Re-reapply "[IR] Move optional data in llvm::Function into a hungoff uselist"
[oota-llvm.git] / include / llvm / IR / CFG.h
1 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_CFG_H
16 #define LLVM_IR_CFG_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/InstrTypes.h"
22
23 namespace llvm {
24
25 //===----------------------------------------------------------------------===//
26 // BasicBlock pred_iterator definition
27 //===----------------------------------------------------------------------===//
28
29 template <class Ptr, class USE_iterator> // Predecessor Iterator
30 class PredIterator : public std::iterator<std::forward_iterator_tag,
31                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
32   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
33                                                                     Ptr*> super;
34   typedef PredIterator<Ptr, USE_iterator> Self;
35   USE_iterator It;
36
37   inline void advancePastNonTerminators() {
38     // Loop to ignore non-terminator uses (for example BlockAddresses).
39     while (!It.atEnd() && !isa<TerminatorInst>(*It))
40       ++It;
41   }
42
43 public:
44   typedef typename super::pointer pointer;
45   typedef typename super::reference reference;
46
47   PredIterator() {}
48   explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
49     advancePastNonTerminators();
50   }
51   inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
52
53   inline bool operator==(const Self& x) const { return It == x.It; }
54   inline bool operator!=(const Self& x) const { return !operator==(x); }
55
56   inline reference operator*() const {
57     assert(!It.atEnd() && "pred_iterator out of range!");
58     return cast<TerminatorInst>(*It)->getParent();
59   }
60   inline pointer *operator->() const { return &operator*(); }
61
62   inline Self& operator++() {   // Preincrement
63     assert(!It.atEnd() && "pred_iterator out of range!");
64     ++It; advancePastNonTerminators();
65     return *this;
66   }
67
68   inline Self operator++(int) { // Postincrement
69     Self tmp = *this; ++*this; return tmp;
70   }
71
72   /// getOperandNo - Return the operand number in the predecessor's
73   /// terminator of the successor.
74   unsigned getOperandNo() const {
75     return It.getOperandNo();
76   }
77
78   /// getUse - Return the operand Use in the predecessor's terminator
79   /// of the successor.
80   Use &getUse() const {
81     return It.getUse();
82   }
83 };
84
85 typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
86 typedef PredIterator<const BasicBlock,
87                      Value::const_user_iterator> const_pred_iterator;
88 typedef llvm::iterator_range<pred_iterator> pred_range;
89 typedef llvm::iterator_range<const_pred_iterator> pred_const_range;
90
91 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
92 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
93   return const_pred_iterator(BB);
94 }
95 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
96 inline const_pred_iterator pred_end(const BasicBlock *BB) {
97   return const_pred_iterator(BB, true);
98 }
99 inline bool pred_empty(const BasicBlock *BB) {
100   return pred_begin(BB) == pred_end(BB);
101 }
102 inline pred_range predecessors(BasicBlock *BB) {
103   return pred_range(pred_begin(BB), pred_end(BB));
104 }
105 inline pred_const_range predecessors(const BasicBlock *BB) {
106   return pred_const_range(pred_begin(BB), pred_end(BB));
107 }
108
109 //===----------------------------------------------------------------------===//
110 // BasicBlock succ_iterator helpers
111 //===----------------------------------------------------------------------===//
112
113 typedef TerminatorInst::SuccIterator<TerminatorInst *, BasicBlock>
114     succ_iterator;
115 typedef TerminatorInst::SuccIterator<const TerminatorInst *, const BasicBlock>
116     succ_const_iterator;
117 typedef llvm::iterator_range<succ_iterator> succ_range;
118 typedef llvm::iterator_range<succ_const_iterator> succ_const_range;
119
120 inline succ_iterator succ_begin(BasicBlock *BB) {
121   return succ_iterator(BB->getTerminator());
122 }
123 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
124   return succ_const_iterator(BB->getTerminator());
125 }
126 inline succ_iterator succ_end(BasicBlock *BB) {
127   return succ_iterator(BB->getTerminator(), true);
128 }
129 inline succ_const_iterator succ_end(const BasicBlock *BB) {
130   return succ_const_iterator(BB->getTerminator(), true);
131 }
132 inline bool succ_empty(const BasicBlock *BB) {
133   return succ_begin(BB) == succ_end(BB);
134 }
135 inline succ_range successors(BasicBlock *BB) {
136   return succ_range(succ_begin(BB), succ_end(BB));
137 }
138 inline succ_const_range successors(const BasicBlock *BB) {
139   return succ_const_range(succ_begin(BB), succ_end(BB));
140 }
141
142 template <typename T, typename U>
143 struct isPodLike<TerminatorInst::SuccIterator<T, U>> {
144   static const bool value = isPodLike<T>::value;
145 };
146
147
148
149 //===--------------------------------------------------------------------===//
150 // GraphTraits specializations for basic block graphs (CFGs)
151 //===--------------------------------------------------------------------===//
152
153 // Provide specializations of GraphTraits to be able to treat a function as a
154 // graph of basic blocks...
155
156 template <> struct GraphTraits<BasicBlock*> {
157   typedef BasicBlock NodeType;
158   typedef succ_iterator ChildIteratorType;
159
160   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
161   static inline ChildIteratorType child_begin(NodeType *N) {
162     return succ_begin(N);
163   }
164   static inline ChildIteratorType child_end(NodeType *N) {
165     return succ_end(N);
166   }
167 };
168
169 template <> struct GraphTraits<const BasicBlock*> {
170   typedef const BasicBlock NodeType;
171   typedef succ_const_iterator ChildIteratorType;
172
173   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
174
175   static inline ChildIteratorType child_begin(NodeType *N) {
176     return succ_begin(N);
177   }
178   static inline ChildIteratorType child_end(NodeType *N) {
179     return succ_end(N);
180   }
181 };
182
183 // Provide specializations of GraphTraits to be able to treat a function as a
184 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
185 // a function is considered to be when traversing the predecessor edges of a BB
186 // instead of the successor edges.
187 //
188 template <> struct GraphTraits<Inverse<BasicBlock*> > {
189   typedef BasicBlock NodeType;
190   typedef pred_iterator ChildIteratorType;
191   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
192   static inline ChildIteratorType child_begin(NodeType *N) {
193     return pred_begin(N);
194   }
195   static inline ChildIteratorType child_end(NodeType *N) {
196     return pred_end(N);
197   }
198 };
199
200 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
201   typedef const BasicBlock NodeType;
202   typedef const_pred_iterator ChildIteratorType;
203   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
204     return G.Graph;
205   }
206   static inline ChildIteratorType child_begin(NodeType *N) {
207     return pred_begin(N);
208   }
209   static inline ChildIteratorType child_end(NodeType *N) {
210     return pred_end(N);
211   }
212 };
213
214
215
216 //===--------------------------------------------------------------------===//
217 // GraphTraits specializations for function basic block graphs (CFGs)
218 //===--------------------------------------------------------------------===//
219
220 // Provide specializations of GraphTraits to be able to treat a function as a
221 // graph of basic blocks... these are the same as the basic block iterators,
222 // except that the root node is implicitly the first node of the function.
223 //
224 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
225   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
226
227   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
228   typedef Function::iterator nodes_iterator;
229   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
230   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
231   static size_t         size       (Function *F) { return F->size(); }
232 };
233 template <> struct GraphTraits<const Function*> :
234   public GraphTraits<const BasicBlock*> {
235   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
236
237   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
238   typedef Function::const_iterator nodes_iterator;
239   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
240   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
241   static size_t         size       (const Function *F) { return F->size(); }
242 };
243
244
245 // Provide specializations of GraphTraits to be able to treat a function as a
246 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
247 // a function is considered to be when traversing the predecessor edges of a BB
248 // instead of the successor edges.
249 //
250 template <> struct GraphTraits<Inverse<Function*> > :
251   public GraphTraits<Inverse<BasicBlock*> > {
252   static NodeType *getEntryNode(Inverse<Function*> G) {
253     return &G.Graph->getEntryBlock();
254   }
255 };
256 template <> struct GraphTraits<Inverse<const Function*> > :
257   public GraphTraits<Inverse<const BasicBlock*> > {
258   static NodeType *getEntryNode(Inverse<const Function *> G) {
259     return &G.Graph->getEntryBlock();
260   }
261 };
262
263 } // End llvm namespace
264
265 #endif