Introduce llvm::sys::path::home_directory.
[oota-llvm.git] / include / llvm / Support / CFG.h
1 //===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_SUPPORT_CFG_H
16 #define LLVM_SUPPORT_CFG_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/InstrTypes.h"
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 // BasicBlock pred_iterator definition
26 //===----------------------------------------------------------------------===//
27
28 template <class Ptr, class USE_iterator> // Predecessor Iterator
29 class PredIterator : public std::iterator<std::forward_iterator_tag,
30                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
31   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
32                                                                     Ptr*> super;
33   typedef PredIterator<Ptr, USE_iterator> Self;
34   USE_iterator It;
35
36   inline void advancePastNonTerminators() {
37     // Loop to ignore non-terminator uses (for example BlockAddresses).
38     while (!It.atEnd() && !isa<TerminatorInst>(*It))
39       ++It;
40   }
41
42 public:
43   typedef typename super::pointer pointer;
44   typedef typename super::reference reference;
45
46   PredIterator() {}
47   explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) {
48     advancePastNonTerminators();
49   }
50   inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
51
52   inline bool operator==(const Self& x) const { return It == x.It; }
53   inline bool operator!=(const Self& x) const { return !operator==(x); }
54
55   inline reference operator*() const {
56     assert(!It.atEnd() && "pred_iterator out of range!");
57     return cast<TerminatorInst>(*It)->getParent();
58   }
59   inline pointer *operator->() const { return &operator*(); }
60
61   inline Self& operator++() {   // Preincrement
62     assert(!It.atEnd() && "pred_iterator out of range!");
63     ++It; advancePastNonTerminators();
64     return *this;
65   }
66
67   inline Self operator++(int) { // Postincrement
68     Self tmp = *this; ++*this; return tmp;
69   }
70
71   /// getOperandNo - Return the operand number in the predecessor's
72   /// terminator of the successor.
73   unsigned getOperandNo() const {
74     return It.getOperandNo();
75   }
76
77   /// getUse - Return the operand Use in the predecessor's terminator
78   /// of the successor.
79   Use &getUse() const {
80     return It.getUse();
81   }
82 };
83
84 typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator;
85 typedef PredIterator<const BasicBlock,
86                      Value::const_use_iterator> const_pred_iterator;
87
88 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
89 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
90   return const_pred_iterator(BB);
91 }
92 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
93 inline const_pred_iterator pred_end(const BasicBlock *BB) {
94   return const_pred_iterator(BB, true);
95 }
96
97
98
99 //===----------------------------------------------------------------------===//
100 // BasicBlock succ_iterator definition
101 //===----------------------------------------------------------------------===//
102
103 template <class Term_, class BB_>           // Successor Iterator
104 class SuccIterator : public std::iterator<std::bidirectional_iterator_tag,
105                                           BB_, ptrdiff_t, BB_*, BB_*> {
106   const Term_ Term;
107   unsigned idx;
108   typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t, BB_*,
109                                                                     BB_*> super;
110   typedef SuccIterator<Term_, BB_> Self;
111
112   inline bool index_is_valid(int idx) {
113     return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
114   }
115
116 public:
117   typedef typename super::pointer pointer;
118   typedef typename super::reference reference;
119   // TODO: This can be random access iterator, only operator[] missing.
120
121   explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
122   }
123   inline SuccIterator(Term_ T, bool)                       // end iterator
124     : Term(T) {
125     if (Term)
126       idx = Term->getNumSuccessors();
127     else
128       // Term == NULL happens, if a basic block is not fully constructed and
129       // consequently getTerminator() returns NULL. In this case we construct a
130       // SuccIterator which describes a basic block that has zero successors.
131       // Defining SuccIterator for incomplete and malformed CFGs is especially
132       // useful for debugging.
133       idx = 0;
134   }
135
136   inline const Self &operator=(const Self &I) {
137     assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
138     idx = I.idx;
139     return *this;
140   }
141
142   /// getSuccessorIndex - This is used to interface between code that wants to
143   /// operate on terminator instructions directly.
144   unsigned getSuccessorIndex() const { return idx; }
145
146   inline bool operator==(const Self& x) const { return idx == x.idx; }
147   inline bool operator!=(const Self& x) const { return !operator==(x); }
148
149   inline reference operator*() const { return Term->getSuccessor(idx); }
150   inline pointer operator->() const { return operator*(); }
151
152   inline Self& operator++() { ++idx; return *this; } // Preincrement
153
154   inline Self operator++(int) { // Postincrement
155     Self tmp = *this; ++*this; return tmp;
156   }
157
158   inline Self& operator--() { --idx; return *this; }  // Predecrement
159   inline Self operator--(int) { // Postdecrement
160     Self tmp = *this; --*this; return tmp;
161   }
162
163   inline bool operator<(const Self& x) const {
164     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
165     return idx < x.idx;
166   }
167
168   inline bool operator<=(const Self& x) const {
169     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
170     return idx <= x.idx;
171   }
172   inline bool operator>=(const Self& x) const {
173     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
174     return idx >= x.idx;
175   }
176
177   inline bool operator>(const Self& x) const {
178     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
179     return idx > x.idx;
180   }
181
182   inline Self& operator+=(int Right) {
183     unsigned new_idx = idx + Right;
184     assert(index_is_valid(new_idx) && "Iterator index out of bound");
185     idx = new_idx;
186     return *this;
187   }
188
189   inline Self operator+(int Right) {
190     Self tmp = *this;
191     tmp += Right;
192     return tmp;
193   }
194
195   inline Self& operator-=(int Right) {
196     return operator+=(-Right);
197   }
198
199   inline Self operator-(int Right) {
200     return operator+(-Right);
201   }
202
203   inline int operator-(const Self& x) {
204     assert(Term == x.Term && "Cannot work on iterators of different blocks!");
205     int distance = idx - x.idx;
206     return distance;
207   }
208
209   // This works for read access, however write access is difficult as changes
210   // to Term are only possible with Term->setSuccessor(idx). Pointers that can
211   // be modified are not available.
212   //
213   // inline pointer operator[](int offset) {
214   //  Self tmp = *this;
215   //  tmp += offset;
216   //  return tmp.operator*();
217   // }
218
219   /// Get the source BB of this iterator.
220   inline BB_ *getSource() {
221     assert(Term && "Source not available, if basic block was malformed");
222     return Term->getParent();
223   }
224 };
225
226 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
227 typedef SuccIterator<const TerminatorInst*,
228                      const BasicBlock> succ_const_iterator;
229
230 inline succ_iterator succ_begin(BasicBlock *BB) {
231   return succ_iterator(BB->getTerminator());
232 }
233 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
234   return succ_const_iterator(BB->getTerminator());
235 }
236 inline succ_iterator succ_end(BasicBlock *BB) {
237   return succ_iterator(BB->getTerminator(), true);
238 }
239 inline succ_const_iterator succ_end(const BasicBlock *BB) {
240   return succ_const_iterator(BB->getTerminator(), true);
241 }
242
243 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
244   static const bool value = isPodLike<T>::value;
245 };
246
247
248
249 //===--------------------------------------------------------------------===//
250 // GraphTraits specializations for basic block graphs (CFGs)
251 //===--------------------------------------------------------------------===//
252
253 // Provide specializations of GraphTraits to be able to treat a function as a
254 // graph of basic blocks...
255
256 template <> struct GraphTraits<BasicBlock*> {
257   typedef BasicBlock NodeType;
258   typedef succ_iterator ChildIteratorType;
259
260   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
261   static inline ChildIteratorType child_begin(NodeType *N) {
262     return succ_begin(N);
263   }
264   static inline ChildIteratorType child_end(NodeType *N) {
265     return succ_end(N);
266   }
267 };
268
269 template <> struct GraphTraits<const BasicBlock*> {
270   typedef const BasicBlock NodeType;
271   typedef succ_const_iterator ChildIteratorType;
272
273   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
274
275   static inline ChildIteratorType child_begin(NodeType *N) {
276     return succ_begin(N);
277   }
278   static inline ChildIteratorType child_end(NodeType *N) {
279     return succ_end(N);
280   }
281 };
282
283 // Provide specializations of GraphTraits to be able to treat a function as a
284 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
285 // a function is considered to be when traversing the predecessor edges of a BB
286 // instead of the successor edges.
287 //
288 template <> struct GraphTraits<Inverse<BasicBlock*> > {
289   typedef BasicBlock NodeType;
290   typedef pred_iterator ChildIteratorType;
291   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
292   static inline ChildIteratorType child_begin(NodeType *N) {
293     return pred_begin(N);
294   }
295   static inline ChildIteratorType child_end(NodeType *N) {
296     return pred_end(N);
297   }
298 };
299
300 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
301   typedef const BasicBlock NodeType;
302   typedef const_pred_iterator ChildIteratorType;
303   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
304     return G.Graph;
305   }
306   static inline ChildIteratorType child_begin(NodeType *N) {
307     return pred_begin(N);
308   }
309   static inline ChildIteratorType child_end(NodeType *N) {
310     return pred_end(N);
311   }
312 };
313
314
315
316 //===--------------------------------------------------------------------===//
317 // GraphTraits specializations for function basic block graphs (CFGs)
318 //===--------------------------------------------------------------------===//
319
320 // Provide specializations of GraphTraits to be able to treat a function as a
321 // graph of basic blocks... these are the same as the basic block iterators,
322 // except that the root node is implicitly the first node of the function.
323 //
324 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
325   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
326
327   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
328   typedef Function::iterator nodes_iterator;
329   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
330   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
331   static size_t         size       (Function *F) { return F->size(); }
332 };
333 template <> struct GraphTraits<const Function*> :
334   public GraphTraits<const BasicBlock*> {
335   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
336
337   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
338   typedef Function::const_iterator nodes_iterator;
339   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
340   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
341   static size_t         size       (const Function *F) { return F->size(); }
342 };
343
344
345 // Provide specializations of GraphTraits to be able to treat a function as a
346 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
347 // a function is considered to be when traversing the predecessor edges of a BB
348 // instead of the successor edges.
349 //
350 template <> struct GraphTraits<Inverse<Function*> > :
351   public GraphTraits<Inverse<BasicBlock*> > {
352   static NodeType *getEntryNode(Inverse<Function*> G) {
353     return &G.Graph->getEntryBlock();
354   }
355 };
356 template <> struct GraphTraits<Inverse<const Function*> > :
357   public GraphTraits<Inverse<const BasicBlock*> > {
358   static NodeType *getEntryNode(Inverse<const Function *> G) {
359     return &G.Graph->getEntryBlock();
360   }
361 };
362
363 } // End llvm namespace
364
365 #endif