Use LLVM_DELETED_FUNCTION rather than '// do not implement' comments.
[oota-llvm.git] / include / llvm / IR / Operator.h
1 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various classes for working with Instructions and
11 // ConstantExprs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_OPERATOR_H
16 #define LLVM_IR_OPERATOR_H
17
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24
25 namespace llvm {
26
27 class GetElementPtrInst;
28 class BinaryOperator;
29 class ConstantExpr;
30
31 /// Operator - This is a utility class that provides an abstraction for the
32 /// common functionality between Instructions and ConstantExprs.
33 ///
34 class Operator : public User {
35 private:
36   // The Operator class is intended to be used as a utility, and is never itself
37   // instantiated.
38   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
39   void *operator new(size_t s) LLVM_DELETED_FUNCTION;
40   Operator() LLVM_DELETED_FUNCTION;
41
42 protected:
43   // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
44   // an overridden method that's not deleted in the base class. Cannot leave
45   // this unimplemented because that leads to an ODR-violation.
46   ~Operator();
47
48 public:
49   /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
50   ///
51   unsigned getOpcode() const {
52     if (const Instruction *I = dyn_cast<Instruction>(this))
53       return I->getOpcode();
54     return cast<ConstantExpr>(this)->getOpcode();
55   }
56
57   /// getOpcode - If V is an Instruction or ConstantExpr, return its
58   /// opcode. Otherwise return UserOp1.
59   ///
60   static unsigned getOpcode(const Value *V) {
61     if (const Instruction *I = dyn_cast<Instruction>(V))
62       return I->getOpcode();
63     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
64       return CE->getOpcode();
65     return Instruction::UserOp1;
66   }
67
68   static inline bool classof(const Instruction *) { return true; }
69   static inline bool classof(const ConstantExpr *) { return true; }
70   static inline bool classof(const Value *V) {
71     return isa<Instruction>(V) || isa<ConstantExpr>(V);
72   }
73 };
74
75 /// OverflowingBinaryOperator - Utility class for integer arithmetic operators
76 /// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
77 /// despite that operator having the potential for overflow.
78 ///
79 class OverflowingBinaryOperator : public Operator {
80 public:
81   enum {
82     NoUnsignedWrap = (1 << 0),
83     NoSignedWrap   = (1 << 1)
84   };
85
86 private:
87   friend class BinaryOperator;
88   friend class ConstantExpr;
89   void setHasNoUnsignedWrap(bool B) {
90     SubclassOptionalData =
91       (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
92   }
93   void setHasNoSignedWrap(bool B) {
94     SubclassOptionalData =
95       (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
96   }
97
98 public:
99   /// hasNoUnsignedWrap - Test whether this operation is known to never
100   /// undergo unsigned overflow, aka the nuw property.
101   bool hasNoUnsignedWrap() const {
102     return SubclassOptionalData & NoUnsignedWrap;
103   }
104
105   /// hasNoSignedWrap - Test whether this operation is known to never
106   /// undergo signed overflow, aka the nsw property.
107   bool hasNoSignedWrap() const {
108     return (SubclassOptionalData & NoSignedWrap) != 0;
109   }
110
111   static inline bool classof(const Instruction *I) {
112     return I->getOpcode() == Instruction::Add ||
113            I->getOpcode() == Instruction::Sub ||
114            I->getOpcode() == Instruction::Mul ||
115            I->getOpcode() == Instruction::Shl;
116   }
117   static inline bool classof(const ConstantExpr *CE) {
118     return CE->getOpcode() == Instruction::Add ||
119            CE->getOpcode() == Instruction::Sub ||
120            CE->getOpcode() == Instruction::Mul ||
121            CE->getOpcode() == Instruction::Shl;
122   }
123   static inline bool classof(const Value *V) {
124     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
125            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
126   }
127 };
128
129 /// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
130 /// "exact", indicating that no bits are destroyed.
131 class PossiblyExactOperator : public Operator {
132 public:
133   enum {
134     IsExact = (1 << 0)
135   };
136
137 private:
138   friend class BinaryOperator;
139   friend class ConstantExpr;
140   void setIsExact(bool B) {
141     SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
142   }
143
144 public:
145   /// isExact - Test whether this division is known to be exact, with
146   /// zero remainder.
147   bool isExact() const {
148     return SubclassOptionalData & IsExact;
149   }
150
151   static bool isPossiblyExactOpcode(unsigned OpC) {
152     return OpC == Instruction::SDiv ||
153            OpC == Instruction::UDiv ||
154            OpC == Instruction::AShr ||
155            OpC == Instruction::LShr;
156   }
157   static inline bool classof(const ConstantExpr *CE) {
158     return isPossiblyExactOpcode(CE->getOpcode());
159   }
160   static inline bool classof(const Instruction *I) {
161     return isPossiblyExactOpcode(I->getOpcode());
162   }
163   static inline bool classof(const Value *V) {
164     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
165            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
166   }
167 };
168
169 /// Convenience struct for specifying and reasoning about fast-math flags.
170 class FastMathFlags {
171 private:
172   friend class FPMathOperator;
173   unsigned Flags;
174   FastMathFlags(unsigned F) : Flags(F) { }
175
176 public:
177   enum {
178     UnsafeAlgebra   = (1 << 0),
179     NoNaNs          = (1 << 1),
180     NoInfs          = (1 << 2),
181     NoSignedZeros   = (1 << 3),
182     AllowReciprocal = (1 << 4)
183   };
184
185   FastMathFlags() : Flags(0)
186   { }
187
188   /// Whether any flag is set
189   bool any() { return Flags != 0; }
190
191   /// Set all the flags to false
192   void clear() { Flags = 0; }
193
194   /// Flag queries
195   bool noNaNs()          { return 0 != (Flags & NoNaNs); }
196   bool noInfs()          { return 0 != (Flags & NoInfs); }
197   bool noSignedZeros()   { return 0 != (Flags & NoSignedZeros); }
198   bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
199   bool unsafeAlgebra()   { return 0 != (Flags & UnsafeAlgebra); }
200
201   /// Flag setters
202   void setNoNaNs()          { Flags |= NoNaNs; }
203   void setNoInfs()          { Flags |= NoInfs; }
204   void setNoSignedZeros()   { Flags |= NoSignedZeros; }
205   void setAllowReciprocal() { Flags |= AllowReciprocal; }
206   void setUnsafeAlgebra() {
207     Flags |= UnsafeAlgebra;
208     setNoNaNs();
209     setNoInfs();
210     setNoSignedZeros();
211     setAllowReciprocal();
212   }
213 };
214
215
216 /// FPMathOperator - Utility class for floating point operations which can have
217 /// information about relaxed accuracy requirements attached to them.
218 class FPMathOperator : public Operator {
219 private:
220   friend class Instruction;
221
222   void setHasUnsafeAlgebra(bool B) {
223     SubclassOptionalData =
224       (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
225       (B * FastMathFlags::UnsafeAlgebra);
226
227     // Unsafe algebra implies all the others
228     if (B) {
229       setHasNoNaNs(true);
230       setHasNoInfs(true);
231       setHasNoSignedZeros(true);
232       setHasAllowReciprocal(true);
233     }
234   }
235   void setHasNoNaNs(bool B) {
236     SubclassOptionalData =
237       (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
238       (B * FastMathFlags::NoNaNs);
239   }
240   void setHasNoInfs(bool B) {
241     SubclassOptionalData =
242       (SubclassOptionalData & ~FastMathFlags::NoInfs) |
243       (B * FastMathFlags::NoInfs);
244   }
245   void setHasNoSignedZeros(bool B) {
246     SubclassOptionalData =
247       (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
248       (B * FastMathFlags::NoSignedZeros);
249   }
250   void setHasAllowReciprocal(bool B) {
251     SubclassOptionalData =
252       (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
253       (B * FastMathFlags::AllowReciprocal);
254   }
255
256   /// Convenience function for setting all the fast-math flags
257   void setFastMathFlags(FastMathFlags FMF) {
258     SubclassOptionalData |= FMF.Flags;
259   }
260
261 public:
262   /// Test whether this operation is permitted to be
263   /// algebraically transformed, aka the 'A' fast-math property.
264   bool hasUnsafeAlgebra() const {
265     return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
266   }
267
268   /// Test whether this operation's arguments and results are to be
269   /// treated as non-NaN, aka the 'N' fast-math property.
270   bool hasNoNaNs() const {
271     return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
272   }
273
274   /// Test whether this operation's arguments and results are to be
275   /// treated as NoN-Inf, aka the 'I' fast-math property.
276   bool hasNoInfs() const {
277     return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
278   }
279
280   /// Test whether this operation can treat the sign of zero
281   /// as insignificant, aka the 'S' fast-math property.
282   bool hasNoSignedZeros() const {
283     return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
284   }
285
286   /// Test whether this operation is permitted to use
287   /// reciprocal instead of division, aka the 'R' fast-math property.
288   bool hasAllowReciprocal() const {
289     return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
290   }
291
292   /// Convenience function for getting all the fast-math flags
293   FastMathFlags getFastMathFlags() const {
294     return FastMathFlags(SubclassOptionalData);
295   }
296
297   /// \brief Get the maximum error permitted by this operation in ULPs.  An
298   /// accuracy of 0.0 means that the operation should be performed with the
299   /// default precision.
300   float getFPAccuracy() const;
301
302   static inline bool classof(const Instruction *I) {
303     return I->getType()->isFPOrFPVectorTy();
304   }
305   static inline bool classof(const Value *V) {
306     return isa<Instruction>(V) && classof(cast<Instruction>(V));
307   }
308 };
309
310
311 /// ConcreteOperator - A helper template for defining operators for individual
312 /// opcodes.
313 template<typename SuperClass, unsigned Opc>
314 class ConcreteOperator : public SuperClass {
315 public:
316   static inline bool classof(const Instruction *I) {
317     return I->getOpcode() == Opc;
318   }
319   static inline bool classof(const ConstantExpr *CE) {
320     return CE->getOpcode() == Opc;
321   }
322   static inline bool classof(const Value *V) {
323     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
324            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
325   }
326 };
327
328 class AddOperator
329   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
330 };
331 class SubOperator
332   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
333 };
334 class MulOperator
335   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
336 };
337 class ShlOperator
338   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
339 };
340
341
342 class SDivOperator
343   : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
344 };
345 class UDivOperator
346   : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
347 };
348 class AShrOperator
349   : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
350 };
351 class LShrOperator
352   : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
353 };
354
355
356
357 class GEPOperator
358   : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
359   enum {
360     IsInBounds = (1 << 0)
361   };
362
363   friend class GetElementPtrInst;
364   friend class ConstantExpr;
365   void setIsInBounds(bool B) {
366     SubclassOptionalData =
367       (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
368   }
369
370 public:
371   /// isInBounds - Test whether this is an inbounds GEP, as defined
372   /// by LangRef.html.
373   bool isInBounds() const {
374     return SubclassOptionalData & IsInBounds;
375   }
376
377   inline op_iterator       idx_begin()       { return op_begin()+1; }
378   inline const_op_iterator idx_begin() const { return op_begin()+1; }
379   inline op_iterator       idx_end()         { return op_end(); }
380   inline const_op_iterator idx_end()   const { return op_end(); }
381
382   Value *getPointerOperand() {
383     return getOperand(0);
384   }
385   const Value *getPointerOperand() const {
386     return getOperand(0);
387   }
388   static unsigned getPointerOperandIndex() {
389     return 0U;                      // get index for modifying correct operand
390   }
391
392   /// getPointerOperandType - Method to return the pointer operand as a
393   /// PointerType.
394   Type *getPointerOperandType() const {
395     return getPointerOperand()->getType();
396   }
397
398   /// getPointerAddressSpace - Method to return the address space of the
399   /// pointer operand.
400   unsigned getPointerAddressSpace() const {
401     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
402   }
403
404   unsigned getNumIndices() const {  // Note: always non-negative
405     return getNumOperands() - 1;
406   }
407
408   bool hasIndices() const {
409     return getNumOperands() > 1;
410   }
411
412   /// hasAllZeroIndices - Return true if all of the indices of this GEP are
413   /// zeros.  If so, the result pointer and the first operand have the same
414   /// value, just potentially different types.
415   bool hasAllZeroIndices() const {
416     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
417       if (ConstantInt *C = dyn_cast<ConstantInt>(I))
418         if (C->isZero())
419           continue;
420       return false;
421     }
422     return true;
423   }
424
425   /// hasAllConstantIndices - Return true if all of the indices of this GEP are
426   /// constant integers.  If so, the result pointer and the first operand have
427   /// a constant offset between them.
428   bool hasAllConstantIndices() const {
429     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
430       if (!isa<ConstantInt>(I))
431         return false;
432     }
433     return true;
434   }
435
436   /// \brief Accumulate the constant address offset of this GEP if possible.
437   ///
438   /// This routine accepts an APInt into which it will accumulate the constant
439   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
440   /// all-constant, it returns false and the value of the offset APInt is
441   /// undefined (it is *not* preserved!). The APInt passed into this routine
442   /// must be at least as wide as the IntPtr type for the address space of
443   /// the base GEP pointer.
444   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
445     assert(Offset.getBitWidth() ==
446            DL.getPointerSizeInBits(getPointerAddressSpace()) &&
447            "The offset must have exactly as many bits as our pointer.");
448
449     for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
450          GTI != GTE; ++GTI) {
451       ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
452       if (!OpC)
453         return false;
454       if (OpC->isZero())
455         continue;
456
457       // Handle a struct index, which adds its field offset to the pointer.
458       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
459         unsigned ElementIdx = OpC->getZExtValue();
460         const StructLayout *SL = DL.getStructLayout(STy);
461         Offset += APInt(Offset.getBitWidth(),
462                         SL->getElementOffset(ElementIdx));
463         continue;
464       }
465
466       // For array or vector indices, scale the index by the size of the type.
467       APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
468       Offset += Index * APInt(Offset.getBitWidth(),
469                               DL.getTypeAllocSize(GTI.getIndexedType()));
470     }
471     return true;
472   }
473
474 };
475
476 } // End llvm namespace
477
478 #endif