optimizeCompareInstr - See if the comparison instruction can be converted
976   /// into something more efficient. E.g., on ARM most instructions can set the
977   /// flags register, obviating the need for a separate CMP.
978   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
979                                     unsigned SrcReg, unsigned SrcReg2,
980                                     int Mask, int Value,
981                                     const MachineRegisterInfo *MRI) const {
982     return false;
983   }
984   virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }
985
986   /// optimizeLoadInstr - Try to remove the load by folding it to a register
987   /// operand at the use. We fold the load instructions if and only if the
988   /// def and use are in the same BB. We only look at one load and see
989   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
990   /// defined by the load we are trying to fold. DefMI returns the machine
991   /// instruction that defines FoldAsLoadDefReg, and the function returns
992   /// the machine instruction generated due to folding.
993   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
994                         const MachineRegisterInfo *MRI,
995                         unsigned &FoldAsLoadDefReg,
996                         MachineInstr *&DefMI) const {
997     return nullptr;
998   }
999
1000   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
1001   /// instruction, try to fold the immediate into the use instruction.
1002   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1003   /// then the caller may assume that DefMI has been erased from its parent
1004   /// block. The caller may assume that it will not be erased by this
1005   /// function otherwise.
1006   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1007                              unsigned Reg, MachineRegisterInfo *MRI) const {
1008     return false;
1009   }
1010
1011   /// getNumMicroOps - Return the number of u-operations the given machine
1012   /// instruction will be decoded to on the target cpu. The itinerary's
1013   /// IssueWidth is the number of microops that can be dispatched each
1014   /// cycle. An instruction with zero microops takes no dispatch resources.
1015   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1016                                   const MachineInstr *MI) const;
1017
1018   /// isZeroCost - Return true for pseudo instructions that don't consume any
1019   /// machine resources in their current form. These are common cases that the
1020   /// scheduler should consider free, rather than conservatively handling them
1021   /// as instructions with no itinerary.
1022   bool isZeroCost(unsigned Opcode) const {
1023     return Opcode <= TargetOpcode::COPY;
1024   }
1025
1026   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1027                                 SDNode *DefNode, unsigned DefIdx,
1028                                 SDNode *UseNode, unsigned UseIdx) const;
1029
1030   /// getOperandLatency - Compute and return the use operand latency of a given
1031   /// pair of def and use.
1032   /// In most cases, the static scheduling itinerary was enough to determine the
1033   /// operand latency. But it may not be possible for instructions with variable
1034   /// number of defs / uses.
1035   ///
1036   /// This is a raw interface to the itinerary that may be directly overriden by
1037   /// a target. Use computeOperandLatency to get the best estimate of latency.
1038   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1039                                 const MachineInstr *DefMI, unsigned DefIdx,
1040                                 const MachineInstr *UseMI,
1041                                 unsigned UseIdx) const;
1042
1043   /// computeOperandLatency - Compute and return the latency of the given data
1044   /// dependent def and use when the operand indices are already known.
1045   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
1046                                  const MachineInstr *DefMI, unsigned DefIdx,
1047                                  const MachineInstr *UseMI, unsigned UseIdx)
1048     const;
1049
1050   /// getInstrLatency - Compute the instruction latency of a given instruction.
1051   /// If the instruction has higher cost when predicated, it's returned via
1052   /// PredCost.
1053   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1054                                    const MachineInstr *MI,
1055                                    unsigned *PredCost = nullptr) const;
1056
1057   virtual unsigned getPredicationCost(const MachineInstr *MI) const;
1058
1059   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1060                               SDNode *Node) const;
1061
1062   /// Return the default expected latency for a def based on it's opcode.
1063   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1064                              const MachineInstr *DefMI) const;
1065
1066   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1067                                const MachineInstr *DefMI) const;
1068
1069   /// isHighLatencyDef - Return true if this opcode has high latency to its
1070   /// result.
1071   virtual bool isHighLatencyDef(int opc) const { return false; }
1072
1073   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
1074   /// and an use in the current loop, return true if the target considered
1075   /// it 'high'. This is used by optimization passes such as machine LICM to
1076   /// determine whether it makes sense to hoist an instruction out even in
1077   /// high register pressure situation.
1078   virtual
1079   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
1080                              const MachineRegisterInfo *MRI,
1081                              const MachineInstr *DefMI, unsigned DefIdx,
1082                              const MachineInstr *UseMI, unsigned UseIdx) const {
1083     return false;
1084   }
1085
1086   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
1087   /// if the target considered it 'low'.
1088   virtual
1089   bool hasLowDefLatency(const InstrItineraryData *ItinData,
1090                         const MachineInstr *DefMI, unsigned DefIdx) const;
1091
1092   /// verifyInstruction - Perform target specific instruction verification.
1093   virtual
1094   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
1095     return true;
1096   }
1097
1098   /// getExecutionDomain - Return the current execution domain and bit mask of
1099   /// possible domains for instruction.
1100   ///
1101   /// Some micro-architectures have multiple execution domains, and multiple
1102   /// opcodes that perform the same operation in different domains.  For
1103   /// example, the x86 architecture provides the por, orps, and orpd
1104   /// instructions that all do the same thing.  There is a latency penalty if a
1105   /// register is written in one domain and read in another.
1106   ///
1107   /// This function returns a pair (domain, mask) containing the execution
1108   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1109   /// function can be used to change the opcode to one of the domains in the
1110   /// bit mask.  Instructions whose execution domain can't be changed should
1111   /// return a 0 mask.
1112   ///
1113   /// The execution domain numbers don't have any special meaning except domain
1114   /// 0 is used for instructions that are not associated with any interesting
1115   /// execution domain.
1116   ///
1117   virtual std::pair<uint16_t, uint16_t>
1118   getExecutionDomain(const MachineInstr *MI) const {
1119     return std::make_pair(0, 0);
1120   }
1121
1122   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
1123   ///
1124   /// The bit (1 << Domain) must be set in the mask returned from
1125   /// getExecutionDomain(MI).
1126   ///
1127   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
1128
1129
1130   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
1131   /// before an instruction with an unwanted partial register update.
1132   ///
1133   /// Some instructions only write part of a register, and implicitly need to
1134   /// read the other parts of the register.  This may cause unwanted stalls
1135   /// preventing otherwise unrelated instructions from executing in parallel in
1136   /// an out-of-order CPU.
1137   ///
1138   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1139   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1140   /// the instruction needs to wait for the old value of the register to become
1141   /// available:
1142   ///
1143   ///   addps %xmm1, %xmm0
1144   ///   movaps %xmm0, (%rax)
1145   ///   cvtsi2ss %rbx, %xmm0
1146   ///
1147   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1148   /// instruction before it can issue, even though the high bits of %xmm0
1149   /// probably aren't needed.
1150   ///
1151   /// This hook returns the preferred clearance before MI, measured in
1152   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1153   /// instructions before MI.  It should only return a positive value for
1154   /// unwanted dependencies.  If the old bits of the defined register have
1155   /// useful values, or if MI is determined to otherwise read the dependency,
1156   /// the hook should return 0.
1157   ///
1158   /// The unwanted dependency may be handled by:
1159   ///
1160   /// 1. Allocating the same register for an MI def and use.  That makes the
1161   ///    unwanted dependency identical to a required dependency.
1162   ///
1163   /// 2. Allocating a register for the def that has no defs in the previous N
1164   ///    instructions.
1165   ///
1166   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1167   ///    allows the target to insert a dependency breaking instruction.
1168   ///
1169   virtual unsigned
1170   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
1171                                const TargetRegisterInfo *TRI) const {
1172     // The default implementation returns 0 for no partial register dependency.
1173     return 0;
1174   }
1175
1176   /// \brief Return the minimum clearance before an instruction that reads an
1177   /// unused register.
1178   ///
1179   /// For example, AVX instructions may copy part of an register operand into
1180   /// the unused high bits of the destination register.
1181   ///
1182   /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1183   ///
1184   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1185   /// false dependence on any previous write to %xmm0.
1186   ///
1187   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1188   /// does not take an operand index. Instead sets \p OpNum to the index of the
1189   /// unused register.
1190   virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
1191                                         const TargetRegisterInfo *TRI) const {
1192     // The default implementation returns 0 for no undef register dependency.
1193     return 0;
1194   }
1195
1196   /// breakPartialRegDependency - Insert a dependency-breaking instruction
1197   /// before MI to eliminate an unwanted dependency on OpNum.
1198   ///
1199   /// If it wasn't possible to avoid a def in the last N instructions before MI
1200   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1201   /// unwanted dependency.
1202   ///
1203   /// On x86, an xorps instruction can be used as a dependency breaker:
1204   ///
1205   ///   addps %xmm1, %xmm0
1206   ///   movaps %xmm0, (%rax)
1207   ///   xorps %xmm0, %xmm0
1208   ///   cvtsi2ss %rbx, %xmm0
1209   ///
1210   /// An <imp-kill> operand should be added to MI if an instruction was
1211   /// inserted.  This ties the instructions together in the post-ra scheduler.
1212   ///
1213   virtual void
1214   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
1215                             const TargetRegisterInfo *TRI) const {}
1216
1217   /// Create machine specific model for scheduling.
1218   virtual DFAPacketizer *
1219   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1220     return nullptr;
1221   }
1222
1223   // areMemAccessesTriviallyDisjoint - Sometimes, it is possible for the target
1224   // to tell, even without aliasing information, that two MIs access different
1225   // memory addresses. This function returns true if two MIs access different
1226   // memory addresses, and false otherwise.
1227   virtual bool
1228   areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
1229                                   AliasAnalysis *AA = nullptr) const {
1230     assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
1231            "MIa must load from or modify a memory location");
1232     assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
1233            "MIb must load from or modify a memory location");
1234     return false;
1235   }
1236
1237 private:
1238   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
1239 };
1240
1241 } // End llvm namespace
1242
1243 #endif