Introduce llvm::sys::path::home_directory.
[oota-llvm.git] / include / llvm / Support / PatternMatch.h
1 //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR.  The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand.  The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables.  For example,
15 // you can do something like this:
16 //
17 //  Value *Exp = ...
18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 //    ... Pattern is matched and variables are bound ...
22 //  }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #ifndef LLVM_SUPPORT_PATTERNMATCH_H
30 #define LLVM_SUPPORT_PATTERNMATCH_H
31
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/Support/CallSite.h"
37
38 namespace llvm {
39 namespace PatternMatch {
40
41 template<typename Val, typename Pattern>
42 bool match(Val *V, const Pattern &P) {
43   return const_cast<Pattern&>(P).match(V);
44 }
45
46
47 template<typename SubPattern_t>
48 struct OneUse_match {
49   SubPattern_t SubPattern;
50
51   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
52
53   template<typename OpTy>
54   bool match(OpTy *V) {
55     return V->hasOneUse() && SubPattern.match(V);
56   }
57 };
58
59 template<typename T>
60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
61
62
63 template<typename Class>
64 struct class_match {
65   template<typename ITy>
66   bool match(ITy *V) { return isa<Class>(V); }
67 };
68
69 /// m_Value() - Match an arbitrary value and ignore it.
70 inline class_match<Value> m_Value() { return class_match<Value>(); }
71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
72 inline class_match<ConstantInt> m_ConstantInt() {
73   return class_match<ConstantInt>();
74 }
75 /// m_Undef() - Match an arbitrary undef constant.
76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
77
78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
79
80 /// Matching combinators
81 template<typename LTy, typename RTy>
82 struct match_combine_or {
83   LTy L;
84   RTy R;
85
86   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
87
88   template<typename ITy>
89   bool match(ITy *V) {
90     if (L.match(V))
91       return true;
92     if (R.match(V))
93       return true;
94     return false;
95   }
96 };
97
98 template<typename LTy, typename RTy>
99 struct match_combine_and {
100   LTy L;
101   RTy R;
102
103   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
104
105   template<typename ITy>
106   bool match(ITy *V) {
107     if (L.match(V))
108       if (R.match(V))
109         return true;
110     return false;
111   }
112 };
113
114 /// Combine two pattern matchers matching L || R
115 template<typename LTy, typename RTy>
116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
117   return match_combine_or<LTy, RTy>(L, R);
118 }
119
120 /// Combine two pattern matchers matching L && R
121 template<typename LTy, typename RTy>
122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
123   return match_combine_and<LTy, RTy>(L, R);
124 }
125
126 struct match_zero {
127   template<typename ITy>
128   bool match(ITy *V) {
129     if (const Constant *C = dyn_cast<Constant>(V))
130       return C->isNullValue();
131     return false;
132   }
133 };
134
135 /// m_Zero() - Match an arbitrary zero/null constant.  This includes
136 /// zero_initializer for vectors and ConstantPointerNull for pointers.
137 inline match_zero m_Zero() { return match_zero(); }
138
139 struct match_neg_zero {
140   template<typename ITy>
141   bool match(ITy *V) {
142     if (const Constant *C = dyn_cast<Constant>(V))
143       return C->isNegativeZeroValue();
144     return false;
145   }
146 };
147
148 /// m_NegZero() - Match an arbitrary zero/null constant.  This includes
149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
150 /// floating point constants, this will match negative zero but not positive
151 /// zero
152 inline match_neg_zero m_NegZero() { return match_neg_zero(); }
153
154 /// m_AnyZero() - Match an arbitrary zero/null constant.  This includes
155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
156 /// floating point constants, this will match negative zero and positive zero
157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
158   return m_CombineOr(m_Zero(), m_NegZero());
159 }
160
161 struct apint_match {
162   const APInt *&Res;
163   apint_match(const APInt *&R) : Res(R) {}
164   template<typename ITy>
165   bool match(ITy *V) {
166     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
167       Res = &CI->getValue();
168       return true;
169     }
170     if (V->getType()->isVectorTy())
171       if (const Constant *C = dyn_cast<Constant>(V))
172         if (ConstantInt *CI =
173             dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
174           Res = &CI->getValue();
175           return true;
176         }
177     return false;
178   }
179 };
180
181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
182 /// specified pointer to the contained APInt.
183 inline apint_match m_APInt(const APInt *&Res) { return Res; }
184
185
186 template<int64_t Val>
187 struct constantint_match {
188   template<typename ITy>
189   bool match(ITy *V) {
190     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
191       const APInt &CIV = CI->getValue();
192       if (Val >= 0)
193         return CIV == static_cast<uint64_t>(Val);
194       // If Val is negative, and CI is shorter than it, truncate to the right
195       // number of bits.  If it is larger, then we have to sign extend.  Just
196       // compare their negated values.
197       return -CIV == -Val;
198     }
199     return false;
200   }
201 };
202
203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
204 template<int64_t Val>
205 inline constantint_match<Val> m_ConstantInt() {
206   return constantint_match<Val>();
207 }
208
209 /// cst_pred_ty - This helper class is used to match scalar and vector constants
210 /// that satisfy a specified predicate.
211 template<typename Predicate>
212 struct cst_pred_ty : public Predicate {
213   template<typename ITy>
214   bool match(ITy *V) {
215     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
216       return this->isValue(CI->getValue());
217     if (V->getType()->isVectorTy())
218       if (const Constant *C = dyn_cast<Constant>(V))
219         if (const ConstantInt *CI =
220             dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
221           return this->isValue(CI->getValue());
222     return false;
223   }
224 };
225
226 /// api_pred_ty - This helper class is used to match scalar and vector constants
227 /// that satisfy a specified predicate, and bind them to an APInt.
228 template<typename Predicate>
229 struct api_pred_ty : public Predicate {
230   const APInt *&Res;
231   api_pred_ty(const APInt *&R) : Res(R) {}
232   template<typename ITy>
233   bool match(ITy *V) {
234     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
235       if (this->isValue(CI->getValue())) {
236         Res = &CI->getValue();
237         return true;
238       }
239     if (V->getType()->isVectorTy())
240       if (const Constant *C = dyn_cast<Constant>(V))
241         if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
242           if (this->isValue(CI->getValue())) {
243             Res = &CI->getValue();
244             return true;
245           }
246
247     return false;
248   }
249 };
250
251
252 struct is_one {
253   bool isValue(const APInt &C) { return C == 1; }
254 };
255
256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
259
260 struct is_all_ones {
261   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
262 };
263
264 /// m_AllOnes() - Match an integer or vector with all bits set to true.
265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
267
268 struct is_sign_bit {
269   bool isValue(const APInt &C) { return C.isSignBit(); }
270 };
271
272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
275
276 struct is_power2 {
277   bool isValue(const APInt &C) { return C.isPowerOf2(); }
278 };
279
280 /// m_Power2() - Match an integer or vector power of 2.
281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
283
284 template<typename Class>
285 struct bind_ty {
286   Class *&VR;
287   bind_ty(Class *&V) : VR(V) {}
288
289   template<typename ITy>
290   bool match(ITy *V) {
291     if (Class *CV = dyn_cast<Class>(V)) {
292       VR = CV;
293       return true;
294     }
295     return false;
296   }
297 };
298
299 /// m_Value - Match a value, capturing it if we match.
300 inline bind_ty<Value> m_Value(Value *&V) { return V; }
301
302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
304
305 /// m_Constant - Match a Constant, capturing the value if we match.
306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
307
308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
310
311 /// specificval_ty - Match a specified Value*.
312 struct specificval_ty {
313   const Value *Val;
314   specificval_ty(const Value *V) : Val(V) {}
315
316   template<typename ITy>
317   bool match(ITy *V) {
318     return V == Val;
319   }
320 };
321
322 /// m_Specific - Match if we have a specific specified value.
323 inline specificval_ty m_Specific(const Value *V) { return V; }
324
325 /// Match a specified floating point value or vector of all elements of that
326 /// value.
327 struct specific_fpval {
328   double Val;
329   specific_fpval(double V) : Val(V) {}
330
331   template<typename ITy>
332   bool match(ITy *V) {
333     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
334       return CFP->isExactlyValue(Val);
335     if (V->getType()->isVectorTy())
336       if (const Constant *C = dyn_cast<Constant>(V))
337         if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
338           return CFP->isExactlyValue(Val);
339     return false;
340   }
341 };
342
343 /// Match a specific floating point value or vector with all elements equal to
344 /// the value.
345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
346
347 /// Match a float 1.0 or vector with all elements equal to 1.0.
348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
349
350 struct bind_const_intval_ty {
351   uint64_t &VR;
352   bind_const_intval_ty(uint64_t &V) : VR(V) {}
353
354   template<typename ITy>
355   bool match(ITy *V) {
356     if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
357       if (CV->getBitWidth() <= 64) {
358         VR = CV->getZExtValue();
359         return true;
360       }
361     return false;
362   }
363 };
364
365 /// m_ConstantInt - Match a ConstantInt and bind to its value.  This does not
366 /// match ConstantInts wider than 64-bits.
367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
368
369 //===----------------------------------------------------------------------===//
370 // Matchers for specific binary operators.
371 //
372
373 template<typename LHS_t, typename RHS_t, unsigned Opcode>
374 struct BinaryOp_match {
375   LHS_t L;
376   RHS_t R;
377
378   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
379
380   template<typename OpTy>
381   bool match(OpTy *V) {
382     if (V->getValueID() == Value::InstructionVal + Opcode) {
383       BinaryOperator *I = cast<BinaryOperator>(V);
384       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
385     }
386     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
387       return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
388              R.match(CE->getOperand(1));
389     return false;
390   }
391 };
392
393 template<typename LHS, typename RHS>
394 inline BinaryOp_match<LHS, RHS, Instruction::Add>
395 m_Add(const LHS &L, const RHS &R) {
396   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
397 }
398
399 template<typename LHS, typename RHS>
400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
401 m_FAdd(const LHS &L, const RHS &R) {
402   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
403 }
404
405 template<typename LHS, typename RHS>
406 inline BinaryOp_match<LHS, RHS, Instruction::Sub>
407 m_Sub(const LHS &L, const RHS &R) {
408   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
409 }
410
411 template<typename LHS, typename RHS>
412 inline BinaryOp_match<LHS, RHS, Instruction::FSub>
413 m_FSub(const LHS &L, const RHS &R) {
414   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
415 }
416
417 template<typename LHS, typename RHS>
418 inline BinaryOp_match<LHS, RHS, Instruction::Mul>
419 m_Mul(const LHS &L, const RHS &R) {
420   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
421 }
422
423 template<typename LHS, typename RHS>
424 inline BinaryOp_match<LHS, RHS, Instruction::FMul>
425 m_FMul(const LHS &L, const RHS &R) {
426   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
427 }
428
429 template<typename LHS, typename RHS>
430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
431 m_UDiv(const LHS &L, const RHS &R) {
432   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
433 }
434
435 template<typename LHS, typename RHS>
436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
437 m_SDiv(const LHS &L, const RHS &R) {
438   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
439 }
440
441 template<typename LHS, typename RHS>
442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
443 m_FDiv(const LHS &L, const RHS &R) {
444   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
445 }
446
447 template<typename LHS, typename RHS>
448 inline BinaryOp_match<LHS, RHS, Instruction::URem>
449 m_URem(const LHS &L, const RHS &R) {
450   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
451 }
452
453 template<typename LHS, typename RHS>
454 inline BinaryOp_match<LHS, RHS, Instruction::SRem>
455 m_SRem(const LHS &L, const RHS &R) {
456   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
457 }
458
459 template<typename LHS, typename RHS>
460 inline BinaryOp_match<LHS, RHS, Instruction::FRem>
461 m_FRem(const LHS &L, const RHS &R) {
462   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
463 }
464
465 template<typename LHS, typename RHS>
466 inline BinaryOp_match<LHS, RHS, Instruction::And>
467 m_And(const LHS &L, const RHS &R) {
468   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
469 }
470
471 template<typename LHS, typename RHS>
472 inline BinaryOp_match<LHS, RHS, Instruction::Or>
473 m_Or(const LHS &L, const RHS &R) {
474   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
475 }
476
477 template<typename LHS, typename RHS>
478 inline BinaryOp_match<LHS, RHS, Instruction::Xor>
479 m_Xor(const LHS &L, const RHS &R) {
480   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
481 }
482
483 template<typename LHS, typename RHS>
484 inline BinaryOp_match<LHS, RHS, Instruction::Shl>
485 m_Shl(const LHS &L, const RHS &R) {
486   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
487 }
488
489 template<typename LHS, typename RHS>
490 inline BinaryOp_match<LHS, RHS, Instruction::LShr>
491 m_LShr(const LHS &L, const RHS &R) {
492   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
493 }
494
495 template<typename LHS, typename RHS>
496 inline BinaryOp_match<LHS, RHS, Instruction::AShr>
497 m_AShr(const LHS &L, const RHS &R) {
498   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
499 }
500
501 template<typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0>
502 struct OverflowingBinaryOp_match {
503   LHS_t L;
504   RHS_t R;
505
506   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
507
508   template<typename OpTy>
509   bool match(OpTy *V) {
510     if (OverflowingBinaryOperator *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
511       if (Op->getOpcode() != Opcode)
512         return false;
513       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
514           !Op->hasNoUnsignedWrap())
515         return false;
516       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
517           !Op->hasNoSignedWrap())
518         return false;
519       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
520     }
521     return false;
522   }
523 };
524
525 template <typename LHS, typename RHS>
526 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
527                                  OverflowingBinaryOperator::NoSignedWrap>
528 m_NSWAdd(const LHS &L, const RHS &R) {
529   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
530                                    OverflowingBinaryOperator::NoSignedWrap>(
531       L, R);
532 }
533 template <typename LHS, typename RHS>
534 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
535                                  OverflowingBinaryOperator::NoSignedWrap>
536 m_NSWSub(const LHS &L, const RHS &R) {
537   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
538                                    OverflowingBinaryOperator::NoSignedWrap>(
539       L, R);
540 }
541 template <typename LHS, typename RHS>
542 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
543                                  OverflowingBinaryOperator::NoSignedWrap>
544 m_NSWMul(const LHS &L, const RHS &R) {
545   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
546                                    OverflowingBinaryOperator::NoSignedWrap>(
547       L, R);
548 }
549 template <typename LHS, typename RHS>
550 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
551                                  OverflowingBinaryOperator::NoSignedWrap>
552 m_NSWShl(const LHS &L, const RHS &R) {
553   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
554                                    OverflowingBinaryOperator::NoSignedWrap>(
555       L, R);
556 }
557
558 template <typename LHS, typename RHS>
559 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
560                                  OverflowingBinaryOperator::NoUnsignedWrap>
561 m_NUWAdd(const LHS &L, const RHS &R) {
562   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
563                                    OverflowingBinaryOperator::NoUnsignedWrap>(
564       L, R);
565 }
566 template <typename LHS, typename RHS>
567 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
568                                  OverflowingBinaryOperator::NoUnsignedWrap>
569 m_NUWSub(const LHS &L, const RHS &R) {
570   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
571                                    OverflowingBinaryOperator::NoUnsignedWrap>(
572       L, R);
573 }
574 template <typename LHS, typename RHS>
575 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
576                                  OverflowingBinaryOperator::NoUnsignedWrap>
577 m_NUWMul(const LHS &L, const RHS &R) {
578   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
579                                    OverflowingBinaryOperator::NoUnsignedWrap>(
580       L, R);
581 }
582 template <typename LHS, typename RHS>
583 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
584                                  OverflowingBinaryOperator::NoUnsignedWrap>
585 m_NUWShl(const LHS &L, const RHS &R) {
586   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
587                                    OverflowingBinaryOperator::NoUnsignedWrap>(
588       L, R);
589 }
590
591 //===----------------------------------------------------------------------===//
592 // Class that matches two different binary ops.
593 //
594 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
595 struct BinOp2_match {
596   LHS_t L;
597   RHS_t R;
598
599   BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
600
601   template<typename OpTy>
602   bool match(OpTy *V) {
603     if (V->getValueID() == Value::InstructionVal + Opc1 ||
604         V->getValueID() == Value::InstructionVal + Opc2) {
605       BinaryOperator *I = cast<BinaryOperator>(V);
606       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
607     }
608     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
609       return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
610              L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
611     return false;
612   }
613 };
614
615 /// m_Shr - Matches LShr or AShr.
616 template<typename LHS, typename RHS>
617 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
618 m_Shr(const LHS &L, const RHS &R) {
619   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
620 }
621
622 /// m_LogicalShift - Matches LShr or Shl.
623 template<typename LHS, typename RHS>
624 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
625 m_LogicalShift(const LHS &L, const RHS &R) {
626   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
627 }
628
629 /// m_IDiv - Matches UDiv and SDiv.
630 template<typename LHS, typename RHS>
631 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
632 m_IDiv(const LHS &L, const RHS &R) {
633   return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
634 }
635
636 //===----------------------------------------------------------------------===//
637 // Class that matches exact binary ops.
638 //
639 template<typename SubPattern_t>
640 struct Exact_match {
641   SubPattern_t SubPattern;
642
643   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
644
645   template<typename OpTy>
646   bool match(OpTy *V) {
647     if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
648       return PEO->isExact() && SubPattern.match(V);
649     return false;
650   }
651 };
652
653 template<typename T>
654 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
655
656 //===----------------------------------------------------------------------===//
657 // Matchers for CmpInst classes
658 //
659
660 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
661 struct CmpClass_match {
662   PredicateTy &Predicate;
663   LHS_t L;
664   RHS_t R;
665
666   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
667     : Predicate(Pred), L(LHS), R(RHS) {}
668
669   template<typename OpTy>
670   bool match(OpTy *V) {
671     if (Class *I = dyn_cast<Class>(V))
672       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
673         Predicate = I->getPredicate();
674         return true;
675       }
676     return false;
677   }
678 };
679
680 template<typename LHS, typename RHS>
681 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
682 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
683   return CmpClass_match<LHS, RHS,
684                         ICmpInst, ICmpInst::Predicate>(Pred, L, R);
685 }
686
687 template<typename LHS, typename RHS>
688 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
689 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
690   return CmpClass_match<LHS, RHS,
691                         FCmpInst, FCmpInst::Predicate>(Pred, L, R);
692 }
693
694 //===----------------------------------------------------------------------===//
695 // Matchers for SelectInst classes
696 //
697
698 template<typename Cond_t, typename LHS_t, typename RHS_t>
699 struct SelectClass_match {
700   Cond_t C;
701   LHS_t L;
702   RHS_t R;
703
704   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
705                     const RHS_t &RHS)
706     : C(Cond), L(LHS), R(RHS) {}
707
708   template<typename OpTy>
709   bool match(OpTy *V) {
710     if (SelectInst *I = dyn_cast<SelectInst>(V))
711       return C.match(I->getOperand(0)) &&
712              L.match(I->getOperand(1)) &&
713              R.match(I->getOperand(2));
714     return false;
715   }
716 };
717
718 template<typename Cond, typename LHS, typename RHS>
719 inline SelectClass_match<Cond, LHS, RHS>
720 m_Select(const Cond &C, const LHS &L, const RHS &R) {
721   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
722 }
723
724 /// m_SelectCst - This matches a select of two constants, e.g.:
725 ///    m_SelectCst<-1, 0>(m_Value(V))
726 template<int64_t L, int64_t R, typename Cond>
727 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
728 m_SelectCst(const Cond &C) {
729   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
730 }
731
732
733 //===----------------------------------------------------------------------===//
734 // Matchers for CastInst classes
735 //
736
737 template<typename Op_t, unsigned Opcode>
738 struct CastClass_match {
739   Op_t Op;
740
741   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
742
743   template<typename OpTy>
744   bool match(OpTy *V) {
745     if (Operator *O = dyn_cast<Operator>(V))
746       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
747     return false;
748   }
749 };
750
751 /// m_BitCast
752 template<typename OpTy>
753 inline CastClass_match<OpTy, Instruction::BitCast>
754 m_BitCast(const OpTy &Op) {
755   return CastClass_match<OpTy, Instruction::BitCast>(Op);
756 }
757
758 /// m_PtrToInt
759 template<typename OpTy>
760 inline CastClass_match<OpTy, Instruction::PtrToInt>
761 m_PtrToInt(const OpTy &Op) {
762   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
763 }
764
765 /// m_Trunc
766 template<typename OpTy>
767 inline CastClass_match<OpTy, Instruction::Trunc>
768 m_Trunc(const OpTy &Op) {
769   return CastClass_match<OpTy, Instruction::Trunc>(Op);
770 }
771
772 /// m_SExt
773 template<typename OpTy>
774 inline CastClass_match<OpTy, Instruction::SExt>
775 m_SExt(const OpTy &Op) {
776   return CastClass_match<OpTy, Instruction::SExt>(Op);
777 }
778
779 /// m_ZExt
780 template<typename OpTy>
781 inline CastClass_match<OpTy, Instruction::ZExt>
782 m_ZExt(const OpTy &Op) {
783   return CastClass_match<OpTy, Instruction::ZExt>(Op);
784 }
785
786 /// m_UIToFP
787 template<typename OpTy>
788 inline CastClass_match<OpTy, Instruction::UIToFP>
789 m_UIToFP(const OpTy &Op) {
790   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
791 }
792
793 /// m_SIToFP
794 template<typename OpTy>
795 inline CastClass_match<OpTy, Instruction::SIToFP>
796 m_SIToFP(const OpTy &Op) {
797   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
798 }
799
800 //===----------------------------------------------------------------------===//
801 // Matchers for unary operators
802 //
803
804 template<typename LHS_t>
805 struct not_match {
806   LHS_t L;
807
808   not_match(const LHS_t &LHS) : L(LHS) {}
809
810   template<typename OpTy>
811   bool match(OpTy *V) {
812     if (Operator *O = dyn_cast<Operator>(V))
813       if (O->getOpcode() == Instruction::Xor)
814         return matchIfNot(O->getOperand(0), O->getOperand(1));
815     return false;
816   }
817 private:
818   bool matchIfNot(Value *LHS, Value *RHS) {
819     return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
820             // FIXME: Remove CV.
821             isa<ConstantVector>(RHS)) &&
822            cast<Constant>(RHS)->isAllOnesValue() &&
823            L.match(LHS);
824   }
825 };
826
827 template<typename LHS>
828 inline not_match<LHS> m_Not(const LHS &L) { return L; }
829
830
831 template<typename LHS_t>
832 struct neg_match {
833   LHS_t L;
834
835   neg_match(const LHS_t &LHS) : L(LHS) {}
836
837   template<typename OpTy>
838   bool match(OpTy *V) {
839     if (Operator *O = dyn_cast<Operator>(V))
840       if (O->getOpcode() == Instruction::Sub)
841         return matchIfNeg(O->getOperand(0), O->getOperand(1));
842     return false;
843   }
844 private:
845   bool matchIfNeg(Value *LHS, Value *RHS) {
846     return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
847             isa<ConstantAggregateZero>(LHS)) &&
848            L.match(RHS);
849   }
850 };
851
852 /// m_Neg - Match an integer negate.
853 template<typename LHS>
854 inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
855
856
857 template<typename LHS_t>
858 struct fneg_match {
859   LHS_t L;
860
861   fneg_match(const LHS_t &LHS) : L(LHS) {}
862
863   template<typename OpTy>
864   bool match(OpTy *V) {
865     if (Operator *O = dyn_cast<Operator>(V))
866       if (O->getOpcode() == Instruction::FSub)
867         return matchIfFNeg(O->getOperand(0), O->getOperand(1));
868     return false;
869   }
870 private:
871   bool matchIfFNeg(Value *LHS, Value *RHS) {
872     if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
873       return C->isNegativeZeroValue() && L.match(RHS);
874     return false;
875   }
876 };
877
878 /// m_FNeg - Match a floating point negate.
879 template<typename LHS>
880 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
881
882
883 //===----------------------------------------------------------------------===//
884 // Matchers for control flow.
885 //
886
887 struct br_match {
888   BasicBlock *&Succ;
889   br_match(BasicBlock *&Succ)
890     : Succ(Succ) {
891   }
892
893   template<typename OpTy>
894   bool match(OpTy *V) {
895     if (BranchInst *BI = dyn_cast<BranchInst>(V))
896       if (BI->isUnconditional()) {
897         Succ = BI->getSuccessor(0);
898         return true;
899       }
900     return false;
901   }
902 };
903
904 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
905
906 template<typename Cond_t>
907 struct brc_match {
908   Cond_t Cond;
909   BasicBlock *&T, *&F;
910   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
911     : Cond(C), T(t), F(f) {
912   }
913
914   template<typename OpTy>
915   bool match(OpTy *V) {
916     if (BranchInst *BI = dyn_cast<BranchInst>(V))
917       if (BI->isConditional() && Cond.match(BI->getCondition())) {
918         T = BI->getSuccessor(0);
919         F = BI->getSuccessor(1);
920         return true;
921       }
922     return false;
923   }
924 };
925
926 template<typename Cond_t>
927 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
928   return brc_match<Cond_t>(C, T, F);
929 }
930
931
932 //===----------------------------------------------------------------------===//
933 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
934 //
935
936 template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
937 struct MaxMin_match {
938   LHS_t L;
939   RHS_t R;
940
941   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
942     : L(LHS), R(RHS) {}
943
944   template<typename OpTy>
945   bool match(OpTy *V) {
946     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
947     SelectInst *SI = dyn_cast<SelectInst>(V);
948     if (!SI)
949       return false;
950     CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
951     if (!Cmp)
952       return false;
953     // At this point we have a select conditioned on a comparison.  Check that
954     // it is the values returned by the select that are being compared.
955     Value *TrueVal = SI->getTrueValue();
956     Value *FalseVal = SI->getFalseValue();
957     Value *LHS = Cmp->getOperand(0);
958     Value *RHS = Cmp->getOperand(1);
959     if ((TrueVal != LHS || FalseVal != RHS) &&
960         (TrueVal != RHS || FalseVal != LHS))
961       return false;
962     typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
963       Cmp->getPredicate() : Cmp->getSwappedPredicate();
964     // Does "(x pred y) ? x : y" represent the desired max/min operation?
965     if (!Pred_t::match(Pred))
966       return false;
967     // It does!  Bind the operands.
968     return L.match(LHS) && R.match(RHS);
969   }
970 };
971
972 /// smax_pred_ty - Helper class for identifying signed max predicates.
973 struct smax_pred_ty {
974   static bool match(ICmpInst::Predicate Pred) {
975     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
976   }
977 };
978
979 /// smin_pred_ty - Helper class for identifying signed min predicates.
980 struct smin_pred_ty {
981   static bool match(ICmpInst::Predicate Pred) {
982     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
983   }
984 };
985
986 /// umax_pred_ty - Helper class for identifying unsigned max predicates.
987 struct umax_pred_ty {
988   static bool match(ICmpInst::Predicate Pred) {
989     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
990   }
991 };
992
993 /// umin_pred_ty - Helper class for identifying unsigned min predicates.
994 struct umin_pred_ty {
995   static bool match(ICmpInst::Predicate Pred) {
996     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
997   }
998 };
999
1000 /// ofmax_pred_ty - Helper class for identifying ordered max predicates.
1001 struct ofmax_pred_ty {
1002   static bool match(FCmpInst::Predicate Pred) {
1003     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1004   }
1005 };
1006
1007 /// ofmin_pred_ty - Helper class for identifying ordered min predicates.
1008 struct ofmin_pred_ty {
1009   static bool match(FCmpInst::Predicate Pred) {
1010     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1011   }
1012 };
1013
1014 /// ufmax_pred_ty - Helper class for identifying unordered max predicates.
1015 struct ufmax_pred_ty {
1016   static bool match(FCmpInst::Predicate Pred) {
1017     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1018   }
1019 };
1020
1021 /// ufmin_pred_ty - Helper class for identifying unordered min predicates.
1022 struct ufmin_pred_ty {
1023   static bool match(FCmpInst::Predicate Pred) {
1024     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1025   }
1026 };
1027
1028 template<typename LHS, typename RHS>
1029 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
1030 m_SMax(const LHS &L, const RHS &R) {
1031   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1032 }
1033
1034 template<typename LHS, typename RHS>
1035 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
1036 m_SMin(const LHS &L, const RHS &R) {
1037   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1038 }
1039
1040 template<typename LHS, typename RHS>
1041 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
1042 m_UMax(const LHS &L, const RHS &R) {
1043   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1044 }
1045
1046 template<typename LHS, typename RHS>
1047 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
1048 m_UMin(const LHS &L, const RHS &R) {
1049   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1050 }
1051
1052 /// \brief Match an 'ordered' floating point maximum function.
1053 /// Floating point has one special value 'NaN'. Therefore, there is no total
1054 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1055 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1056 /// semantics. In the presence of 'NaN' we have to preserve the original
1057 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1058 ///
1059 ///                         max(L, R)  iff L and R are not NaN
1060 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1061 template<typename LHS, typename RHS>
1062 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
1063 m_OrdFMax(const LHS &L, const RHS &R) {
1064   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1065 }
1066
1067 /// \brief Match an 'ordered' floating point minimum function.
1068 /// Floating point has one special value 'NaN'. Therefore, there is no total
1069 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1070 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1071 /// semantics. In the presence of 'NaN' we have to preserve the original
1072 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1073 ///
1074 ///                         max(L, R)  iff L and R are not NaN
1075 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1076 template<typename LHS, typename RHS>
1077 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
1078 m_OrdFMin(const LHS &L, const RHS &R) {
1079   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1080 }
1081
1082 /// \brief Match an 'unordered' floating point maximum function.
1083 /// Floating point has one special value 'NaN'. Therefore, there is no total
1084 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1085 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1086 /// semantics. In the presence of 'NaN' we have to preserve the original
1087 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1088 ///
1089 ///                         max(L, R)  iff L and R are not NaN
1090 ///  m_UnordFMin(L, R) =    L          iff L or R are NaN
1091 template<typename LHS, typename RHS>
1092 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1093 m_UnordFMax(const LHS &L, const RHS &R) {
1094   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1095 }
1096
1097 /// \brief Match an 'unordered' floating point minimum function.
1098 /// Floating point has one special value 'NaN'. Therefore, there is no total
1099 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1100 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1101 /// semantics. In the presence of 'NaN' we have to preserve the original
1102 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1103 ///
1104 ///                          max(L, R)  iff L and R are not NaN
1105 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1106 template<typename LHS, typename RHS>
1107 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1108 m_UnordFMin(const LHS &L, const RHS &R) {
1109   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1110 }
1111
1112 template<typename Opnd_t>
1113 struct Argument_match {
1114   unsigned OpI;
1115   Opnd_t Val;
1116   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
1117
1118   template<typename OpTy>
1119   bool match(OpTy *V) {
1120     CallSite CS(V);
1121     return CS.isCall() && Val.match(CS.getArgument(OpI));
1122   }
1123 };
1124
1125 /// Match an argument
1126 template<unsigned OpI, typename Opnd_t>
1127 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1128   return Argument_match<Opnd_t>(OpI, Op);
1129 }
1130
1131 /// Intrinsic matchers.
1132 struct IntrinsicID_match {
1133   unsigned ID;
1134   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) { }
1135
1136   template<typename OpTy>
1137   bool match(OpTy *V) {
1138     IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
1139     return II && II->getIntrinsicID() == ID;
1140   }
1141 };
1142
1143 /// Intrinsic matches are combinations of ID matchers, and argument
1144 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1145 /// them with lower arity matchers. Here's some convenient typedefs for up to
1146 /// several arguments, and more can be added as needed
1147 template <typename T0 = void, typename T1 = void, typename T2 = void,
1148           typename T3 = void, typename T4 = void, typename T5 = void,
1149           typename T6 = void, typename T7 = void, typename T8 = void,
1150           typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
1151 template <typename T0>
1152 struct m_Intrinsic_Ty<T0> {
1153   typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
1154 };
1155 template <typename T0, typename T1>
1156 struct m_Intrinsic_Ty<T0, T1> {
1157   typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
1158                             Argument_match<T1> > Ty;
1159 };
1160 template <typename T0, typename T1, typename T2>
1161 struct m_Intrinsic_Ty<T0, T1, T2> {
1162   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1163                             Argument_match<T2> > Ty;
1164 };
1165 template <typename T0, typename T1, typename T2, typename T3>
1166 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1167   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1168                             Argument_match<T3> > Ty;
1169 };
1170
1171 /// Match intrinsic calls like this:
1172 ///   m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1173 template <Intrinsic::ID IntrID>
1174 inline IntrinsicID_match
1175 m_Intrinsic() { return IntrinsicID_match(IntrID); }
1176
1177 template<Intrinsic::ID IntrID, typename T0>
1178 inline typename m_Intrinsic_Ty<T0>::Ty
1179 m_Intrinsic(const T0 &Op0) {
1180   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1181 }
1182
1183 template<Intrinsic::ID IntrID, typename T0, typename T1>
1184 inline typename m_Intrinsic_Ty<T0, T1>::Ty
1185 m_Intrinsic(const T0 &Op0, const T1 &Op1) {
1186   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1187 }
1188
1189 template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1190 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1191 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1192   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1193 }
1194
1195 template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3>
1196 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1197 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1198   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1199 }
1200
1201 // Helper intrinsic matching specializations
1202 template<typename Opnd0>
1203 inline typename m_Intrinsic_Ty<Opnd0>::Ty
1204 m_BSwap(const Opnd0 &Op0) {
1205   return m_Intrinsic<Intrinsic::bswap>(Op0);
1206 }
1207
1208 } // end namespace PatternMatch
1209 } // end namespace llvm
1210
1211 #endif